バラスト道床沈下解析のための hypoplastic モデルと 時間域均質化法とを用いた有限要素解析法

○[土] 紅露一寬(新潟大), [土] 村松久志(新潟大学(研究当時)), [土] 阿部和久(新潟大)

Finite element method using time-domain homogenization scheme and hypoplastic model and its application to ballast settlement analysis

Kazuhiro KORO (Niigata Univ.), Hisashi MURAMATSU (Niigata Univ.), Kazuhisa ABE (Niigata Univ.)

The accumulation of the permanent deformation of the railway ballasted track under cyclic loading is simulated using the 3-D finite element method with the hypoplastic constitutive model and the time-domain homogenization method. The original equilibrium problems are decomposed into coupled the microchronological- and macro-chronological equations using asymptotic analysis. The proposed algorithm enables us to change the step width of the macro-chronological analysis, and to reduce the number of the micro-chronological analysis. The accuracy of the simulated permanent axial strain and void ratio depends on the beginning cycle N_0 and the cycle step width ΔN of the present method. This tendency is remarkable when the large permanent deformation is accumulated in a loading cycle.

キーワード: バラスト道床, 繰り返し荷重, 時間域均質化法, hypoplastic モデル, 有限要素法 Key words: railway ballast, cyclic loading, time-domain homogenization, hypoplastic model, FEM

1. はじめに

砕石粒子の集合体であるバラスト道床は,列車通過に より容易に残留変位が発生・累積する道床沈下が軌道保守 上の重要項目である.そのため,道床沈下メカニズムの 解明,および道床沈下量の定量予測は,鉄道工学上の重 要な課題の一つである.

今日,道床沈下量予測は,実車走行試験等の観測結果に 基づき構成された経験式を用いるのが一般的である¹⁾.実 験的アプローチによるバラスト道床沈下メカニズムの解 明を目的とした先行研究^{2),3)}でも,試験結果の経験式への フィードバックを念頭に置いた考察が展開されている.し かし,経験式からは沈下量しか得ることができないため, 実際のバラスト道床における3次元的な残留変位の発現 挙動の検討には,数値シミュレーションが有効である.

バラスト道床およびバラスト材の繰返し載荷時におけ る運動の数値解析は、バラスト道床を構成する単粒度砕 石の粒径が道床厚などの代表寸法と比べて必ずしも小さ くないことを考慮して、不連続変形法 (DDA)⁴⁾や個別要素 法 (DEM)⁵⁾により行われてきた. DDA や DEM は粒子集 合体としての力学特性を容易に表現できるものの、動的接 触解析が中心となるこれらの手法は、残留変位の累積・進 展のような長時間にわたる現象の解析には不向きである.

そこで著者らは、単粒度砕石の集合体であるバラスト 道床を弾塑性連続体としてモデル化し、有限要素法に基 づく道床沈下量予測手法の開発に取り組んできた⁶⁾.ただ し、通常の弾塑性モデルでは応力履歴をもれなく追跡す る必要があり、多数回の繰り返し荷重作用時の残留変形量 の評価のためには、計算のさらなる効率化を図る必要が ある.特に、hypoplastic モデル⁷⁾では古典的弾塑性論で用 いられる降伏曲面を必要としないこともあり、著者らは残 留変形量の効率的な評価を目的として、時間域均質化法 ⁸⁾による構成式の時間に関する 2-スケール分離の定式化, および具体的な応力点解析アルゴリズムを示した⁹⁾.

本研究では、バラスト材の繰り返し変形挙動を hypoplastic モデルで表現することを前提に、準静的釣り合い問題 における有限要素・時間域均質化解析法を用い、繰り返し 変形解析の計算量を削減しつつ残留ひずみ・間隙比を評価 する.その際の解析精度と計算量の削減効果について検 討し、解析手法としての問題点について論じる.

2. 時間域均質化法の定式化

本研究では、文献⁷⁾の hypoplastic モデルを対象に時間 域均質化法⁸⁾の定式化を適用し、ミクロ時間スケールとマ クロ時間スケールの2つの時間スケールの下で準静的釣 り合い問題を弱連成の下で解く.本節では、文献^{9),10)}で示 した定式化の要点を説明する.

