3701 車両/軌道の相互作用の数値解析方法に関する一考察

正 [土] 〇川崎 祐征 (JR東海) 正 [土] 三輪 昌弘 (JR東海)

正[土] 吉村 彰芳(東京工科大学)

Study on numerical simulation methods of the railway vehicle-track dynamic interaction

Yoshiyuki KAWASAKI, Central Japan Railway Company 1545-33, Ohyama, Komaki-shi, Aichi Masahiro MIWA, Central Japan Railway Company Akiyoshi YOSHIMURA, Tokyo University of Technology

We studied an efficient numerical simulation method of the railway vehicle-track dynamic interaction. Applying the Sherman-Morrison-Woodbury formula to numerical simulation of the railway vehicle-track dynamic interaction, we achieved a reduction in calculation time about 1/13.

Keywords: track-vehicle interaction, wheel load variation, computer simulation

1. はじめに

車両が軌道上を走行する場合の車両/軌道の相互作用 に関する運動方程式を数値的に解く方法として,一般的 には直接積分法またはモード解析法が用いられる.この うち,直接積分法による数値シミュレーションでは連立 方程式の係数行列が各時間ステップで変化するため,各 時間ステップで大規模な連立方程式を繰り返し解く必要 があり,計算に膨大な時間が必要である.しかし,各時 間ステップにおける係数行列の変化はほんの一部である ことに着目して計算の高速化に関する方法を検討した結 果,計算時間の大幅な短縮を図ることが可能であること がわかった.

そこで、直接積分法による車両/軌道の相互作用に関 する数値シミュレーションの計算の高速化に関する計算 方法および計算結果について紹介する.

2. 数値解析モデルの概要

半車体モデルによる車両/軌道の相互作用に関する数 値シミュレーションモデルを図1に示す.

軌道については、レールはまくらぎにより離散的に支 持されているものとし、有限要素の梁としてレールをモ

Fig.1 Numerical Simulation Model of the railway vehicle-track dynamic interaction

デル化している.まくらぎは集中質点としてモデル化し, 軌道パッドは線形ばねおよび減衰要素として考える.バ ラストは有効質量を持った複数の層としてモデル化し, 各層が線形ばねおよび減衰要素により結合されているも のとする.車両については半車体モデルとして車体,台 車および輪軸で構成しており,それぞれ集中質点として モデル化している.車両モデルの構成要素はそれぞれ線 形ばねおよび減衰要素により結合されているものとする. このとき,車両および軌道の運動方程式,車輪とレー ルの接触力を与える式は以下のとおりとなる.なお,以 下ではレールの有限要素モデルにおける有限要素数を N, まくらぎの本数を L,バラストの層数をJとする.

2.1 車両の運動方程式

車両の運動方程式は、以下のように表わされる.

$$M_{\nu}\ddot{u}_{\nu}(t) + C_{\nu}\dot{u}_{\nu}(t) + K_{\nu}u_{\nu}(t) = P_{sta}\begin{pmatrix}0\\0\\1\end{pmatrix} - P(t)\begin{pmatrix}0\\0\\1\end{pmatrix}$$
(1)

ここで、 M_v は車両に関する質量行列、 C_v は車両に関す る減衰行列、 K_v は車両に関する剛性行列、 u_v は車両各部 の変位を表すベクトルである.また、 P_{sta} は静止輪重、 P(t)は時間 tにおける輪重を表す.

2.2 軌道の運動方程式

軌道の運動方程式は、以下のように表わされる.

$$M_R \ddot{\boldsymbol{u}}_R(t) + C_R \dot{\boldsymbol{u}}_R(t) + K_R \boldsymbol{u}_R(t) = P(t) \left(\frac{\boldsymbol{a}_w(t)}{0} \right)$$
(2)

ここで、 M_R は軌道に関する質量行列、 C_R は軌道に関 する減衰行列、 K_R は軌道に関する剛性行列、 u_R は軌道各 部の変位を表すベクトルである.また、ベクトル a_w は軌 道上の車輪の位置によって定まるベクトルである.

