軌道上を走行する二車輪系がパラメータ共振に及ぼす影響

○学〔土〕中山智晴 正〔土〕阿部和久 正〔土〕紅露一寬 (新潟大)

Influence of twin wheels moving on a track on parametric instability

○ Tomoharu NAKAYAMA, Kazuhisa ABE, Kazuhiro KORO, (Niigata University)

The parametric instability of twin wheels moving with constant velocity on a periodically supported rail is investigated. For this purpose, an analytic solution is derived for the quasi-steadystate wheel-track dynamic interaction problems, then the nonlinear eigenvalue problem on the parametric instability. Based on a track model, the influences of the ratio of wheelbase to sleeper spacing on eigenvalue distribution, unstable speed ranges and the number of its zones are discussed.

キーワード: パラメータ共振,固有値問題,不安定速度域 *Key words*: parametric instability, eigenvalue problem, unstable speed zone

1. はじめに

鉄道軌道のレールは、まくらぎにより離散支持されて いるため、走行車輪の支持剛性が周期的に変動すること となる.その結果、レール・車輪間に凹凸が存在しなくて も、振動が発生し、これをパラメータ加振という.また、 車輪・軌道連成系の共振周波数とまくらぎ2区間通過周 波数とが一致する走行速度近傍では、系の減衰が小さい 場合に応答振幅が次第に増加するパラメータ共振、また はパラメータ励振と呼ばれる不安定振動が発生する可能 性がある.

著書ら¹⁾は、車輪質量やレールのモデル化などが不安 定速度域に及ぼす影響について検討した.また、文献²⁾ では、レール支持部の減衰やレール軸力が安定性に及ぼ す影響について調べた.しかし、これまでの検討では、1 車輪のみを考慮している.一方、1台車における前後2車 輪の間隔(軸距)は2.0~3.0m 程度であり、それらの連 成効果は必ずしも無視できず、安定性にも影響する可能 性がある.そこで、本研究では、2車輪系を対象に解析解 を構成し、その連成効果が不安定速度域等に及ぼす影響 について検討する.

2. 解析手法

2.1 軌道の準定常応答解

図–1 に示す車輪・軌道系を対象とする.車輪は一定速度 V で走行する質量 M の質点で表し,輪距を x_w ,各車輪変 位を w_1, w_2 とする.レールは Timoshenko ばりでモデル 化し、レールたわみをu,軌道方向座標をxとする.また、 レールは直結軌道を対象とし、等間隔 L で配置されたバ ネ定数 k_r の軌道パッドにより離散支持されており、車輪・ レール間の接触バネ剛性を k_w とする.なお、周波数域の 解析においては、軌道パッドを複素剛性 $k_e = k_r(1+i\eta_r)$ により表す.ここで η_r は loss factor であり、周波数によ らず一定値で与えるものとする.

レールの運動方程式は次式で与えられる.

$$GAK \frac{\partial}{\partial x} \left(\psi - \frac{\partial u}{\partial x} \right) - \rho A \frac{\partial^2 u}{\partial t^2} + \sum_{j=-\infty}^{\infty} F_{sj}(t) \delta(x - jL)$$

$$= F_1(t) \delta(x - Vt) + F_2(t) \delta(x - x_w - Vt)$$

$$GAK \left(\psi - \frac{\partial u}{\partial x} \right) \rho I \frac{\partial^2 \psi}{\partial t^2} - EI \frac{\partial^2 \psi}{\partial x^2} = 0$$

(1)

ここで、 ψ はレール断面回転角、 G, K, E, I, A, ρ はそれ ぞれせん断弾性係数、せん断係数、ヤング率、断面二次 モーメント、断面積、および密度である.また、 F_{sj} は j番支持点からレールに作用する反力であり、その作用位 置を x = jL とする. F_1, F_2 は後輪及び前輪とレール間 に作用する接触力である.なお時刻 t における後輪と前輪 位置は、それぞれ $x = Vt, x = x_w + Vt$ で与えられてい るものとする.

