編成車両と軌道の相互作用に関する数値シミュレーションの高速化に関する研究

○ [土] 川崎 祐征 [土] 三輪 昌弘 (JR東海)

[土] 吉村 彰芳(東京工科大学)

A Study on Efficient Calculation Methods of the Numerical Simulation for Vertical Dynamic Interaction between Multiple Vehicles and Railway Track

Yoshiyuki KAWASAKI, Masahiro MIWA, (Central Japan Railway Company) Akiyoshi YOSHIMURA (Tokyo University of Technology)

A numerical simulation of vertical dynamic interaction between high-speed train composed of multiple vehicles and railway track is formulated to the problem of solving the large-scale, time-dependent linear equations repeatedly at each time step of the integration. In the symposium of J-RAIL2009, we proposed a method of using the SMW (Sherman-Morrison-Woodbury) formula for updating the inverse of the matrix. However, as the number of linked vehicles increases, it has been proved that we cannot always carry out the simulation in a satisfactory short time. In this paper a new method of solving the linear equations using the PCG (Preconditioned Conjugate Gradient) method is described. By using the new method, a numerical simulation for Tokaido Shinkansen train traveling at high speed of 270 km/h on the long length track of 1,500 meters has been carried out in a very short time.

キーワード:車両と軌道の相互作用,数値シミュレーション,前処理付き共役勾配法,HHT-α法 **Key Words**: Vehicle-Track Interaction, Numerical Simulation, Preconditioned Conjugate Gradient Method HHT-α Method

1. はじめに

編成車両が軌道上を走行する場合における車両/軌道の 上下系の相互作用に関する数値シミュレーションモデルを 図1に示す.例えば、東海道新幹線では全ての列車が16両 編成で運転されており、列車の全長は400mに達する.こ のような長大な編成車両が軌道上を走行する場合の数値シ ミュレーションを実行する場合、軌道の両端における反射波 の影響を減ずるためおよび振動の定常状態を得るためには 列車長の2~3倍の軌道延長が必要となり、シミュレーショ ンに要する計算時間は著しく増大する.

これまでに筆者らは、車両/軌道の相互作用に関する数値 シミュレーションの計算時間の短縮を目的として、逆行列の 計算に関する Sherman-Morison-Woodbury の公式を応用し た数値シミュレーション方法を開発してきた^{1,2)}.しかし、 この方法でも連結車両数の増加に従って計算時間が比例的 に増大するため、長大編成のシミュレーションを効率的に行 うには更なる計算時間の短縮が求められる.

また,これまで車両/軌道の相互作用の数値シミュレー ションの数値積分法として Newmark-β 法を用いてきたが, この方法だと車輪/レール間の接触ばねがモデルの他の部 分に比べて硬いことに起因する高次モードの振動が計算結 果に現れるという問題があった.

そこで本稿では,数値シミュレーションの計算において解 くべき連立一次方程式の係数行列が対称・正定値・大規模疎 行列であることに着目し,前処理付き共役勾配法を用いた連 結車両数に依存しない高速計算法について,高次モードを抑 制する数値積分法である HHT-α 法を用いた計算法とあわせ て紹介する.

2. HHT- α 法による高次モードの数値減衰

図1に示す数値シミュレーションモデルの構築にあたっ ては、最初にレールの曲げを梁のモデルで近似し、梁の振動 を記述する偏微分方程式を有限要素法により空間的に離散 化する.次にレールと車輪の間に働く接触力の計算にヘル ツの接触理論を用いるが、ヘルツ接触ばねを線形近似すると

図1 車両/軌道の相互作用の数値シミュレーションモデル

次のような MCK 型の2階線形常微分方程式を得る²⁾.

$$M\ddot{\boldsymbol{u}}(t+\Delta t) + C\dot{\boldsymbol{u}}(t+\Delta t) + (K+K(t+\Delta t))\boldsymbol{u}(t+\Delta t) = \boldsymbol{g}(t+\Delta t) \quad (1)$$

ここで、M: 質量マトリクス C: 減衰マトリクスK: 剛性マトリクス u(t): 変位ベクトルK(t): 時間とともに変化するマトリクスg(t): 時間とともに変化するベクトル

式(1)のような MCK 型の方程式を数値的に解くため, 直 接積分に対する無条件安定な逐次解法である Newmark-β 法をこれまで用いてきた.しかし, Newmark-β 法によるシ ミュレーションの計算結果の中には実際の物理現象とは異 なる高次の振動モードがしばしば観察され,その対策を考 える必要があった.このような高次の振動モードの出現は, 車輪/レール間の接触ばねがモデルの他の部分に比べて硬 いことに起因するものである.そこで, 擬似的な高次モー ドを抑制するとともに低周波側では数値減衰を少なくして 減衰精度を保つことを目的に考案された手法である HHT (Hilber-Hughes-Taylor)-α 法³⁾の適用を試みた.

