2702 アーク継続時間ならびに電極間距離が トロリ線表面に及ぼす影響

正 [電] 〇早坂 高雅 (鉄道総研)

Influence of Arc Duration and Contact Distance on Contact Wire Surface

Takamasa HAYASAKA, Railway Technical Research Institute. 2-8-38, Hikari-cho Kokubunji-shi

Arc discharges by contact loss between contact wires and pantographs are the factors in damages of contact wires and contact strips. However the arc traces on the surface of contact wires cannot be observed because the contact strip slides on the contact wire in the field or in usually equipment. Therefore, we have experimented about arc discharges in which the arc duration is controlled in order to solve the arc phenomena between contact wires and contact strips in the equipment without contact strips sliding. The experiments gave us some important results; for example, the radius, the depth and the volume of the arc traces are not influence on the arc duration but on current in circuits. This paper shows the relation between arc duration and contact materials.

Keywords : Arc duration, Contact distance, Current collecting material, Arc trace

1. はじめに

電気接点にトロリ線とすり板を用いて,実験室内で 1~2 secのアーク継続時間を有するアーク放電を発生させ ると,アーク放電発生前後でトロリ線の質量は増加し,す り板の質量は減少することがわかっている⁽¹⁾.このときの トロリ線の質量増加は,溶融したすり板の一部がトロリ線 に付着するために生じていると考えられている.一方,鉄 道のフィールドにおいて,トロリ線や剛体電車線のしゅう 動面に生じる波状摩耗のように,局所的な摩耗(質量の減 少)が確認されているが,その形成には離線時のアーク放 電が関係していると考えられている⁽²⁾.

実験室内において既述したアーク放電発生後のトロリ 線表面にすり板材料の一部が付着することに加えて、クレ ータ状の凹部の形成が確認された.この凹部がトロリ線の 波状摩耗のような局所的な摩耗に関係していると考えら れるが、この凹部の大きさがどのようなパラメータによっ て変化するのかについては明らかになっていない.

これまで筆者らは、アーク放電がトロリ線表面に及ぼす 影響を明らかにするために、電気接点に集電系材料を用い たうえで、アーク継続時間を任意に変えて、電気接点表面 に形成される凹部を詳細に解析してきた.本論文では、ア ーク放電発生後のトロリ線表面の観察によって確認され た凹部の半径、深さ、体積の測定結果について報告する.

2. 実験方法

2.1 実験装置

図1に実験で使用した電極開閉装置の概要を示す。また図2に測定系統を除いた,電極開閉装置の回路図を示す.この電極開閉装置は,電極としてトロリ線やすり板

を上下に固定して、一方の電極を任意の速度で上下に移 動させることのできる可動ステージを備えている.

[No. 12-79] 日本機械学会 第19回鉄道技術連合シンポジウム講演論文集 [2012-12.5~7.東京]

図3 オシロスコープの波形例

実験では電極を閉じた状態で直流電源から 50 V の電 圧を印加して 80~440 A (0.13~0.63Ω)の電流を流し た状態で,接点を 10mm/sの速度で鉛直下向きに移動さ せてアーク放電を発生させ,任意の設定時間 (0.2~ 100 msec)後にサイリスタを点弧してアーク放電を終了 させた.なお,この実験装置は接点を開放してアーク放 電を発生させるため,アーク継続時間とともに電極間距 離も変化する.電極間距離についてはレーザ変位計で測 定を行っている.ただし,ここでの電極間距離はアーク 放電発生点とアーク放電終了点の差であることに注意が 必要である.

2.2 電極

表1に各電極に用いた材料の種別と成分を示す.実験 に用いた電極は、陽極として20~30 mmの長さのみぞ

(D) 电極间距離と凹部半径図5 アーク放電と凹部半径の関係

付き硬銅トロリ線 110 mm² (GT110), 陰極として約 20×25×10 mm の在来線で一般的に使用されているカー ボン系すり板の一種である PC78A を使用した.トロリ 線とすり板は,実験前に 200 番の紙やすりで接触面を研 磨したうえで,エタノールで脱脂し,十分乾燥させた後 に質量を測定してから,陽極である固定ステージにトロ リ線を,陰極である可動ステージにすり板をセットした. 2.3 測定波形の例

図3にオシロスコープの波形例を示す.この実験では 約400Aの電流を流した状態で電極を開放させた.図中 では約50msecの付近でアーク放電が発生して電極間電 圧が10V以上に急変している.その後,100msec経過 してサイリスタが点弧し,アーク放電は終了している. 前述したように,電極間距離はアーク放電が発生した瞬 間を基準としているため,この波形例における電極間距 離は約1.3mmである.