式(1)に時間に関する Fourier 変換を適用して次式を

得る.

$$GAK \frac{\partial}{\partial x} \left(\hat{\psi} - \frac{\partial \hat{u}}{\partial x} \right) - \rho A \omega^2 \hat{u} + k_0 \hat{u} \delta_L$$

$$= \frac{1}{V} F_1 \left(\frac{x}{V} \right) e^{-i\omega \frac{x}{V}} + \frac{1}{V} F_2 \left(\frac{x - x_w}{V} \right) e^{-i\omega \frac{x - x_w}{V}} \quad (2)$$

$$GAK \left(\hat{\psi} - \frac{\partial \hat{u}}{\partial x} \right) \rho I \omega^2 \hat{\psi} - EI \frac{\partial^2 \hat{u}}{\partial x^2} = 0$$

(^) は Fourier 変換, ω は円振動数, δ_L は周期 L のデル タ関数である.なお,時間に関する Fourier 変換は次式で 定義する.

$$\hat{f}(\omega) := \int_{-\infty}^{\infty} f(t)e^{-i\omega t}dt$$
(3)

また、 δ_L はデルタ関数 δ をまくらぎ間隔Lで配置して得られる以下のデルタ関数である.

$$\delta_L(x) := \sum_j \delta(x - jL) \tag{4}$$

パラメータ励振は、まぐらぎ2区間の周期に支配される.よって、車輪・レール間の接触力を周期長2Lを基準として、次式のような準定常解で表現する.

$$F_{j}\left(t + \frac{2L}{V}\right) = e^{i\frac{2L}{V}\lambda}F_{j}(t)$$
$$\hat{u}(x + 2L, \omega) = e^{i\frac{2L}{V}(\lambda - \omega)}\hat{u}(x, \omega)$$
$$\hat{\psi}(x + 2L, \omega) = e^{i\frac{2L}{V}(\lambda - \omega)}\hat{\psi}(x, \omega)$$
(5)

ここで、 λ は円振動数の次元を持つ複素固有値である. $\lambda = 0$ の時定常解となり、虚部が負で与えられる時不安定解となる. 式 (5) をみたす様に、 F_j , \hat{u} , $\hat{\psi}$ を次式により Fourier 級数展開する.

$$F_{j}(t) = \sum_{n \neq 0} F_{j,n} e^{i\left(\frac{n\pi}{L}V + \lambda\right)t}$$
$$\hat{u}_{1,n} = \sum_{m} a_{m}^{n}(\omega) e^{i\left(\frac{m\pi}{L} + \frac{\lambda - \omega}{V}\right)x}$$
$$\hat{\psi}_{1,n} = \sum_{m} b_{m}^{n}(\omega) e^{i\left(\frac{m\pi}{L} + \frac{\lambda - \omega}{V}\right)x}$$
(6)

ここで, $F_{j,n}$, a_m^n , b_m^n は Fourier 係数である.また, $\hat{u}_{i,n}$, $\hat{\psi}_{i,n}$ は $F_{j,m} = \delta_{ij}\delta_{nm}$ の場合に対する式 (2)の解である. 式 (2) における $\hat{u}_{1,n}\delta_L$ は次式のように変形できる.

$$\hat{u}_{1,n}\delta_L = \frac{Z_o n}{L} \sum_m e^{i(z_{2m-1} - \omega/V)x} + \frac{Z_e n}{L} \sum_m e^{i(z_{2m} - \omega/V)x}$$
$$Z_{on} := \sum_m a_{n,2m-1}, \quad Z_{en} := \sum_m a_{n,2m}$$
(7)

式 (6),式 (7) を式 (2) に代入して, $b_{n,m}$ を消去し, さら に Z_{on}, Z_{en} がそれぞれ $a_{n,2m-1}, a_{n,2m}$ の総和であること に着目し、両辺の m に関する総和をとり、 Z_{on}, Z_{en} を消