2.1 構成式への時間域均質化法の適用

まず, hypoplastic モデルで用いる構成関係式への時間 域均質化法の定式化の概要を説明する.詳細については, 文献⁹⁾を参照されたい.

まず、ミクロ時間変数 τ とマクロ時間変数 t を定義し、 ζ をスケール変換パラメータとして $\tau = t/\zeta$ ($\zeta \ll 1$) なるスケール間関係を仮定する. さらに、物質点 **X** にお ける応力 σ_{ij} 、ひずみ ε_{ij} 、間隙比 e に時間に関する多重 スケール性を仮定し、スケール変換パラメータ ζ で漸近 展開し、hypoplastic モデルで用いる応力速度・ひずみ速 度関係式、および間隙比の発展則に適用する. その結果、 $O(\zeta^{-1})$ の構成式として次式を得る.

$$\begin{aligned} \sigma_{ij,\tau}^{(0)} &= f_s^{(0)} \left[L_{ij}^{(0)} + f_d^{(0)} N_{ij}^{(0)} \sqrt{\varepsilon_{\gamma\delta}^{(0)} \varepsilon_{\gamma\delta,}^{(0)}} \right], \\ e_{,\tau}^{(0)} &= [1 + e^{(0)}] \varepsilon_{kk,\tau}^{(0)}, \end{aligned}$$
(1)

なお,上添え字 (0) は漸近展開の 0 次項の成分であるこ とを表しており, $\hat{\sigma}_{ij}^{(0)} = \sigma_{ij}^{(0)} / \sigma_{kk}^{(0)}$, $p^{(0)} = -\sigma_{kk}^{(0)} / 3$ であ る. $L_{ij}^{(0)}$, $N_{ij}^{(0)}$, $f_s^{(0)}$, $f_d^{(0)}$ は次式で定義される.

$$\begin{split} L_{ij}^{(0)} &:= a_1^{(0)2} \varepsilon_{ij,\tau}^{(0)} + \hat{\sigma}_{ij}^{(0)} \hat{\sigma}_{kl}^{(0)} \varepsilon_{kl,\tau}^{(0)}, \\ N_{ij}^{(0)} &:= a_1^{(0)} \left[\hat{\sigma}_{ij}^{(0)} + \hat{\sigma}_{ij}^{(0)*} \right], \end{split}$$
(2)

$$f_s^{(0)} := \frac{h_s}{nh_i} \left(\frac{e_i^{(0)}}{e^{(0)}}\right)^{\beta} \frac{1 + e^{(0)}}{e^{(0)}} \left(\frac{3p^{(0)}}{h_s}\right)^{1-n},$$

$$f_d^{(0)} := \left(\frac{e^{(0)} - e_d^{(0)}}{e_c^{(0)} - e_d^{(0)}}\right)^{\alpha},$$
(3)

$$a_{1}^{(0)} := \left\{ c_{1} + c_{2} \| \hat{\sigma}^{(0)*} \| [1 + \cos(3\theta^{(0)})] \right\}^{-1},$$

$$\cos(3\theta^{(0)}) := -\sqrt{6} \operatorname{tr}(\hat{\sigma}^{(0)*3})(\operatorname{tr}(\hat{\sigma}^{(0)*2}))^{-3/2},$$

$$e_{i} := e_{i0} := e_{i0} \exp\left[-\left(3p^{(0)}/h_{s}\right)^{n}\right],$$

$$e_{d}^{(0)}/e_{d0} = e_{c}^{(0)}/e_{c0} = e_{i}^{(0)}/e_{i0},$$

(4)

ここで、 $\sigma_{ij}^{(0)}$, $\varepsilon_{ij}^{(0)}$, $e^{(0)}$ が次のように分解できるものとする.

