在来線車両先頭部における流れのはく離抑制に関する数値シミュレーション

○ 吉田 祐(東京農工大学) [機] 佐久間 豊(鉄道総研,東京農工大学)

Numerical Simulation on Reducing the Separated Flow Region Around

Front Ends of Cars of Meter Gauge Railway Lines

O Tasuku Yoshida, (Tokyo University of Agriculture and Technology)

Yutaka Sakuma, (Railway Technical Research Institute)

(Tokyo University of Agriculture and Technology)

Numerical simulations of the flow around a car were conducted to understand the flow field and to explore the optimum shapes of deflector boards and chamfered edges on the upper corner of the front end of the car to suppress large-scale flow separation. Flow separation at the front ends of bluff-nose trains of meter gauge railway lines results in increasing the aerodynamic drag and pressure fluctuations in tunnels. The results indicated that the deflector boards effectively suppress the large-scale flow separations from the upper front end of the car, but the optimum sizes and positions of the boards depend on the shape of the front-end edge.

Key Words: Meter Gauge Railway Lines, Separated Flow, CFD, LES

1.はじめに

在来線通勤車両のような切妻型の先頭車両の場合,特急 車両のような丸みの大きい先頭車両と比較して,列車通過 時の圧力変動,トンネル突入時の圧力変動,トンネル微気圧 波等が増大する傾向がある.これらの原因は切妻型の先頭 部車両からの流れのはく離が大きく影響している¹⁾.

これまで佐久間らは風洞実験を行い、はく離を抑制する 先頭形状についてタフト(気流糸)法による空気流れの可 視化,表面圧力分布および空気抵抗の測定を行っている2). その結果,先頭部端部の断面形状を変化させることで,は く離が抑制されることを示している. また, 先頭部屋根付 近に平板を設置することでもはく離が抑制出来る事を確認 している.しかし、実験では模型表面の流れ測定のみのた め、平板付近の空間的な流れ場の詳細については不明であ る. そのため、それぞれの形状がどの程度、はく離抑制効 果があるのかについて流れ場からの評価は出来ない. さら に平板のサイズ,設置位置についても十分改良の余地があ ると考えられる. そこで本研究では、数値計算を用いて実 験結果を再現し、車両周りの流れの様子を理解し、より効 果的にはく離が抑制できる平板のサイズや設置位置の検討 を行なう.また,先頭角部の面取り形状のはく離抑制効果 についても併せて検討する.

2. 数値計算の概要

はじめに、本 CFD 解析の有効性を検証するために、過 去の角先頭部の車両模型の風洞実験²⁾を再現した縮尺5分 の1、流入速度50m/sのCFD解析を行った.図1に車両

模型の計算領域を示す. 左図が全体図, 右図が模型付近の 拡大図である.格子点数は約 66 万点である.模型の近傍 ではプリズム格子を用いた.計算領域は、実験条件と同様 に、模型の幅を W, 高さ W, 奥行き 7 W, 模型下面と床面 の隙間 0.4 Wとし,風洞測定部の断面は,実物の幅×高さで ある 8.9 W×5.4 Wとした.ただし、流入境界から模型の先 端部までの距離は, 先端部に形成される渦が流入境界に影 響を及ぼさないように、実物の風洞測定部入口よりもさら に離れた距離とした.また、車両の後方は計算資源節約の 為に、実物の風洞測定部出口までの距離よりも短くした. 境界条件として床面は風洞実験を模擬して, すべりなし条 件とし, 天井, 左右壁面は, 壁面の影響が小さいと考え, 対称境界(すべり境界)とした. レイノルズ数は模型幅 W を基準として実験同様に 1.9×106 とした. CFD 解析は汎用 解析ソルバー「FLUENT13.0.0」を使用した. 今回, RANS で定常解を求め、それを初期条件に用い、本計算では LES を採用して,非圧縮非定常計算を行った.時間間隔は,代 表長さ Wと実験時の主流速度 Uから無次元化した △t=8.9×10⁻²を用いた.

本計算モデルの一覧を表1に示す.角先頭部の車両模型 (c0)および先頭角部に模型幅 Wを基準に3%(c3)と6% (c6)の面取り,さらにそれぞれに平板を設置した模型(a ~g)の数値計算を行った.平板設置のパラメータは長さL, 設置高さH,前方突出長さTとした(図2).制約条件と して,長さは車体上部の空調機器等の設置を考慮し,先頭 部前縁から約0.3W以下,高さは車両限界から約0.1W以 下,前方突出長さは連結時を想定し,約0.1W以下とした.