去することで次式を得る.

$$a_{n,2m-1} = \begin{cases} \frac{1}{VX_{2m-1}} [\delta_{n,2m-1} - \frac{1}{X_n(\frac{L}{k_e} + \sum_l \frac{1}{X_{2l-1}})}] & (n:odd) \\ 0 & (n:even) \end{cases}$$
$$a_{n,2m} = \begin{cases} \frac{1}{VX_{2m}} [\delta_{n,2m} - \frac{1}{X_n(\frac{L}{k_e} + \sum_l \frac{1}{X_{2l}})}] & (n:odd) \\ 0 & (n:even) \end{cases}$$
$$(8)$$

以上より $a_{n,2m-1}, a_{n,2m}$ が求められると,式(6)の逆 Fourier 変換より,レールたわみ応答は次式で与えられる.

$$u(x,t) = \sum_{n \neq 0} \{F_{1,n}u_{1,n}(x,t) + F_{2,n}u_{2,n}(x,t)\}$$
(9)

2.2 車輪応答

j番車輪の応答は次式で与えられる.

$$w_j(t) = \sum_{n \neq 0} \frac{F_{j,n}}{M \left(\frac{n\pi}{L}V + \lambda\right)^2} e^{i\left(\frac{n\pi}{L}V + \lambda\right)t}$$
(10)

2.3 車輪レール間の接触力

各車輪とレールとの接触力は次式で与えられる.

$$F_1(t) = k_w \{ w_1(t) - u(Vt, t) \}$$

$$F_2(t) = k_w \{ w_2(t) - u(Vt + x_w, t) \}$$
(11)

2.4 不安定解析

式(6),(9),(10),を式(11)に代入すると無限連立方 程式を得る.{**F**}に関する係数行列を[**M**]とすると,次 式を得る.

$$[\mathbf{M}_o]\{\mathbf{F}_o\} = 0, \ [\mathbf{M}_e]\{\mathbf{F}_e\} = 0 \tag{12}$$

 $[\mathbf{M}_o], \{\mathbf{F}_o\}, [\mathbf{M}_e], \{\mathbf{F}_e\}$ はそれぞれ,奇数成分および偶数成分から成る係数行列と接触力係数ベクトルである. $\{\mathbf{F}\} \neq 0$ より,連成モードに対して次式を得る.

$$\det[\mathbf{M}_o] = 0, \ \det[\mathbf{M}_e] = 0 \tag{13}$$

準定常モードは,安定・不安定に関わらず式 (12) のい ずれかを満たす.そこで行列を有限サイズで打ち切り,式 (13) を与える走行速度 V と固有値 λ の関係を数値的に求 める.なお,当該非線形固有値問題の求解には,Block-SS 法 ³⁾⁴⁾ を用いた.

3. 解析条件

 $60 \text{kg} \, \nu - \nu を想定し、曲げ剛性 EI=6.37 \text{MNm}^2, せん断に関する係数 GAK=209 \text{MNm}^2, \rho A=60.8 \text{kg/m}, \rho I=0.242 \text{kgm} とした。またレール支持間隔 L=0.6 m, パッド剛性 <math>k_0=50 \text{MN/m}, 車輪 \cdot \nu - \nu$ 間接触力 $k_w=2 \text{GN/m},$ とし、車輪質量は M=1000 kg と設定した。なお軸距 x_w と軌道パッドの loss factor η_r については値を適宜変えて それらが安定性に及ぼす影響について考える。なお、ま

くらぎ2区間通過周波数 V/2L と、車輪・軌道連成系の 共振周波数とが近接する際に得られる不安定モード(1次 モード)が有する不安定速度域の幅に比べて高次モード のそれは無視し得るほどに狭い¹⁾.そのため以下では、奇 数項方程式により求められる1次モードのみを検討対象 とする.