[Na.09-65] 日本機械学会第16回鉄道技術連合シンポジウム講演論文集〔2009-12.2~4. 東京〕

$$a_{w}(t) = \begin{array}{c} \begin{pmatrix} 0 \\ \vdots \\ 0 \\ N_{1}(\xi) \\ 2_{i+1} \\ 2_{i+2} \\ 2_{i+2} \\ 2_{(N-1)} \end{pmatrix} \in R^{2(N-1)}$$
(3)

なお, N_i(ξ), *i*=1,2,3,4 は有限要素法で内挿関数として用 いる3次のエルミット多項式で,以下のように与えられ る.

$$N_{1}(\xi) = 1 - 3\left(\frac{\xi}{h}\right)^{2} + 2\left(\frac{\xi}{h}\right)^{3}$$

$$N_{2}(\xi) = \left(\frac{\xi}{h}\right) - 2\left(\frac{\xi}{h}\right)^{2} + \left(\frac{\xi}{h}\right)^{3}$$

$$N_{3}(\xi) = 3\left(\frac{\xi}{h}\right)^{2} - 2\left(\frac{\xi}{h}\right)^{3}$$

$$N_{4}(\xi) = -\left(\frac{\xi}{h}\right)^{2} + \left(\frac{\xi}{h}\right)^{3}$$

$$(4)$$

2.3 接触力

車輪直下のレール上下変位を uw(1)とすると,

 $u_{w}(t) = a_{w}^{T}(t)u_{0}^{*}(t)$ (5)

と表わされる.したがって,車輪直下のレール表面凹凸 (軌道狂い)を r_w(t)としてレール・車輪接触ばねを線形 ヘルツ接触ばねで近似する場合,

$$P(t) - P_{sta} = k_H \left(y_w(t) - a_w^T(t) u_0^*(t) - r_w(t) \right)$$
(6)

と表わすことができる.

2.4 車両/軌道の相互作用の運動方程式

ここで,式(1),(2),(6)をひとつにまとめると以下のようになる.

$$M\ddot{u} + C\dot{u} + Ku = f(u,t) \tag{7}$$

ここで, u は未知変数のベクトルで次のように与えられる.

$$\boldsymbol{u} = \begin{pmatrix} \boldsymbol{u}_{v} \\ \boldsymbol{u}_{0}^{*} \\ \boldsymbol{y} \end{pmatrix}, \quad \boldsymbol{u}_{v} = \begin{pmatrix} \boldsymbol{y}_{c} \\ \boldsymbol{y}_{b} \\ \boldsymbol{y}_{w} \end{pmatrix}, \quad \boldsymbol{u}_{0}^{*} = \begin{pmatrix} \boldsymbol{u}_{1} \\ \boldsymbol{h} \boldsymbol{\theta}_{1} \\ \vdots \\ \boldsymbol{u}_{N-1} \\ \boldsymbol{h} \boldsymbol{\theta}_{N-1} \end{pmatrix}$$

$$\boldsymbol{y} = \begin{pmatrix} \boldsymbol{y}_{1} \\ \boldsymbol{y}_{2} \\ \vdots \\ \boldsymbol{y}_{L} \end{pmatrix}, \quad \boldsymbol{y}_{i} = \begin{pmatrix} \boldsymbol{y}_{i0} \\ \boldsymbol{y}_{i1} \\ \boldsymbol{y}_{i2} \\ \vdots \\ \boldsymbol{y}_{iJ} \end{pmatrix}$$

$$(8)$$

なお、 y_c は車体変位、 y_b は台車変位、 y_w は車輪変位、 u_i および θ_i は節点におけるレール変位および回転角、 y_{iJ} はまくらぎ・バラストの変位である.

行列 M, C, Kは以下のように与えられる.

$$M = \begin{pmatrix} M_{\nu} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & M_{0}^{*} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & M_{1} \end{pmatrix}, \quad C = \begin{pmatrix} C_{\nu} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & c_{r}G & c_{r}F^{T} \\ \mathbf{0} & c_{r}F & C_{1} \end{pmatrix} \\ K = \begin{pmatrix} K_{\nu} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & K_{0}^{*} + k_{r}G & k_{r}F^{T} \\ \mathbf{0} & k_{r}F & K_{1} \end{pmatrix}$$
(9)

ここでFおよびGは、レール、まくらぎ、バラストの 相互作用を上式のように行列形式で表現するために定義 された行列で、まくらぎ支持位置に対応する要素がそれ ぞれ-1および1にセットされ、他の要素はすべて0の行 列である.また、Mo^{*}は有限要素法によるレールの質量マ トリクス、M₁はまくらぎ・バラスト部の質量マトリクス、 K₀^{*}は有限要素法によるレールの剛性マトリクス、K₁、C₁ は、まくらぎ・バラスト部のそれぞれ剛性マトリクス、 減衰マトリクスである.k_r、c_rは軌道パッドのそれぞれ ばね定数、減衰係数である.

