S3-2-6 開削トンネルから地盤・建物への列車振動伝搬性状

〇武居泰藤井光治郎伊積康彦 [土]津野究

((財)鉄道総合技術研究所)

Propagation Properties of Train-Induced Vibration from Open Cut Tunnel to Ground and Building Yasushi Takei, Kojirou Fujii, Yasuhiko Izumi, Kiwamu Tsuno (Railway Technical Research Institute)

If a tunnel is to be constructed in an urban area, it is often necessary to predict the vibration and structure-borne sound levels in nearby buildings. Establishing a method for this purpose necessitated an investigation of the propagation properties of train-induced vibration from tunnels to the ground surface and buildings. Therefore, we measured the vibration levels both on the ground surface and in a building, as well as that of a tunnel structure located at the same site, where a floating concrete slab track using coil springs was constructed. The results of the measurements were analyzed and further compared with those from numerical analysis.

キーワード:列車振動、開削トンネル、地下鉄道、地盤振動、振動伝搬、FEM解析 Keywords: Train-induced vibration, Open cut tunnel, Subway, Ground vibration, Vibration propagation, FEM analysis

1. はじめに

近年、都市部では建物に近接して地下鉄道が建設される 場合があり、静穏性が要求される建物に対して、トンネル 内の列車走行により発生する建物内の振動や固体音を精度 良く予測し、必要に応じて対策を施すことが要求される。 一方、地下鉄道に対する環境影響評価の対象は、主として 地表面の振動であったため、トンネル・地盤・建物を同時 に測定した事例は少なく、振動伝搬性状の把握が不十分で あり、建物内の振動予測手法の確立までには至っていない のが現状である。居住環境に対する意識の向上により、建 物内の振動予測は今後、重要な課題となるであろう。

本研究では、既設建物に近接して建設された開削トンネ ルを対象としてトンネル・地盤・建物の振動を同時に測定 し、振動伝搬性状を把握するとともに、数値解析による検 証を行った。また、防振対策として採用されたフローティ ングスラブ軌道の効果を把握した。

2. 測定概要

(1)トンネル・建物概要

測定対象としたトンネルと建物を図1に示す。トンネル 構造は、開削工法で施工されたRC造の複線ボックスカル バート(以下、トンネル函体)で、幅8.6m、高さ7.2m、 土被りは約2.7mである。トンネル函体底面から深さ3.5m の範囲は、地盤改良されている。トンネル函体の左右には、 建設時の土留め用としてソイルセメント壁(SMW)が施 工されている。軌道構造は、防振対策として、コイルばね フローティングスラブ軌道¹⁾が採用されている。この軌道 は、支持支承にコイルばねを使用した軌道で、上下方向の 固有振動数(列車荷重考慮)は7.6Hzで設計されている。 建物は、RC造の地上7階建て(一部地下1階)の集合住 宅で、トンネルに対して斜めに位置している。建物の基礎 構造は杭基礎(PHC 杭、径 600mm、長さ 16m)で、トン ネル函体側壁から杭周面までの最小距離は約2.0mである。

地盤条件を表1に示す。地盤の弾性波速度(Vs、Vp)は、 表面波探査法²⁾により算定している。地表面から約9mま では沖積層で、その下が洪積層になっている。

走行する列車はアルミ合金製の通勤型車両で、車両数は 6 両、速度は概ね 80km/h である。なお、測定は試運転中 に実施したため、全列車とも乗車客の無い状態であった。 (2)測定方法

トンネル函体内部と地盤(地表面)および建物内におい て、列車振動を同時に測定した。測定位置を図1中に示す。 トンネル函体内部については、軌道スラブ端部、函体スラ ブ底面、中柱柱脚および側壁下部、地盤については、建物 近傍、トンネル函体側壁直上および函体側壁直上+2.5m 位 置、建物については、1、3、5 階柱脚で測定した。振動の 測定方向は、全て上下方向とした。なお、軌道構造による 地盤振動の差を把握するため、当該ヶ所に近接した弾性ま くらぎ直結軌道部において地盤振動の測定を別途実施した。 振動の測定には、圧電型加速度ピックアップを用い、1/3 オクターブバンドで周波数分析し(時定数 1.0 秒)、列車毎 のバンドマックス値で整理した。複数の列車本数を測定し、 ノイズ等を含まない 3~9本のデータを算術平均した。

3. 測定結果

(1)トンネル函体内部

トンネル函体内部の振動加速度レベルの測定結果を図 2 に示す。測定は下り線側で実施したため、軌道スラブ(V-1) では下り列車のほうが上り列車より著しく大きくなってい る。スラブ底面(V-2)や側壁(V-4)等では、250Hz までの各 周波数帯で上・下列車とも 30dB 以下になり、軌道スラブ からトンネル函体へ伝搬する振動は低減されている。一般 的なスラブ軌道やバラスト軌道における既往の測定結果³⁾ では、63Hz 帯前後で 70~80dB になることから、防振軌 道による振動低減効果が現れているとことがわかる。

上・下列車とも全測点の8~10Hz付近にややピークが見 られる。軌道構造の固有振動数が約8Hz付近にあることか ら、軌道構造系の卓越振動の影響であると推測される。250 ~1kHzでは、高周波数ほど振動も大きくなっているが、 これは列車振動のほか、走行音等による音響加振の影響が 含まれている可能性が高い。

2) 地盤

下り列車について、地表面の振動加速度レベルの測定結 果を図3に示す。測点によりばらつきがあるが、8~63Hz で各測点ともピークとなった。振動レベルは、下り列車で 34~40dB、上り列車が30~38dBであった。各測点によ るばらつきが生じた原因として、トンネルとの位置関係や