$$\sigma_{ij}^{(0)}(\boldsymbol{X},t,\tau) = \bar{\sigma}_{ij}(\boldsymbol{X},t) + \tilde{\sigma}_{ij}(\boldsymbol{X},t,\tau),$$

$$\varepsilon_{ij}^{(0)}(\boldsymbol{X},t,\tau) = \bar{\varepsilon}_{ij}(\boldsymbol{X},t) + \tilde{\varepsilon}_{ij}(\boldsymbol{X},t,\tau),$$

$$e^{(0)}(\boldsymbol{X},t,\tau) = \bar{e}(\boldsymbol{X},t) + \tilde{e}(\boldsymbol{X},t,\tau),$$
(5)

式(1)より, ミクロ時間スケールにおける構成式として次 式を得る.

$$\widetilde{\sigma}_{ij,\tau} = f_s^{(0)} \Big[a_1^{(0)2} \widetilde{\varepsilon}_{ij,\tau} + \widehat{\sigma}_{ij}^{(0)} \widehat{T}_{kl}^{(0)} \widetilde{\varepsilon}_{kl,\tau}
+ f_d^{(0)} a_1^{(0)} \big(\widehat{\sigma}_{ij}^{(0)} + \widehat{\sigma}_{ij}^{(0)*} \big) \sqrt{\widetilde{\varepsilon}_{\gamma\delta,\tau} \widetilde{\varepsilon}_{\gamma\delta,\tau}} \Big], \quad (6)$$

 $\tilde{e}_{,\tau} = [1 + \tilde{e} + \tilde{e}]\tilde{\varepsilon}_{kk,\tau},$

一方, *O*(ζ⁰)の構成式は,諸量の漸近展開において高 次項を無視すると,次式で与えられる.

$$\sigma_{ij,t}^{(0)} = f_s^{(0)} \left[a_1^{(0)2} \varepsilon_{ij,t} + \hat{\sigma}_{ij}^{(0)} \hat{\sigma}_{kl}^{(0)} \varepsilon_{kl,t}^{(0)} \right] + f_s^{(0)} f_d^{(0)} N_{ij}^{(0)} \frac{\varepsilon_{kl,t}^{(0)} \varepsilon_{kl,\tau}^{(0)}}{\sqrt{\varepsilon_{\gamma\delta,\tau}^{(0)} \varepsilon_{\gamma\delta,\tau}^{(0)}}},$$
(7)
$$e_t^{(0)} = [1 + e_t^{(0)}] \varepsilon_{kl,\tau}^{(0)},$$

ここで,式(5)を式(7)に代入し, 70をミクロ時間スケールの代表長さとして r について次式の時間平均をとる.

$$\langle \phi \rangle := \frac{1}{\tau_0} \int_0^{\tau_0} \phi(\mathbf{X}, t, \tau) d\tau$$
 (8)

その結果,次式を得る.

$$\bar{\sigma}_{ij,t} + \langle \tilde{\sigma}_{ij} \rangle_{,t} = \langle C_{ijkl} \rangle \bar{\varepsilon}_{kl,t} + \langle C_{ijkl} \tilde{\varepsilon}_{ij,t} \rangle,$$

$$C_{ijkl} := \frac{1}{2} f_s^{(0)} a_1^{(0)2} (\delta_{ik} \delta_{jl} + \delta_{il} + \delta_{jk})$$

$$+ f_s^{(0)} \hat{\sigma}_{ij}^{(0)} \hat{\sigma}_{kl}^{(0)} + f_s^{(0)} f_d^{(0)} N_{ij}^{(0)} \frac{\tilde{\varepsilon}_{kl,\tau}}{\sqrt{\tilde{\varepsilon}_{\gamma\delta,\tau} \tilde{\varepsilon}_{\gamma\delta,\tau}}}, \quad (9)$$

$$\bar{e}_{,t} + \langle \tilde{e} \rangle_{,t} = [1 + \bar{e} + \langle \tilde{e} \rangle] \bar{\varepsilon}_{kk,t}$$

$$+ (1 + \bar{e}) \langle \tilde{\varepsilon}_{kk} \rangle_{,t} + \langle \tilde{e} \tilde{\varepsilon}_{kk,t} \rangle.$$