Fig.1 Computational model

Fig.2 Schematic image of computational model's parameter

Model	C:面取り量[%]	L:長さ	H:高さ	T: 前方突出長さ
cO	0	\geq	\geq	
c0a	0	0.1W	0.05 W	0
c0b	0	0.2W	0.05 W	0
c0c	0	0.1 W	0.1W	0
c0d	0	0.2W	0.1W	0
 c0e	0	0.3W	0.05 W	0.1 W
c0f	0	0.3W	0.1W	0.1W
cOg	0	0.4 W	0.1W	0.1W
c3	0.03W	\geq	\geq	>
c3a	0.03W	0.2W	0.1W	0
c3b	0.03W	0.3 W	0.1W	0
c3c	0.03W	0.3 W	0.1W	0.1W
c3d	0.03W	0.4 W	0.1W	0.1W
c6	0.06 W	\geq	\geq	>
c6a	0.06 W	0.2W	0.1W	0
c6b	0.06W	0.3W	0.1W	0
c6c	0.06 W	0.3 W	0.1 W	0.1W
c6d	0.06W	0.4 W	0.1W	0.1W
 and the second s	and the second se			the second se

Table.1 List of models

※W:模型幅、t:板厚=0.005W

3.結果と考察

3.1 数値計算と実験の比較

本節では,過去の風洞試験結果²⁾と数値計算結果との比 較を行い,数値計算の妥当性について検証していく.なお, 以下の各係数は,測定値を動圧および先頭部断面積で除す ることにより求めた.

図3に,抗力係数Coと揚力係数Coの計算結果と実験値の時系列波形の比較を示す. Coについて,実験値と計算値の平均は両者とも0.98であり一致している.CLの平均については実験値が・0.12,計算結果が・0.32であり,両者で差が見られた.この理由は,計算モデルには模型の支柱を作成していないことから,模型下面の流れ場は,実験と計算とで差異があるためと考えられる.しかし,このことは今回の目的に対して,大きな影響は無いと考えられる.

図4は、模型上面の車体中心線上の圧力係数 Cpの比較 図を示す.図の横軸は、模型幅 Wを基準とした前面部から の距離を示している.計算結果は 1000 ステップ分の、実 験値はサンプリング周波数 1.25kHz で 10.24秒間の各デー タの平均値を示している.両者の Cpは、0.8 W辺りで最小 値を示している.これは先頭部から流れがはく離し、それ により負圧が発生していると考えられる.その後、2 W 付 近の最大値に向かって上昇している.これは、流れの再付 着により表面の圧力が上昇していると考えられる.その後、 後縁部に向かって緩やかに減少している.両者のこれらの 変化は比較的よい一致を示している.

図 5 (a) に上面の, (b) に側面の風洞試験²⁾ と数値計 算の可視化結果の比較を示す.風洞試験の白い点線で囲ま れたタフトは,それらの向きが主流に対して逆向きである ことから逆流領域と判断された箇所である.また,計算結 果の可視化図は上面,側面ともに車体表面から1mm離れ た断面位置で,1000ステップ分を平均した速度ベクトルで ある.黒色矢印の部分が主流方向速度-5m/s以下(逆流) の箇所,白色矢印の部分が,主流方向速度+5m/s以上の箇 所である.実験と数値計算の可視化図を比較すると,逆流 領域の大きさや形状がよく一致していることが確認でき る.

以上の C_D 値, C_P 値, 可視化図から, 計算結果が過去の実 験結果を良く再現しており,本 CFD 解析の妥当性が確認 された.

Fig.4 Comparison of CP along center line on top face

(a) Topview (b) Side Fig.5 Comparison of flow between CFD and Experiment

3.2 面取りと平板のはく離抑制効果

表1に示す平板と面取り形状のはく離抑制効果について 検討するために、図6に模型前面の左右中心断面における 先頭部周りの流線の比較図を示す.非定常計算1000ステ ップ目のデータを用いて流線を描いた.

まず図6(a),(b),(c)の角先頭部の面取り有無の場合 について比較する.図6(a)の角先頭部 c0 では,面取り も平板も対策を行っていないために,大きくはく離してい る様子が確認できる.図6(b)のc3(面取り3%)や(c) のc6(面取り6%)と,無対策の角先頭部 c0 とを比較す ると,c3,c6の方がはく離が抑制されている事が分かる. この比較から数%の面取りでも大規模なはく離に対して一 定の抑制効果が得られることが分かる.

次に,角先頭部に平板を設置した場合の図6(a),(d), (g) について比較する.図6(d)のc0dでは,無対策の c0と比較して,はく離直後の流れが平板にせき止められ, 流れのはく離が抑られていることが分かる.さらに図6(g) の c0fでは,平板を前方に出すことで,より流れが抑え込 まれ,c0dより効果が高いことが確認できる.無対策の場 合,模型正面に衝突した流れが上方に流れ,模型端部から 大きなはく離を引き起こすが,前方に突出させた平板によ り,その流れを防ぐため,はく離抑制効果が上がったと考 えられる.

