FEM 解析を用いた有道床軌道におけるまくらぎの振動特性

○ [土] 坂井 宏隆 [土] 相川 明(鉄道総合技術研究所)

Vibration Characteristics of Sleeper with FE Analysis of a Ballasted Railway Track

OHirotaka Sakai, Akira Aikawa (Railway Technical Research Institute)

In this study, we created a 3D FE model of the prestressed concrete sleeper, expressing influence of ballast layer, based on the experimental modal analysis. Then, we expanded the model to a ballasted track, including rail and rail fastening system. We examined of frequency characteristics of the ballasted track by the transient response analysis. As a result, we confirmed that vibration characteristics of each sleeper in the track depended on the number of sleeper and their frequency characteristics, such as bottom forces and accelerations of the sleeper.

キーワード:有道床軌道, 3次元有限要素法, コンクリートまくらぎ, 軌道の高周波応答, まくらぎ下面圧力 **Key Words:** Ballasted Track, 3D FEM, Concrete Sleeper, High Frequency Response of Track, Bottom Forces of a Sleeper

1. はじめに

車輪~レール間で発生する列車通過に伴う衝撃荷重は, まくらぎを介してバラスト層に伝えられる.バラスト軌道 において,バラスト層の沈下や側方流動の原因となる荷重 の周波数成分としては主に数十 Hz オーダーの低い周波数 帯が着目されてきた.図1は,弊所が所有するセンシング まくらぎⁿを用いて在来線で測定を行った際に,営業列車 が通過した時のまくらぎ下面荷重分布の一部と,同時に測 定したまくらぎ上面の加速度波形の2階積分から算出した 変位(最大値で正規化)を示したものである.この図から, まくらぎ下面は全体的に一様な圧力分布を示しているわけ ではなく,まくらぎ自身が高次の曲げモードを伴い,まく らぎ下面のバラストに局所的な力を加えていることがわか る.よって,衝撃荷重に伴うバラスト軌道の劣化メカニズ ムを調べる上で,まくらぎの曲げやねじりを考慮すること は重要であると考えられる.

そこで、本稿ではまくらぎ単体の曲げやねじりを考慮し、 バラスト層の影響を反映した精緻な有限要素モデルを作成

図1 センシングまくらぎによるまくらぎ下面荷重測 定結果,およびまくらぎの変位形状,(a)180 Hz 1 次 曲げ,(b)400 Hz 2 次曲げ,(c)860 Hz 3 次曲げ

した.また、本モデルに営業線における列車の実測荷重を 載荷し、まくらぎ上面の加速度応答やまくらぎ下面圧力な どを実測値と比較することによって、モデルの妥当性を検 討した.さらに、まくらぎ単体モデルにレールや締結装置 を付加した軌道モデルを作成し、レールによる拘束効果な どを検討した.

2. 解析モデルの概要および解析条件

2.1 解析モデルの概要

モデルは3種類用意した.1つ目は基本となるまくらぎ 単体モデル,2つ目はレールや締結装置等を付加したまく らぎ単体モデルをレール長手方向に複製し3本としたも の,3つ目は同様に5本のまくらぎからなるモデルである.

(1) まくらぎ~バラスト単体モデル

対象は在来線用3号PCまくらぎである(図2左).モデ ルの節点数は50986,要素数は51944である.モデル作成 時には,まくらぎの上面を除いた各面にバラストを模擬し た剛性と減衰特性を持つ3方向の節点ばねを設けること で,まくらぎの周囲がバラストで充填された状態を再現し た(図2右).なお,ばねの剛性および減衰係数は,実験モ ーダル解析(図3)によって決定した.

(2) レールや締結装置を付加したまくらぎ3本のモデル ここでは上記(1)のまくらぎモデルの上部に,レール,

図2 まくらぎ~バラスト単体モデル

図3 インパルスハンマによる加振実験

図4 レールや締結装置を付加した軌道モデルの例

表1 各部材の接点数および要素数(個)

	レール	締結装置	接続部(ばね)
節点数	2940	900	—
要素数	2160	296	846

締結装置を付加したモデル(まくらぎ1本に付加するレー ルの長さ、すなわちまくらぎ間隔は600 mmとした)を作 成し(これをベースモデルとよぶ)、レール長手方向に複製 することで3本のまくらぎからなるレール〜まくらぎ〜バ ラストモデルを作成した(図4).なお、まくらぎは軌道全 体の中央から原点に向かって01,02 …とよぶことにし、原 点から見て左のレールをL、右のレールをRとする.ここ で、まくらぎ単体モデルに付加した部材の節点数および要 素数を表1に示す.また、各部材の接続部については、ボ ルトはまくらぎと剛結し、その他の部材の接続は剛性ばね を用いた.各ばねの剛性を表2に示す.