式(9)において、 $\langle (\tau - \tau_1) \tilde{\epsilon}_{ij,t} \rangle = 0$, $\langle (\tau - \tau_2) \tilde{\epsilon}_{kk,t} \rangle = 0$ のように τ_1 , τ_2 を選び、 $\tilde{\epsilon}_{ij,t}$, $\tilde{e}_{,t}$ を含む各項を平均値の 定理を用いて近似すると、マクロ時間スケールにおける 構成式として次式を得る.

$$\bar{\sigma}_{ij,t} + \langle \tilde{\sigma}_{ij} \rangle_{,t} = \langle C_{ijkl} \rangle \bar{\varepsilon}_{kl,t} + C_{ijkl} \langle \tau_1 \rangle \langle \tilde{\varepsilon}_{kl} \rangle_{,t},$$

$$\bar{e}_{,t} + \langle \tilde{e} \rangle_{,t} = [1 + \bar{e} + \langle \tilde{e} \rangle] \bar{\varepsilon}_{kk,\tau} \qquad (10)$$

$$+ [1 + \bar{e} + \tilde{e} \langle \tau_2 \rangle] \langle \tilde{\varepsilon}_{kk} \rangle_{,t}.$$

2.2 準静的つり合い問題における時間域均質化法の定式化 次に、準静的つり合い問題において時間域均質化法を 導入し、ミクロ・マクロ双方の時間スケールの下での釣り 合い問題に対応する仮想仕事式を導出する. なお、定式 化の詳細は文献¹⁰⁾を参照されたい.

時間に関する多重スケール性を有する応力場において, つり合い式と境界条件は次式で与えられる.

$$\frac{\partial \sigma_{ji}}{\partial X_j}(\boldsymbol{X}, t, \tau) + b_i(\boldsymbol{X}, t, \tau) = 0, \quad (\text{on }\Omega), \tag{11}$$

$$u_i(\boldsymbol{X}, t, \tau) = U_i(\boldsymbol{X}, t, \tau), \quad (\text{on } \Gamma_u),$$
(12)

$$p_i(\mathbf{X}, t, \tau) = P_i(\mathbf{X}, t, \tau), \quad (\text{on } \Gamma_q),$$

ここで、 u_i は変位、 b_i は物体力、 p_i は表面力、 n_j は境 界上での単位外向き法線ベクトルであり、 $p_i(\mathbf{X}, t, \tau) = \sigma_{ji}(\mathbf{X}, t, \tau)n_j$ である.また、 u_i 、 p_i の既知量を U_i 、 P_i で定義しておく、なお、 Ω は領域、 Γ_u は変位規定部分境 界、 Γ_q は表面力規定部分境界である。

式(11),(12)において, σ_{ij} , b_i , $u_i & \epsilon \zeta (= t/\tau)$ につい て漸近展開し, ζ の高次項を無視して式を整理した上で, 2つの時間スケールにおける仮想仕事式をそれぞれ導出す る.その結果,ミクロ時間応答の計算に用いる仮想仕事 式は次式で与えられる.

$$\int_{\Omega} \tilde{\sigma}_{ij} \delta \tilde{\varepsilon}_{ij} d\Omega = \int_{\Gamma_p} (P_i - \bar{P}_i) \delta \tilde{u}_i d\Gamma
+ \int_{\Omega} (\tilde{b}_i + \bar{b}_i + \frac{\partial \bar{\sigma}_{ji}}{\partial X_j}) \delta \tilde{u}_i d\Omega,$$
(13)

なお、 $\delta \tilde{u}_i$ はミクロ時間スケール問題での仮想変位とし、 $\tilde{u}_i = U_i - \bar{U}_i$ (on Γ_u)、 $\delta \tilde{\varepsilon}_{ij} = (\delta \tilde{u}_{i,j} + \delta \tilde{u}_{j,i})/2$ である. また、 $\tilde{p}_i = \tilde{\sigma}_{ji} n_j = P_i - \bar{P}_i$ であり、

$$\sigma_{ij} = \bar{\sigma}_{ij}(\boldsymbol{X}, t) + \tilde{\sigma}_{ij}(\boldsymbol{X}, t, \tau) + O(\zeta),$$

$$u_i = \bar{u}_i(\boldsymbol{X}, t) + \tilde{u}_i(\boldsymbol{X}, t, \tau) + O(\zeta),$$

$$b_i = \bar{b}_i(\boldsymbol{X}, t) + \tilde{b}_i(\boldsymbol{X}, t, \tau) + O(\zeta).$$
(14)

と定義している.