さらに面取りと平板を組み合わせた図6(e),(f),(h), (i) について比較する.図6(e) c3aや(f) c6aより, 上記の面取りのみ,または平板のみの場合と比べ,面取り と平板を組み合わせると,はく離抑制効果がより高まる事 が分かる.図6(h) c3cや(i) c6cと(e) c3aや(f) c6a を比べると,突出させなかった c3a, c6aよりも,平板を 前方に突出させた c3c, c6cの方が,はく離が大きくなり抑 制効果が下がることが確認できる.この原因として,模型 正面に衝突後の上部に向かう流れを平板で抑え込むより も,その流れ自体が,平板の先端部から新たに大きくはく 離するためであると考えられる.これらの結果から,平板 を設置する場合,角先頭部の場合には,前方突出型の平板 設置(7>0),面取り先頭部にはその前面と平板先端を合わ せた設置(T=0)が効果的であること分かった.

次に表1に示した計算モデルの分離流線の最大高さを比 較したものを図7に示す.ここで分離流線とは主流とはく 離領域を分ける境界の流線である³⁰.非定常計算の1000 ステップ目から1500ステップまでの計算結果で,動画を 作成し,はく離点(先頭部前縁,または平板先端)からの 流線(分離流線)を描き,その中で,高さ方向の最大値を 比較することで,はく離抑制効果の定量的な評価を試みた.

角先頭部に平板を設置した場合について考察する.無対 策の角先頭部の分離流線は模型幅の半分近くの高さであり 最も大きくはく離していることが分かる.角先頭部への平 板設置の効果について,平板の設置高さが 0.05 W (cOa, cOb) では,長さを変化させてもはく離抑制効果が低いこ とが分かる.これは,はく離した流れが平板と車体の間に 十分に流れず,むしろ平板上部に流れて,平板上で大きく はく離しているためである.また,cOa や cOc のように平 板の長さが 0.1 Wの場合,はく離抑制効果がほとんど無い ことが分かる.しかし,cOd, cOf,cOg のように平板の長さ を長くし,また平板を前方に出すことで,はく離抑制効果 は高まることが分かる.

次に、面取りを行った結果について見ていくと、平板な しでも、角先頭部と比較して明らかにはく離が抑えられて おり、過去の研究⁴⁾とも一致する.面取りを行った際の平 板のはく離抑制効果は、角先頭部の結果(**7**>0)と異なり、 前方に平板を出す(**7**>0)ことにより、はく離抑制効果が 下がることがこの図からも分かる.

以上から,角先頭部の場合と,面取り先頭部の場合では, 効果的なはく離抑制のための平板設置位置に異なる傾向が あることが確認された.これらの違いについて,風洞実験 では,模型表面の流れ場からはく離抑制効果について検討 していたが,CFD 解析を行なった結果,空間的な流れ場の 理解が得られ,より効果的な平板のサイズや設置位置につ いて考察することができた.このことから,今後,風洞実 験を行う際に,本研究の結果を参考にすることで,より効 果的なサイズ,設置位置を検討できると考えられる.

(g) c0f

(h) c3c

(i) c6c

4.まとめ

本研究では、在来線車両先頭形状変化による流れのはく 離抑制について調べるため、模型先頭上部の面取りや平板 の設置の効果について数値計算を行った.その結果、次の ことが確認された.

- (1)風洞実験の結果と数値計算の結果を比較することで、 両者は、CD値、CP値、模型表面の流れの様子が比較 的よく一致していることが確認された.これにより数 値計算の妥当性が確認された.
- (2)模型周りの流線の様子や、分離流線の最大高さを比較した結果、車体幅の3~6%の面取りで大きなはく離抑制効果が得られること、また、平板を設置することではく離抑制効果は上がるが、平板からもはく離することから角先頭部の場合と面取り先頭部の場合では、効果の高い設置位置が異なることが分かった。

本 CFD 解析により,風洞実験では検証出来なかった空間的な流れ場を解明し,はく離抑制効果の高い平板設置位置について考察することが出来た.今後は,平板からのはく離を抑える事などでより効果の高い対策を検討していく.

Fig.7 Comparison of separated streamline's height

参考文献

 佐久間豊,井門敦志,林太郎:切妻型車両のトンネル突 入時に発生する圧縮波(第2報,車両側低減対策法),日本 機械学会論文集(C編), Vol. 76, No. 770, pp. 128-134, 2010.

2) 佐久間豊, 井門敦志: 在来線車両先頭部における流れの はく離抑制に関する風洞実験, 鉄道総研報告, Vol. 22, No.5, pp. 5-10, 2008.

- 3) 谷一郎編:流体力学の進歩,乱流,丸善,1980.
- 4) Horner, S. F.: Fluid-Dynamic Drag, Published by the Author, 1958