HHT- α 法では、Newmark- β 法の γ 減衰の性能を改善する ために、パラメータ α を用いて時間ステップ毎に解くべき 運動方程式 (1) を以下のように修正する.

$$\begin{aligned}
 M\ddot{u}(t+\Delta t) + (1+\alpha)C\dot{u}(t+\Delta t) - \alpha C\dot{u}(t) \\
 + (1+\alpha)(K+K(t+\Delta t))u(t+\Delta t) \\
 - \alpha(K+K(t))u(t) &= (1+\alpha)g(t+\Delta t) - \alpha g(t) \quad (2)
 \end{aligned}$$

$$\mathcal{L}\mathcal{O}\mathcal{R}\mathcal{O}\ddot{u}(t+\Delta t), \quad \dot{u}(t+\Delta t), \quad u(t+\Delta t) \ltimes \\
 \ddot{u}(t+\Delta t) &= \ddot{u}(t) + \Delta \ddot{u} \\
 \dot{u}(t+\Delta t) &= \dot{u}(t) + \Delta t\ddot{u}(t) + \gamma \Delta t \Delta \ddot{u} \\
 u(t+\Delta t) &= u(t) + \Delta t\dot{u}(t) + 0.5\Delta t^{2}\ddot{u}(t) + \beta \Delta t^{2} \Delta \ddot{u}
 \end{aligned}$$

と表される Newmark-β 法の関係式を用いて式を整理する と、加速度増分 ü を求める式が以下のように得られる.

$$A(t + \Delta t)\Delta \ddot{\boldsymbol{u}} = \boldsymbol{b}(t + \Delta t) \tag{4}$$

なお, $A(t + \Delta t)$ および $b(t + \Delta t)$ は以下のとおりである.

$$\begin{split} A(t + \Delta t) &= A + \beta \Delta t^2 (1 + \alpha) K(t + \Delta t) \\ A &= M + \gamma \Delta t (1 + \alpha) C + \beta \Delta t^2 (1 + \alpha) K \\ b(t + \Delta t) &= (1 + \alpha) g(t + \Delta t) - \alpha g(t) \\ &- \{M + \Delta t (1 + \alpha) C \\ &+ 0.5 \Delta t^2 (1 + \alpha) K \} \ddot{u}(t) \\ &- \{C + \Delta t (1 + \alpha) K \} \dot{u}(t) - K u(t) \\ &- 0.5 \Delta t^2 (1 + \alpha) K (t + \Delta t) \ddot{u}(t) \\ &- \Delta t (1 + \alpha) K (t + \Delta t) \dot{u}(t) \\ &- \{(1 + \alpha) K (t + \Delta t) - \alpha K(t) \} u(t) \end{split}$$
 (5)
HHT- α 法では、パラメータの値を

$$-\frac{1}{3} < \alpha < 0, \quad \beta = \frac{(1+\alpha)^2}{4}, \quad \gamma = \frac{1}{2} - \alpha$$
 (6)

 図 2 HHT-α 法によるシミュレーション結果の例(解析区 間中央でのレール振動加速度)

とすれば, 無条件安定, 2 次の精度が達成されることが知ら れている. もし $\alpha = 0$ とすれば, これまでの Newmark- β 法 に戻ることとなる.

HHT-α 法により求めた中央のレールの振動加速度のグラフについて、Newmark-β 法による計算結果と合わせて図2に示す.これを見ると、Newmark-β 法で出現している擬似的な高次モードが HHT-α 法では十分取り除かれていることが分かる.車両/軌道の相互作用に関する数値シミュレーションのように硬い MCK 形方程式を数値積分によって解く場合は、HHT-α 法のような高次モードを抑制する数値積分法を用いることにより精度の高いシミュレーションが可能となる.