J

一方,マクロ時間応答に関する仮想仕事式として次式 を得る.

$$\int_{\Omega} \bar{\sigma}_{ij} \delta \bar{\varepsilon}_{ij} d\Omega = \int_{\Gamma_p} \bar{P}_i \delta \bar{u}_i d\Gamma + \int_{\Omega} \left(\bar{b}_i + \langle \tilde{b}_i \rangle + \frac{\partial \langle \tilde{\sigma}_{ji} \rangle}{\partial X_j} \right) \delta \bar{u}_i d\Omega,$$
(15)

ただし、 $\delta \bar{u}_i$ をマクロ時間スケール問題での仮想変位であ り、 $\bar{u}_i = \bar{U}_i$ (on Γ_u)、 $\delta \bar{\varepsilon}_{ij} = (\delta \bar{u}_{i,j} + \delta \bar{u}_{j,i})/2$ である.ま た、 $\bar{p}_i = \bar{\sigma}_{ji} n_j = \bar{P}_i$ である.

-562-

式 (13), (15) は互いに独立な方程式ではなく,相互の 連成関係が存在する.そのため本手法では,文献⁸⁾を参考 に,2つの時間スケール応答を与える式 (13), (15) を弱連 成条件下で解く.以下にそのアルゴリズムを示す.

解析アルゴリズム

- (1) 載荷・除荷 N₀ サイクルまでは,hypoplastic モデル を用いた通常の FEM 解析を実行する.ただし,接線 係数および各サイクル内でのひずみ・間隙比の変動 成分に関する時間平均計算は解析に平行して行う.
- (2) 載荷・除荷 $N_0 + k\Delta N(k = 1, 2, 3, ...)$ サイクルの マクロ時間応答の評価から,時間域均質化法を適用 する.まず, $N_0 + 1 + (k - 1)\Delta N$ サイクルのミク ロ時間応答 $\tilde{\epsilon}$, $\tilde{\epsilon}$ を式 (13) より計算する.このとき, マクロ時間応答は既知として扱う.また, τ_1 , τ_2 , お よびミクロ時間応答および接線係数の時間平均もあ わせて計算しておく.
- (3) 上記 (2) の結果を用いて式 (15) を解くことで、載荷・除荷 N₀ + kΔN サイクルでのマクロ時間応答 ε, ε を求める。当該サイクル終了時の残留ひずみ・間隙比は、マクロ時間応答から評価可能である。なお、計 算の際にはミクロ時間平均のマクロ時間変化率 (φ),t を計算する必要があり、次式の差分近似で評価する。

$$\begin{split} &\langle \tilde{\phi} \rangle_{,t} \approx \frac{\langle \tilde{\phi} \rangle_{N_0+1} - \langle \tilde{\phi} \rangle_{N_0}}{1}, \quad (N_0 + \Delta N \text{ th cycle}) \\ &\langle \tilde{\phi} \rangle_{,t} \approx \frac{\langle \tilde{\phi} \rangle_{N_0+1+k\Delta N} - \langle \tilde{\phi} \rangle_{N_0+1+(k-1)\Delta N}}{\Delta N}, \quad (16) \\ &\quad (N_0 + k\Delta N \text{ th cycle}, \ k = 2, 3, 4, \ldots) \end{split}$$

式 (16) は、載荷・除荷 $N_0 + 1 + (k - 1)\Delta N$ サイク ルから $N_0 + 1 + k\Delta N$ において、マクロ時間平均の 値はサイクル数に対して線形に変化することを仮定 している.