層番号	深さ(m)	土質名	平均 N値	弹性波速度(m/s)	
				Vs	Vp
1	0~6.5	沖積粘性土	2	115	1500
2	6.5~9.2	沖積砂質土	6	200	1500
3	9.2~20.2	洪積砂質土	50以上	380	1700
4	20.2~23.2	洪積粘性土	22	310	1600
5	23.2~	洪積砂質土	50以上	380	1700

表1 地盤条件

図1 トンネル・建物形状と振動測定位置

図2 トンネル函体の振動加速度レベル

建物との相互作用のほか、施工時に表層地盤が乱された影響なども大きいと考えられる。

トンネル側壁(V-4)に対する地盤(J-1)の振動加速度レベ ル差を図4に示す。8~160Hzで上・下列車とも地盤のほ うがトンネル側壁より大きく、31.5~63Hz で 10dB 程度 増幅している。この原因として、トンネルの土被りが小さ いため距離減衰がほとんど無いことと、トンネル函体スラ ブと表層地盤との共振などの影響が考えられる。 (3)建物

下り列車について、建物柱脚位置における振動加速度レ ベルの測定結果を図5に示す。各測点とも8Hzがピークで、 周波数が高くなるほど振動は小さくなり、16Hz以上では 10dB 台になる。20Hz以上では測点によっては暗振動の影 響を受けている可能性が高い。振動レベルは、トンネル函 体に最も近い1階柱脚(V1-1)で29dBである。トンネルか ら離れた1階柱脚(V1-3)では、振動レベルはさらに小さく なるが、1階(V1-3)と5階(V5-1)との差はほとんどない。 なお、建物室内床中央の振動レベルは、最大でも30dBで あり、室内の騒音レベルも暗騒音と同程度であった。

建物近傍地盤(J-1)に対する1階柱脚(V1-1)の振動加速度 レベル差を図6に示す。25Hz以上は暗振動の影響のため 参考値であるが、周波数が高くなるほど振動の減衰(入力 損失)が顕著である。25Hz以上では、1階柱脚の測定値に 暗振動が含まれているため、実際の入力損失量は、さらに 大きいものと推定される。

(4)軌道構造による地盤振動の比較

フローティングスラブ軌道の防振効果を把握するため、 当該ヶ所に近接した弾性まくらぎ直結軌道部(軌道ばね定 数:4.5MN/m/締結)における地盤振動(函体側壁直上の 地表面)を測定した。両測定位置にけるトンネル構造、土 被り、地盤条件、列車速度は概ね同じである。

両軌道部の振動加速度レベルの比較を図7に示す。16Hz 以下では、弾性まくらぎ直結軌道部のほうが小さいが、 25Hz 以上ではフローティングスラブ軌道のほうが小さく、 40Hz では 28dB の差がある。振動レベルについては、フ ローティングスラブ軌道は弾性まくらぎ直結軌道に対し、 6dB 程度低減している。

(1)解析方法

トンネルから地盤、建物への振動伝搬性状を検証するた め、地盤-構造物連成系の2次元有限要素法(FEM)解 析を行った。トンネル函体と建物架構が直交していないた め、建物配置を図8に示すように函体から建物までの最小 距離を等しくして仮想的に回転させ、図中A-A断面をモデ ル化した。解析モデルを図9に示す。地盤・トンネル函体 はソリッド要素、建物の柱・梁・杭はビーム要素、壁は間 柱に置換してビーム要素でモデル化した。減衰定数は、地 盤・構造物とも全て5%とした。軌道構造はモデル化せず、 函体スラブ底面の軌道中心位置を加振点とした。

本解析では、列車加振力は用いず、加振点からの周波数 帯毎(6.3~80Hz)の振動伝達量(伝達関数)を求め、地 盤や建物の振動加速度レベルは、伝達関数と函体側壁(V-4) の実測結果を用いて算定した。

(2)解析結果

解析結果と実測結果の比較を図 10 に示す。解析値には、 当該位置における暗振動の測定値を周波数帯毎に足してい る (パワー和)。建物内の 25Hz 以上の測定値は、暗振動レ ベルに近いため正確な比較はできないが、解析結果は実測 結果と概ね一致している。本建物のようにトンネルと建物 構面が直交していない場合、解析精度をさらに向上させる ためには、3次元解析が有効であると考える。

5. まとめ

既設建物に近接して建設された開削トンネルを対象として、トンネル函体・地盤・建物の振動を同時測定するとともに、軌道構造の異なる地点での地盤振動測定および2次元FEMによる振動解析を実施し、以下のことが明らかとなった。

- トンネル函体に対し地盤上では周波数帯により振動増幅 が見られた。
- ・建物基礎部では近傍地盤に対し振動が減衰し、高周波数 ほど顕著であった。
- ・コイルばねを用いたフローティングスラブ軌道部の地盤 振動は、弾性まくらぎ直結軌道部に対し 25Hz 以上で低 減し、振動レベルでは約 6dB 低減した。
- ・FEM解析結果は、測定結果と概ね一致した。

参考文献

- 1) 桃谷尚嗣他: コイルばね防振軌道の性能と評価、鉄道総 研報告、Vol.15、No,4、pp.27~32、2001.4
- 2) 芦谷公稔他:周波数-波数スペクトルの逆解析による複数モー ドの位相速度推定と鉄道振動への応用、物理探査、52、3、 pp.214~226、1999
- 3)津野究他:列車走行時振動に対するトンネル径の影響検 討、第38回地盤工学研究発表会、pp.2243~2244、2003

図8 建物のモデル化