3. 前処理付き共役勾配法による高速計算法

前章で述べたように、車両と軌道の相互作用の数値シミュ レーションは次の大規模連立1次方程式を毎時間ステップ, 繰り返し解くことになる.

$$A(t)\boldsymbol{x}(t) = \boldsymbol{b}(t), \ A(t) \in \mathbb{R}^{N \times N}, \ \boldsymbol{x}(t), \boldsymbol{b}(t) \in \mathbb{R}^{N}$$
(7)

ここで、N は連立方程式の次数、すなわち未知数の総数で あり、その値は一般に数千から数万の大きさになる.このよ うな大規模な連立方程式を効率よく解く方法として連立方 程式の係数行列 A(t) が正定値対称・大規模疎行列であるこ とから連立方程式の反復解法の一つである前処理付き共役 勾配法 ⁴⁾(Preconditioned Conjugate Gradient method : PCG 法)の適用が考えられる.PCG 法は係数行列 A(t) が正定値 対称行列であるとき、連立方程式を解くことが次の x(t) に 関する 2 次関数を最小にする解を求めることと等価である ことに基づく解法である.

$$f(\boldsymbol{x}(t)) = \frac{1}{2}\boldsymbol{x}^{T}(t)A(t)\boldsymbol{x}(t) - \boldsymbol{x}^{T}(t)\boldsymbol{b}(t)$$
(8)

PCG 法では与えられた連立方程式に予め前処理を施して 係数行列を単位行列に近い形に変換する.これにより解へ の収束に至る反復回数を大幅に減らすことが可能となる. この問題では,係数行列 A(t) は式 (5) に示したように時 間不変部と時間依存部の二つの行列の和で表される.この うち時間依存部の行列 K(t) は時間不変部の行列 A に比

(3)

べそのランクは非常に小さく $(rank(K(t)) = 4 \times$ 車両数 $\ll rank(A) = N$), 車両の移動に伴い影響を受ける要素は 僅かである.そこで次のように前処理行列を構成する.

まず,行列 A は正定値実対称であるから次のように完全 コレスキー分解が可能である.

$$PAP^T = LL^T \tag{9}$$

ここで, P は置換行列, L は下三角行列である. 一般にコ レスキー分解にはかなりの計算時間を要するが, 行列 A は 時間不変であるからシミュレーションのスタート時に 1 度 だけ実行すればよい. 完全コレスキー分解を用いると行列 A を次のように表すことができる.

$$A = SS^T, \quad z z \mathcal{C}, \quad S = P^{-1}L, \ S^T = L^T P^{-T}$$
 (10)

このように定義された正則な行列 S を用いて元の連立方 程式を次のように変換する.

$$\underbrace{S^{-1}A(t)S^{-T}}_{B(t)}\underbrace{S^{T}\boldsymbol{x}(t)}_{\boldsymbol{z}(t)} = \underbrace{S^{-1}\boldsymbol{b}(t)}_{c(t)}$$
(11)

変換された連立方程式の係数行列 B(t) は

$$B(t) = S^{-1}A(t)S^{-T}$$

= $S^{-1}(A + \beta\Delta t^2(1+\alpha)K(t))S^{-T}$ (12)
= $I + \beta\Delta t^2(1+\alpha)S^{-1}K(t)S^{-T}$

と書ける.ここで、1は単位行列である.

図3に,係数行列 $A(t) \ge B(t)$ の固有値の分布を表した グラフを示す.これを見ると,前処理をしていない A(t)の 固有値は広範囲に分布しているが,前処理をした B(t)の固 有値は最初の4 個 (= K(t)の階数)を除いてすべて1であ る.これは,B(t)が単位行列に非常に近い行列になってお り,共役勾配法において真の解に到達するまでの反復回数が 減少し,連立方程式の解を求めるための計算時間が短縮され ることを意味している.

PCG 法による数値シミュレーションの計算時間について, これまで用いてきた Sherman-Morison-Woodbury の公式を 応用した方法^{1,2)} (SMW 法)による計算時間と比較したグ ラフを図4に示す.グラフ中の横軸は時間依存行列 K(t)の 階数(列車の総車輪数に等しい)を,縦軸は連立方程式を 時間ステップ毎に解くのに要した平均 CPU 時間を表す.な お,連立方程式の次数は 14,445~14,542 である.