 (4) 上記 (2), (3) の計算を,繰り返し実行する. その結果,残留ひずみ・間隙比は,載荷・除荷 N₀ + k∆N サイクルでの値を評価することとなる.

3. 解析結果

本手法の定式化の妥当性を確認する目的で,石川らによる大型繰り返し三軸試験³⁾を対象とした応力解析を行なった.拘束圧を – 19.6(kPa) で一定として,等方応力状態と軸差応力 – 78.4 (kPa) の状態との間で負荷・除荷を一定周期の下で繰り返している.

一方、FEM モデルは一辺が 1 の立方体を定ひずみ要素 で分割して構成した. x = 0, y = 0, z = 0 の各面は 対称面となるように境界条件を設定した. また,式(13) のミクロ問題を解く際には,z = 1の面に軸差応力(0~-78.4kPa)に相当する直応力を繰り返し作用させ,残りの 側面では表面力 0 に設定している.式(13)のマクロ問題 を解く際には,全ての表面力規定境界上で-19.6kPa を各 面に直応力として作用させる. なお,材料定数について

Fig. 1 残留軸ひずみ評価値 ε₃₃ に及ぼすスケール分離開 始サイクル N₀ および計算サイクル幅 ΔN の影響.

は $c_1 = 1.65, c_2 = 1.874, h_s = 5.65$ (MPa), $n = 1.725, \alpha = 0.15, \beta = 1.25, e_{c0} = 0.600580, e_{d0} = 0.600400, e_{i0} = 0.600588 に設定し, e_0 = 0.6 とした.$

ここで、時間スケール分離移行サイクルを $N_0 = 1$ 、 2,4,8のいずれかに固定し、それぞれ解析サイクル幅を $\Delta N = 1, 2, 4, 8$ に変化させた場合における,残留軸ひず み ē33 の評価結果を Fig.1 に示す. 当該の問題では, 繰り 返し開始初期に比較的大きな残留軸ひずみが生じ,各サ イクルでの残留ひずみの増加量は繰り返し載荷・除荷サイ クルの進行とともに急速に減少している. そのため、時 間スケール分離開始サイクルが小さい場合、すなわち従 来法で解析するサイクル数が少ない場合には、1 サイクル 当りの残留軸ひずみ増分の変化が大きく、このことは式 (16) で近似評価した $(\tilde{\epsilon})_{,t}$, $(\tilde{e})_{,t}$ の値に反映されることと なる. その結果, ΔN の設定値により残留軸ひずみの予 測値が大きく変化する.一方,スケール分離開始サイクル No を次第に大きくしていくと、各サイクルでの残留ひず みの増分が概ね一定で小さいため、解析サイクル幅の影 響は徐々に小さくなることがわかる.

次に、時間スケール分離移行サイクルを $N_0 = 1, 2, 4, 8$ のいずれかに固定し、それぞれ解析サイクル幅を $\Delta N = 1$, 2, 4, 8 に変化させた場合における、各サイクル終了時の間 隙比 \bar{e} の評価結果を Fig.2 に示す、残留軸ひずみ同様、今 回の解析条件では 1 サイクル当りの間隙比の変化量が初 期サイクルほど大きいこともあり、時間域均質化法適用 開始サイクル N_0 が小さいほど、解析サイクル幅 ΔN の 設定が解析結果に及ぼす影響が大きく、 ΔN が大きいほ ど解析精度が低下することがわかる.

以上の結果より、本手法は残留ひずみの変化量がサイ クル間で概ね一定の場合には、残留ひずみやサイクル終

Fig. 2 各サイクル終了時の間隙比評価値 ē に及ぼすスケー ル分離開始サイクル N₀ および計算サイクル幅 ΔN の影響.

了時の間隙比が比較的精度よく高効率で評価できる.しかし,その変化量がサイクル間で大きく変化する場合には,従来のFEM 解析に移行するか,もしくは本手法の下で解析サイクル幅 ΔN を小さく設定して解析を進めなければならない.本手法によれば,従来法による解析との接続が容易であり,解析時に特段の障害は生じないと考える.また,1サイクル当りの残留変形の進展が大きい場合に(時間域均質化法を適用しない)従来のFEMを適用することは文献¹¹⁾でも行なわれており,精度低下防止には簡易で有効な選択肢であると考える.