3. 実験結果

3.1 アーク放電後のトロリ線表面

図4に0.5 msecと10 msecのアーク放電発生後のトロ リ線表面状態を示す.2つのトロリ線の表面には、凹部が 形成されていること、その周囲の状態がアーク継続時間に よって異なることが特徴として認められる.既述したがこ れまでの筆者の研究から、凹部の周囲の付着物は、すり板 の成分の一部であることがわかっている.

3.2 アーク継続時間, 電極間距離と凹部大きさの関係

前述のようにアーク放電によって、トロリ線表面に凹部 が形成される.図5にアーク放電と凹部半径の関係を、図 6にアーク放電と電極間距離の関係を、それぞれアーク放 電発生直前に回路に流れていた電流をパラメータにして 示す.また図7にこれらの値を用いて、凹部を円錐と仮定 した場合の体積を示す.

図6 アーク放電と凹部深さの関係

凹部の半径は、電流値が大きい場合、5~10 msec 前後 のアーク継続時間まで増加する傾向にあるが、それ以上に おいてほとんど増加しない. なお、このときの電極間距離 は 0.1mm 程度である. 一方、電流の大きさが変化すると 凹部の半径の大きさが変化することがわかる.

回部深さは、データにばらつきがあるものの、アーク継 続時間が 5~10 msec 前後まで増加する傾向にあるが、そ れ以上においてほとんど増加しない、また凹部半径の大き さと同じように電流の大きさが変化すると凹部の深さも 変化することがわかる.

回部の体積は、アーク継続時間が5msec以上になると電流による違いが顕著になる.

以上の測定結果から、凹部の半径と深さはアーク継続時 間の影響よりも電流の影響を受けやすいことがわかる.

3.3 電流と凹部大きさの関係

既述したように電流による凹部の大きさの違いはアーク継続時間が5 msec 以上になると顕著になることがわかった.そこで,図8にアーク放電発生直前に回路に流れていた電流に対する 5msec 以上のアーク継続時間の時の凹部の半径,深さ,体積の平均値を示す.

凹部半径を r (µm), 凹部深さを d (µm), 凹部体積を V(mm³)とすると, それぞれは電流を I(A)として下記のよ うに与えられる.

 $r = 2.46 \, l \cdot \cdots \cdot \cdots \cdot (1)$ $d = 0.94 \, l \cdot \cdots \cdot \cdots \cdot (2)$

 $V = 1.0 \times 10^{-9} \, l^3 \cdot \cdot \cdot \cdot \cdot \cdot (3)$

以上から, 凹部の半径, 深さは電流に比例し, 体積は 電流の3乗に比例することがわかる.

4. まとめ

アーク放電発生後のトロリ線表面の観察によって確認 された凹部の半径,深さ,体積の測定から以下のことが わかった.

(1) 凹部の半径や深さは、電流値が大きい場合、5~10 msec 前後のアーク継続時間まで大きくなる傾向にある が、それ以上のアーク継続時間においてほとんど大きく ならない.

(2) 凹部の体積は、アーク継続時間が5 msec 以上になると電流による違いが顕著になる.

(3) 凹部半径ならびに凹部深さは電流に比例し、凹部体 積は電流の3乗に比例する.

5. おわりに

トロリ線のアークによる損傷はアーク継続時間よりも

電流値の影響を受けることが明らかになったが、その損 傷のメカニズムについてはまだ解明されていない、損傷 の大きさが電流に依存することから、そのメカニズムに は、アーク放電が発生する直前の接点間に形成される溶 融ブリッジが関係すると思われる、今後、筆者はこのよ うな観点からアークによるトロリ線の損傷メカニズムを 解明する予定である.

参考文献

- 早坂 高雅, 久保田喜雄:開離時アーク放電が集電 系材料の質量と表面状態に及ぼす影響, 電学論 D, Vol. 132, No.2, pp.163-169, 2012
- 網干光雄,中谷浩,東海林博行:剛体電車線における波状摩耗の発生機構,電学論 D, Vol. 126, No,2, pp.109-115, 2006