図4を見ると、車輪数が8(2両編成)以下の場合では SMW 法のほうが PCG 法よりも計算時間は短い.しかし車 輪数が12(3両編成)以上の場合では、SMW 法は車輪数に ほぼ比例して計算時間が増加するが、PCG 法においては車 輪数が多くなっても計算時間はほぼ一定であり、SMW 法と 比較して PCG 法は計算時間が著しく短縮しているのがわか る.この理由としては、PCG 法は原理的に計算時間が車両 数と無関係であること、反復法において時間ステップ毎に与 える初期値として1ステップ前の解を利用でき、さらに前処 理により解に収束するまでの反復回数が少なくなることな どが挙げられる.

このように、PCG 法は車両/軌道の相互作用に関する数 値シミュレーションの計算に適した方法であり、PCG 法を 用いることで長大編成における数値シミュレーションを効 率的に行うことが可能となった、

4. PCG 法による車体上下動の計算結果例

本章では, PCG 法を用いた車両/軌道の相互作用の数値 シミュレーションの例として, 編成車両における車体上下動 の計算結果例を紹介する.

4.1 計算条件

シミュレーションにおける計算条件を表1に示す.編成

図4 計算時間の比較

表1 計算条件

項目	数值
車両数	1 両または5 両
列車速度	75 m/s (270 km/h)
軌道延長	1500 m
まくらぎ本数	2499 本
行列 A の大きさ	35,004×35,004(1両)
	35,044×35,044 (5 両)
時間ステップ	$1 \times 10^{-3} m sec$
パラメータα	0

車両による車体上下動の違いを把握するため,車両数は1 両または5両としてシミュレーションを実施した.軌道延 長は1500m としたため,係数行列Aの大きさは約35,000 × 35,000 と大規模となったが,CPU が Intel(R) Xeon(R) X5450 3.00GHz での計算時間は約21分であった.なお,車 両および軌道の諸元には東海道新幹線の典型的な諸元を用 いた.また,高周波域の数値減衰はこの例ではあまり必要な いと考え, HHT- α 法におけるパラメータ α は0とした.

シミュレーションに用いた軌道狂いの波形およびパワー スペクトル密度(PSD)を図5に示す、この軌道狂いは東海 道新幹線の標準的な軌道状態を想定したものである.

4.2計算結果

シミュレーションにより求めた車体上下動の PSD を図 6 に示す.なお、図 6 中の「Front」とは前方台車の直上の位 置を,「Rear」とは後方台車の直上の位置を意味する.1車 両モデルの場合,1 Hz 付近では「Rear」の PSD は「Front」 よりも大きい.しかし、5 両編成モデルの場合,1 Hz 付近で は3号車の「Front」の PSD は「Rear」よりも大きい.

このように、1 車両モデルと5 両編成モデルでは1 Hz 付 近において「Front」と「Rear」の大小関係が反対になってい る.そのため、車体上下動のシミュレーションにおいては編 成車両を考慮することが重要であると言える⁵⁾.

5. おわりに

HHT-α 法および PCG 法の導入により,長大編成における 車両/軌道の相互作用に関するシミュレーションの高精度 化および計算時間短縮が可能となった.今後はこの数値シ ミュレーションを活用して車両と軌道の相互作用に関する 研究を深めていくとともに,シミュレーションの更なる高精 度化・効率化についても引き続き検討していきたい.

参考文献

1) 川崎祐征,三輪昌弘,吉村彰芳:車両/軌道の相互作用の 数値解析方法に関する一考察,第16回鉄道技術連合シン ポジウム講演論文集, pp.693-696, 2009.

 A. Yoshimura, M. Miwa, Y. Kawasaki : Study on numerical simulation methods of vertical dynamic interaction between railway vehicle and track, IAVSD' 09, Proceedings CD-ROM, p.187, 2009.

3) 日本機械学会 編:数値積分法の基礎と応用, pp.38-39, コ ロナ社, 2003.

4) 森正武:数値解析 第2版, pp.65-68, 共立出版, 2002.
5) 谷藤克也:鉄道車両の乗心地管理と強制振動計算法に関する研究,鉄道技術研究報告, No. 1321, 1986.