4. おわりに

本研究では、バラスト材の繰り返し変形挙動をhypoplastic モデルで表現することを前提に、準静的釣り合い問題 における有限要素・時間域均質化解析法の定式化を示し た.また、繰り返し変形解析の計算量を削減することを 目的とした、具体的な解析アルゴリズムを示し、解析精 度と計算量の削減効果について検討した。

その結果,残留ひずみの変化量がサイクル間で概ね一 定の場合には、本手法を用いて残留ひずみを比較的良好 な精度と計算効率で評価できることがわかった.しかし、 残留変形の進展の度合いによって解析精度が大きく左右 されるため、この点は本手法の大きな問題点の一つであ る.なお、同様の解析精度の低さは、粘塑性問題を例に Joseph ら¹¹⁾により指摘されており、文献¹¹⁾では物理応答 のサイクル内変動を wavelet 級数で近似評価する方法を採 用し、履歴依存型問題における時間域均質化法特有の精 度上の弱点を回避する方法を提案している.今後は、こ の定式化の導入も含め、精度維持の工夫について検討し ていきたい.

また,解析においては式(9),(10)で示した *C*_{ijkl}(71) の全成分を全ての応力評価点で保存する必要があり,こ のメモリ負担も実用化を考える上では問題点となりうる. これらの問題点の解決,およびより領域内で応力やひず みが変化する,より一般的な釣り合い問題における本手 法の適用についても今後取り組む予定である.

参考文献

- Dahlberg, T.: Some railroad settlement models a critical review. *Proc. Instn. Mech. Engrs.*, Vol.215, Part F, pp.289-300, 2001.
- 石川達也,名村 明:実物大試験による道床バラスト部 繰返し変形特性の検討.土木学会論文集,No.512/IV-27, pp.47-59,1995.
- 石川達也,須長 誠,董 軍,名村 明:大型繰返し 三軸試験による道床バラストの変形特性の検討.土木学 会論文集, No.575/III-40, pp.169-178, 1997.
- 石川達也,大西有三,堀池高広:不連続変形法 (DDA) による道床バラスト部繰返し塑性変形機構の検討.土木 学会論文集,No.645/III-50, pp.15-28, 2000.
- 5) Saussine, G., Cholet, C., Gautier, P.E., Dubois, F., Bohatier, C., Moreau, J.J.: Modelling ballast behaviour under dynamic loading. Part 1: A 2D polygonal discrete element method approach. *Comput. Meth. Appl. Mech. Engrg.*, Vol.195, pp.2841-2859, 2006.
- Koro, K., Fukutsu, Y., Abe, K.: 3-D FE simulation of cyclic loading tests of railway ballasted track using subloading surface elastoplastic model. *Proc. of STECH'09*, CD-ROM, 2009.
- Bauer, E.: Calibration of a comprehensive hypoplastic model for granular materials. *Soils & Foundations*, Vol.36, No.1, pp.13-26, 1996.
- Oshay, C., Fish, J.: Fatigue life prediction using 2-scale temporal asymptotic homogenization. *Int. J. Numer. Meth. Engrg.*, Vol.61, pp.329-359, 2004.
- 9) 紅露一寛,嘉数東陽,阿部和久:鉄道用バラスト材の繰 り返し変形解析のための時間域均質化法定式化.土木学 会応用力学論文集, Vol.11, pp.149-158, 2008.
- 10) 紅露一寛,村松久志,阿部和久:鉄道用バラスト材の繰り 返し変形解析のための時間域均質化法を援用した有限要 素解析法,計算工学講演会論文集,Vol.15, pp.1001–1004, 2010.
- Joseph, D.S., Chakraborty, P., Ghosh, S.: Wavelet transformation based multi-time scaling method for crystal plasticity FE simulation under cyclic loading. *Comput. Meth. Appl. Mech. Engrg.*, Vol.199, pp.2177–2194, 2010.