右辺の関数 f(u,t)は次のように与えられる.

$$f(\boldsymbol{u},t) = -K_t \boldsymbol{u} - k_H r_{\boldsymbol{w}} \begin{pmatrix} 0\\0\\-1\\a_{\boldsymbol{w}}\\\boldsymbol{0} \end{pmatrix} + P_{sta} \begin{pmatrix} 0\\0\\0\\-a_{\boldsymbol{w}}\\\boldsymbol{0} \end{pmatrix}$$

(10)

ここで行列 K,は次のように与えられ,時間とともに変化する対称な行列である.

ここで式(10)を式(7)に代入して整理すると, $M\ddot{u} + C\dot{u} + (K + K_t)u = g(t)$

$$g(t) = -k_H r_w \begin{pmatrix} 0\\0\\-1\\a_w\\0 \end{pmatrix} + P_{sta} \begin{pmatrix} 0\\0\\0\\-1\\a_w\\0 \end{pmatrix}$$
(13)

(12)

ところで,運動方程式の左辺の時間とともに変化する 行列 K_t は,ベクトル a_t を

$$\boldsymbol{a}_{t} = \sqrt{k_{H}} \begin{pmatrix} \boldsymbol{0} \\ \boldsymbol{0} \\ -1 \\ \boldsymbol{a}_{w} \\ \boldsymbol{0} \end{pmatrix}$$
(14)

のように定義することにより,

 $K_t = \boldsymbol{a}_t \boldsymbol{a}_t^T$

と簡単に表すことができる.ここで,行列 K₁は非零要素 が全部で25個のみの対称行列であり,非零要素が時間と ともにその値を変えながら車両の走行に伴って行列内を 左上から右下に向かって移動することになる.

3. 数値シミュレーションの高速計算法

運動方程式(12)をニューマークβ法を用いて数値的に 解く場合,時刻 ιにおける解が既に知られているとき, 時間 ι+Διにおける解は以下の式を満たすように求める.

$$M\ddot{u}(t+\Delta t) + C\dot{u}(t+\Delta t) + (K+K_{t+\Delta t})u(t+\Delta t) = g(t+\Delta t)$$
(15)

時刻 t から t+At の間における変位,速度,加速度の増 分については

$$\begin{cases} u(t + \Delta t) = u(t) + \Delta u \\ \dot{u}(t + \Delta t) = \dot{u}(t) + \Delta \dot{u} \\ \ddot{u}(t + \Delta t) = \ddot{u}(t) + \Delta \ddot{u} \end{cases}$$
(16)

となるが、ニューマークβ法を用いると加速度および速 度の増分は変位の増分を用いて次のように表わされる.

$$\begin{cases} \Delta \ddot{u} = \frac{1}{\beta \Delta t^2} \Delta u - \frac{1}{\beta \Delta t} \dot{u}(t) - \frac{1}{2\beta} \ddot{u}(t) \\ \Delta \dot{u} = \frac{\gamma}{\beta \Delta t} \Delta u - \frac{\gamma}{\beta} \dot{u}(t) + \Delta t \left(1 - \frac{\gamma}{2\beta} \right) \ddot{u}(t) \end{cases}$$
(17)

式(16)および式(17)を運動方程式(15)に代入すると,次の連立方程式が得られる.

$$(A + K_{t+\Delta t})\Delta u = g(t + \Delta t) - (K + K_{t+\Delta t})u(t) + D\dot{u}(t) + E\ddot{u}(t)$$
(18)

ここで, A, D, Eは次のとおりである.

$$A = \frac{1}{\beta \Delta t^2} M + \frac{\gamma}{\beta \Delta t} C + K$$

$$D = \frac{1}{\beta \Delta t} M - \left(1 - \frac{\gamma}{\beta}\right) C$$

$$E = \left(\frac{1}{2\beta} - 1\right) M - \Delta t \left(1 - \frac{\gamma}{2\beta}\right) C$$
 (19)