(3) まくらぎ5本のバラスト軌道モデル

上記(2)のモデルと同様な作成方法で、5本のまくら ぎを持つ軌道モデルを作成した.

2.2 解析条件(周波数応答解析)

各種モデルの振動特性を把握するため、周波数応答解析 を行った.入力荷重は1 ~ 2000 Hz までを含むホワイトノ イズであり、まくらぎ上部の端点でZ軸方向に入力し、他 端点でのZ方向のイナータンスを出力した.

2.3 解析条件(過渡応答解析)

解析モデルの妥当性を検討するため、数値解析モデルに 実車荷重を入力し、まくらぎに生じる加速度や下面圧力を 調べた.また、得られた波形の振幅スペクトルを求め、そ

表2 部材間ばねの剛性(単位:N/m)

方向	レール~まくらぎ (軌道パッド)	レール~ 締結装置	締結装置 ~まくらぎ
х	1.71 × 10 ⁶	2.00×10^{7}	5.00×10^{6}
Y	6.57 × 10 ⁵	4.08 × 10 ⁶	5.00 × 10 ⁶
Z	4.29 × 10 ⁶	2.00 × 10 ⁷	5.00 × 10 ⁷

の周波数特性を考察した.

(1)入力データおよび入力点

入力荷重は、図5(a)に示す在来線特急通過時(速度は125 km/h)の1台車分のレール圧力波形である.この波形は図 5(b)のような80Hz付近にピークをとる周波数特性を持っ ている.レール圧力は軌道パッドに内蔵されたひずみゲー ジからの出力結果であるが、この値はレールやまくらぎ、 バラストを含む、系全体の振動特性を反映したものである ことに注意する必要がある.入力点は左右レール直下のま くらぎ上部であり、全ての解析ケースにおいて、モデル中 央のまくらぎのみに載荷を行った.

(2) 出力データおよび出力点

出力データは加速度および圧力の時刻歴応答である.加 速度はまくらぎ上面中央部とまくらぎ下面の左右レール直 下を,圧力はまくらぎ下面の左右レール直下の値をとった.

図7 現地測定と数値解析の比較.(a)まくらぎ上面 中央加速度(b) 左レール下まくらぎ下面圧力(c) 右レール下まくらぎ下面圧力

また、今回はZ方向の値のみを用いて考察を行った.

3. 解析結果

3.1 まくらぎ~バラスト単体モデルの妥当性の確認(1)周波数応答解析による実験との比較

図6は、解析モデルのバラストばねの剛性および減衰係 数を決定するために行った、実物のまくらぎのインパルス ハンマによる加振試験(図3)によって得られたZ方向の イナータンスと、数値解析モデルにおける周波数応答解析 結果のイナータンスを比較したものである.図より、構築 したまくらぎ~バラスト単体モデルは数+Hz ~ 1000 Hz 以上にわたる広帯域において、その振動特性(固有周波数 およびそのピーク値)を概ね再現できたといえる.

(2) 過渡応答解析による実験との比較

図7(a)はまくらぎ上面部の加速度応答値を現地計測と 数値解析結果で比較したものである.また,図7(b,c)には 左右レール直下のまくらぎ下面に生じる圧力を同様に比較 したものを示す.加速度応答,圧力応答ともに,数値解析 では実測データに比較的近い波形が得られており,構築し た数値解析モデルでまくらぎ~バラスト単体の挙動をよく 表現できているといえる.

3.2 レール~まくらぎ~バラストモデル

(1) 過渡応答解析(時刻歴波形)による計算結果

図8に、3本のまくらぎ軌道モデルにおいて過渡応答解

図8 3本まくらぎの軌道におけるまくらぎ下面右レ ール下の加速度・圧力応答: (a) 01R (b) 02R

図9 5本まくらぎの軌道におけるまくらぎ下面右レ ール下の加速度・圧力応答: (a) 01R (b) 02R (c) 03R

析を行ったときの,まくらぎ下面(右レール直下)の加速 度および圧力の時刻歴応答を示す.また,図9に,5本の まくらぎで構成された軌道における同様な結果を示す.な お,ここでは各軌道の中央のまくらぎ(3本まくらぎモデ ルならば2本目)に荷重を入力しており,加速度応答,圧 力応答ともに中央のまくらぎを対称中心として(3本まく らぎの1本目と3本目などで)ほぼ同様な結果が得られた ことから,原点に最も近いまくらぎから軌道中心のまくら ぎまでの結果を示している.