 λ の収束性を確認の上,式(12)の固有値計算における Fourier 係数の打ち切り項数は $n = \pm 3$ までとし,2車輪 に対応する 12×12の行列に基づき計算を行った.

4. 解析結果

4.1 1 車輪モデルとの比較

文献¹⁾ で検討対象とした一車輪モデルでの結果と,本研 究におけるに二車輪モデルでの比較を行う.なお,パッドは 無減衰とする.上述の軌道構造に対応する無限長 Winkler ばり上に置かれた1車輪系の単位調和加振応答を別途求 めたところ,共振周波数は約51Hzであった.パラメータ 共振は,まくらぎ2区間通過周波数 V/2Lが連成系の共 振周波数に概ね一致する走行速度域で発生するので,そ の値は約61m/sとなる.そこで,58m/s $\leq V \leq 64$ m/s の範囲で走行速度を適宜設定して,式(12)の固有値 λ を 求めた.結果を図2に示す.前述の通り, λ が負の虚部を 持つ速度域で応答は不安定となり,パラメータ共振が発 生するが,まくらぎ2区間通過周波数が共振周波数に一 致する走行速度前後に相当する60.6m/s $\leq V \leq 61.2$ m/s の速度範囲にそれが分布していることが確認できる.

次に、軸距がレール支持間隔 L の整数倍となる xw = 2.4mの2車輪モデルに対して得られたλの分布を図3に 示す. 当該2車輪モデルでは,不安定速度域が2箇所に分 布している.2車輪・軌道連成系の共振モードには、本来2 車輪同位相振動と逆位相振動の2つが存在すると考えられ る. これらの共振周波数を調和加振応答解析により別途求 めたところ,同位相振動モードの共振周波数は約52Hz で あり, 逆位相モードはそれよりも低く約 50.3Hz であった. これらから推定される不安定速度はそれぞれ 62.4m/s, お よび 60.4m/s となり,図3の二つの不安定速度域を近似 している.また、不安定域の中心速度におけるλに対す る固有ベクトル (F_{i,n})を求め,それらを式 (10) に代入し て、車輪変位の固有モード比 w2(0)/w1(0) を計算したと ころ,低い方の不安定速度では w₂(0)/w₁(0) ≈ −1.0, 高 い方では $w_2(0)/w_1(0) \approx 1.0$ となり,それぞれ逆位相と 同位相モードを与えていることが確認できた.以上より, 当該2車輪モデルにおける二つの不安定速度域は同位相 と逆位相の共振モードにそれぞれ対応していることが分 かった.

4.2 軸距が不安定モードに及ぼす影響

軸距が $x_w = 2.1m$ の場合を図 4, $x_w = 2.25m$ の場合を 図 5, にそれぞれ示す.なお,軌道パッドは無減衰としてい る.これらの図より,分布形状が軸距によって異なること が確認できる. $x_w = 2.1m$ は,レール支持間隔 L = 0.6mの 3.5 倍に相当する.この場合,2 車輪のうち,一方の車 輪がレール支持点直上にある時,他方の車輪は支持点間

図 2 1 車輪・軌道連成系における固有値 λ の分布

図 3 2 車輪・軌道連成系における固有値 λ の分布 (x_w = 2.4m)