ここで式(18)の連立方程式の左辺の係数行列を A_{ttdo}, 未知変数 Au を x_{ttdo}, 右辺のベクトルを

$$\boldsymbol{b}_{t+\Delta t} = \boldsymbol{g}(t+\Delta t) - (K+K_{t+\Delta t})\boldsymbol{u}(t) + D\dot{\boldsymbol{u}}(t) + E\ddot{\boldsymbol{u}}(t)$$
(20)

とおいて次のように表わされる.なお,添え字は時間依 存を表す.

$$A_{t+\Delta t} \mathbf{x}_{t+\Delta t} = \mathbf{b}_{t+\Delta t} \tag{21}$$

$$A_{t+\Delta t} = A + K_{t+\Delta t}$$

のように,時間に依存しない行列*A*と,時間に依存する 行列*K_{t+4t}の和で表わされる.さらに,時間に依存する行 列<i>K_{t+4t}は*,

$$a_{t+\Delta t} = \sqrt{k_h} \begin{pmatrix} 0\\0\\-1\\\frac{a_w(t+\Delta t)}{\theta} \end{pmatrix}$$
(22)

のように定義されたベクトル attatを用いて

$$K_{t+\Delta t} = a_{t+\Delta t} a_{t+\Delta t}^T$$

と表わすことができる.行列 K₊₄₄は疎行列で,ゼロでない要素の数はわずか 25 個だけである.以下においては表記における煩雑さを避けるため,添え字の ++41 を誤解のない限り単に添え字 1 で表わすことにする.したがって,解くべき方程式をあらためて

$$A_t \boldsymbol{x}_t = \boldsymbol{b}_t \tag{23}$$

$$A_t = A + a_t a_t^T \tag{24}$$

と書く. このとき連立方程式を解くのに次の Sherman-Morrison-Woodbury の公式^{1,2)}を用いることがで きる.

$$(A + a_t a_t^T)^{-1} = A^{-1} - \frac{(A^{-1} a_t)(a_t^T A^{-1})}{1 + \lambda}$$
(25)

$$\lambda = \boldsymbol{a}_t^T \boldsymbol{A}^{-1} \boldsymbol{a}_t \tag{26}$$

この公式を上の連立方程式に適用すると,

$$\begin{aligned} \mathbf{x}_{t} &= \left(A + a_{t}a_{t}^{T}\right)^{-1} \mathbf{b}_{t} \\ &= \left(A^{-1} - \frac{\left(A^{-1}a_{t}\right)\left(a_{t}^{T}A^{-1}\right)}{1 + \lambda}\right) \mathbf{b}_{t} \end{aligned}$$

$$= A^{-1}\mathbf{b}_{t} - \frac{\mathbf{z}_{t}\mathbf{w}_{t}^{T}\mathbf{b}_{t}}{1 + \lambda}$$

$$(27)$$

$$\boldsymbol{z}_t = \boldsymbol{A}^{-1} \boldsymbol{a}_t, \quad \boldsymbol{w}_t^T = \boldsymbol{a}_t^T \boldsymbol{A}^{-1}$$
(28)

と置いた. z,は連立方程式

$$Az_t = a_t \tag{29}$$

を解いて得られる. また,

$$\boldsymbol{w}_t^T \boldsymbol{b}_t = \boldsymbol{a}_t^T \boldsymbol{A}^{-1} \boldsymbol{b}_t = \boldsymbol{a}_t^T \boldsymbol{y}_t$$
(30)

のようにyvを連立方程式

$$Ay_t = b_t \tag{31}$$

を解いて計算することもできる.以上をまとめて新しい 次の計算手順を得る.

まず,最初に一度だけ A のコレスキー分解

$$PAP^T = LL^T$$

を実行する.以下,シミュレーションの各時間ステップ において次の計算を繰り返し実行する.

①連立方程式 Ay, = b, を解く

②連立方程式 Az, = a, を解く.

③
$$x_t = y_t - \left(\frac{a_t^T y_t}{1 + a_t^T z_t}\right) z_t$$
により解 x_t を求める.