図8から、荷重の入力点である2本目のまくらぎは、図 7(a)の実測値および解析値と比較してピーク値が 75%ほ

図 1 0 図 8 (3本まくらぎ軌道)の加速度および圧力 波形の振幅スペクトル: (a)加速度 (b) 圧力

どに減少している.また,圧力値に関しては図7(c)と比較 すると,解析値で50%程度減少していることがわかる.こ れは,レールによって複数本のまくらぎが拘束され一体化 したことによる影響,または,入力荷重が実測とは異なり 点載荷であることが原因であると考えられる.ここで.ま くらぎ下面加速度よりも下面圧力の方がピーク値が減少す る(すなわち系全体の拘束の影響を大きく受ける)理由は, 衝撃荷重による鉛直変位は加速度よりも比較的広範囲に生 じ,レールを介して周囲に分散されたことが考えられる.

次に、まくらぎを5本にしたケース(図9)で3本のケ ースと比較し、拘束本数の影響を調べる.荷重を載荷した まくらぎ(図8(b)と図9(c))に着目すると、加速度、圧力 ともにピーク値がやや小さくなっているもののその差はわ ずかであり、拘束本数の影響は、単体のまくらぎから複数 本のまくらぎに拡張した場合と比較してそれほど大きくな いといえる.また、加速度は載荷したまくらぎに隣接する まくらぎで1/6 ~ 1/7程度までピーク値が落ちており、そ れ以上離れてもそれほど大きく減衰しないことがわかっ た.一方、圧力は図9(b,c)でピーク値が50%程度に、図9 (a, b)でピーク値がさらに 50%程度になっている.ここか ら、衝撃荷重によって生じる加速度は主に載荷されたまく らぎ単体で受け持つが、まくらぎ下面圧力の元となる鉛直 変位に関しては、複数本のまくらぎで分散しながら支えて いると考えられる.

(2) 過渡応答解析(スペクトル解析)による結果

図10および図11に、3本および5本のまくらぎを用 いた軌道モデルにおいて、前項で得られた加速度および圧 力波形の振幅スペクトルを求めた結果を示す.どのケース においても、80Hz付近の剛体モードを含む150Hz以下の 領域で、全体のまくらぎ本数および加振点からの距離に関 わらず波形はほぼ変化していないが、これは入力波形の周 波数特性の影響が考えられる.次に、3本まくらぎで図1

図11 図9(5本まくらぎ軌道)の加速度および圧力 波形の振幅スペクトル:(a)加速度(b)圧力

0(a)の01R と02R の加速度波形を見ると,加振点から1本 離れると概ね200 Hz 以上の応答が低下することがわかる. 一方,5本まくらぎで図11(a)の02Rと03Rで比較すると, 概ね750 Hz 以下ではほとんど変わらない.しかし,加振点 から1本離れた場合と2本離れた場合(図11(a)の01R と 02R)を比較すると,概ね150 Hz 以上750 Hz 以下では2本 離れた方が応答は低下するが,750 Hz 以上ではほぼ変わら ないことがわかる.これは圧力波形についても同様である. つまり,複数本のまくらぎを有する場合,本数や着目周波 数帯によって周囲のまくらぎへの影響が異なるといえる.

4. おわりに

本稿ではインパルスハンマによる加振実験をもとに、ま くらぎの周波数特性を再現した3次元有限要素法モデルを 用いて有道床軌道を再現し、荷重載荷時の加速度や圧力の 周波数特性を調べた.その結果、まくらぎに衝撃荷重が加 わる場合、レール等を有するモデルではまくらぎ単体モデ ルと比較して加速度・圧力ともに応答が低下するが、100 Hz 以下の周波数成分を主とする圧力は載荷地点からの距離に ほぼ比例して減少しながら広範囲のまくらぎで受け持つ が、1000 Hzを越えるような広帯域成分を含む加速度は、 主に載荷地点のまくらぎのみで受け持つことがわかった.

今後は、入力荷重を工夫し(載荷荷重をレールに入力す る、または移動荷重として与えるなど)、よりスケールの大 きな軌道での検討を行うことによって、軌道の振動特性の 詳細なメカニズムを検討し、効率的な振動低減対策を提案 していきたいと考えている.

参考文献

相川明: まくらぎ下面圧力測定法(センシングまくらぎ), Railway Research Review, Vol. 67, No. 2, pp. 32-33, 2010.