中央(レールスパン中央)に位置する.仮にレールスパン 中央で車輪変位が最大になるものとすると、レール支持 点での変位はほぼ0になる.よって当該振動では、2車輪 間の位相が π/2 ずれる. なお, 2 車輪系では本来モードは 二つ存在するので、位相差が $\pi/2$ と $-\pi/2$ の二つがこれ らに対応するものと推測される. そこで,図4に示した 不安定域の中心速度における二つの複素固有値(実部が 正と負の二つ)について,式(11)の車輪変位の比を求め たところ,実部が正の λ において, $w_2(0)/w_1(0) \approx i$,実 部が負の λ において, $w_2(0)/w_1(0) \approx -i$ となっており, それぞれ $\pi/2$ と $-\pi/2$ の位相差を持つことが確認できた. また,本結果より軸距がレール支持間隔の整数倍となる $x_w = 2.4 \text{m}$ の場合,前後車輪が同期してレール支持部を通 過することから,同位相と逆位相のモードが表れていたと 理解することができる.また,図 5 に示した $x_w = 2.25$ m の場合の固有値分布は $x_w = 2.1$ mと $x_w = 2.4$ mの場合 を複合したような形状になっている. これは、それらの モードが混合したモードを表したものと推測できる.

4.3 減衰の影響

2.4 mの軸距に対し、軌道パッドの loss factor η_r を 0.014 に設定した場合に得られた Im(λ)-V の分布を図 6,

図 4 2 車輪・軌道連成系における固有値 λ の分布 ($x_w = 2.1$ m)

図 5 2 車輪・軌道連成系における固有値 λ の分布 ($x_w = 2.25$ m)

軌道パッドが無減衰に設定した場合に得られた Im(λ)-V の分布を図7に示す.これらの図を比較することにより, 減衰導入によって,固有値 λ が正の虚数方向に平行移動 し, λ の虚部はすべて正値をとり,不安定速度域が完全に 消失していることが確認できる.また,図6の減衰導入 時の分布形状は,図7の無減衰時のそれを,正の虚数方 向に平行移動したものと概ね一致しており,減衰の導入 が固有値(λ)の分布形状自体には影響しないことも確認 できる.なお,減衰導入による固有値 λ の正の虚数方向 への移動は1車輪モデルにおいても確認されている²).

一方で,現実の軌道においてはパッド類の loss factor は 0.15 程度の値を有するとされている.この値は,本解 析で不安定速度域が消滅した $\eta_r = 0.014$ と比較しても 10 倍程大きく,実軌道においてパラメータ共振が発生する 恐れはないことがわかる.また,ここでは台車等におけ る減衰を考慮しておらず,現実にはさらに減衰効果は大 きくなるものと考えられる.

5. おわりに

走行2車輪と離散支持軌道との連成系におけるパラメー タ共振について調べた.前後の車輪間距離が台車の軸距 程度である場合,軌道との連成共振モードが二つ存在し, 軸距とレール支持間隔との比によって,不安定速度域の1 箇所から3箇所まで変化することが分かった.

また,軌道パッドの減衰が安定化に及ぼす効果についても 調べた.実際のパッド類が有する減衰の1/10程度の減衰 導入により不安定速度域が完全に消滅することから,実 軌道においてパラメータ共振が発生する恐れは極めて低 いことが確認できた.今後はまくらぎを入れたモデル,台 車を入れたモデルについても検討したい.

図 6 x_w =2.4m での固有値虚部 Im(λ) の分布 ($\eta_r = 0.014$)

図 7 x_w=2.4m での固有値虚部 Im(λ) の分布 (無減衰)

参考文献

- Abe, K., Chida, Y., Quinay, P.E.B. and Koro, K.: Dyanamic instability of a wheel moving on a discretely supported infinite rail, J. Sound Vib., 333, pp.3413-3427, 2014.
- Abe,K.,Hosaka,K.,Koro,K.and Quinay,P.E.B.:Influence of damping and rail stress on parametric instability of a wheel, Proc.of STECH2015, USB, 2015.
- Asakura,J.,Sakurai,T.,Tadano,H.,Ikegami,T. and Kimura,K.:A numerical method for nonlinear eigenvalue problems using contour integrals, JSIAM Letters, Vol 1, pp.52-55, 2009.
- 阿部和久,筧 拓哉,紅露一寛:等間隔に欠陥が存在する周期場を対象とした効率的分散解析手法,土木学会論 文集 A2, 73, No.2, I-133-I-141, 2017.