上の①②の連立方程式は、すでに計算してある行列 A のコレスキー分解を用いることで効率的に解くことがで きる.これまではコレスキー分解を毎回必要としていた ため多大の計算時間を必要としたが、この計算手順では シミュレーションの開始時点で一回だけ実行しておけば よいので,大幅な効率向上が期待できる.

係数行列のコレスキー分解を用いて連立方程式を効率 的に解く手順は,連立方程式を*Ax=b*とすると

①連立方程式 $Ly_1 = Pb$ を解いて y_1 を求める.

②連立方程式 $L^T y_2 = y_1$ を解いて y_2 を求める.

③ $x = P^T y_2$ により解xを求める.

4. 計算時間の比較

前章で述べた高速計算方法について、従来の計算方法 である時間ステップ毎にコレスキー分解を毎回行い連立 方程式を解く方法との比較を行った.シミュレーション に使用したコンピュータの条件は表1のとおりであり、 プログラム言語には Fortran を用いた.また、主な解析条 件を表2に示す.

まくらぎ本数 101~501 本 (まくらぎ間隔 60cm で軌道 延長で 60~300m)の区間を新幹線車両が 270km/h で走 行した場合の計算時間を表 3 に示す.

Table 1 Specifications of Computer

OS	Microsoft(R) Windows(R) XP Professionalx64 Edition	
Processor 1	EM64T Family 15 Model 4 Stepping 3 Genuine Intel 3791 MHz	
Processor 2	EM64T Family 15 Model 4 Stepping 3 Genuine Intel 3791 MHz	
合計物理メモリ	4,029.86MB	
利用可能な 物理メモリ	3.03GB	

Table 2 Major Analysis Specifications

項目		単位	数值
車両 	車体質量	Kg	3970
	台車質量	Kg	785
	ばね下質量	Kg	892
	車体~台車間ばね定数	kN/m	101
	車体~台車間減衰係数	kN∙s/m	12.7
	台車~輪軸間ばね定数	kN/m	1180
	台車~輪軸間減衰係数	kN•s/m	39.2
車輪/レール間接触ばね		MN/m	1500
1	質量	kg/m	60.8
V-11	曲げ剛性	kN•m ²	6345
軌道	ばね定数	MN/m	30
パッド	减衰係数	kN•s/m	98
まくらぎ間隔		Cm	60
	質量	Kg	129
まくら	ぎ 支持ばね定数	MN/m	1780
	支持减衰係数	kN∙s/m	980
バラスト層数		-	3
1. 52	質量	kg	52.5
工暦 バラフ	ばね定数	MN/m	890
~/~	减衰係数	kN•s/m	980
中層 バラスト	質量	kg	52.5
	ばね定数	MN/m	810
	减衰係数	kN•s/m	980
ты	質量	kg	90.3
ト僧 バラスト	ばね定数	MN/m	2500
	减衰係数	kN•s/m	980

Table 3 Comparison with Computing Time

まくらぎ	従来の計算法	高速計算法	比率
本数	(秒)	(秒)	
101	74.36	13.94	5.34
151	228.73	32.08	7.13
201	467.64	76.13	6.14
251	858.70	114.72	7.49
301	1398.84	163.23	8.57
351	2221.98	222.08	10.01
401	3116.69	279.97	11.13
451	4439.41	364.23	12.19
501	5861.27	460.98	12.71

この結果をみると、高速計算法では従来の計算法に比 べて格段に計算時間が短く、まくらぎ本数 501 本(軌道 延長 300m)の場合では約 13 倍程度計算が早くなってい ることがわかる.特に、まくらぎ本数(すなわち軌道延 長)が長いほど計算時間の短縮効果は顕著である.

5. おわりに

本稿では半車体モデルの走行時における計算方法およ び計算結果を紹介したが、この計算方法は1車体モデル や編成車両モデルへ拡張が可能である.今後も引き続き モデルの拡張を行うとともに効率的な計算方法について 検討し、車両/軌道の相互作用に関するシミュレーショ ンの精度向上を図っていきたい.

参考文献

- Carl D. Meyer : Matrix Analysis and Applied Linear Algebra, SIAM, 2000
- W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery : Numerical Recipes in C++, 2nd Edition, Cambridge University Press, 2002