# 3511 走行試験から求めた車体振動特性に基づく軌道管理

Track Irregularity Control based on Experimental Response of Vehicle Body Vibration

正〔土〕 〇小野 重亮 (JR 東日本) 峰岸 大介 (JR 東日本)

Shigeaki ONO, East Japan Railway Co, 2-0 Nisshin, Kita ku, Saitama City Daisuke MINIGISHI

To develop a tool for effective track irregularity control, especially track straightening plans, upon ride quality of high-speed trains, the authors estimated an experimental vehicle vertical acceleration response relative to track irregularity from a full-scale sunning test. Next, it was expressed as the sum of analytical functions vibration response corresponding to 2-DOF model of the vehicle dynamics. Finally, the authors showed a procedure to estimate the effect of track straightening policies upon ride quality. Specifically, the effects of a 20m-chord and a 40m-chord straightening polices were estimated and discussed.

Keyword: ride quality, vehicle body acceleration response, track irregularity, track straightening, human response to vibration, FFT, PSD, 20m-/40m- chord, cumulative vibration power

## 1. はじめに

軌道変位管理の主な目的は車体振動(動揺)乗り心地の確保で あり、車両の振動特性と人体の感覚特性を考慮して、新幹線にお いては 40m 弦管理が実施されている。さらに最近では、区間 (200m)における乗り心地レベルを指標とした軌道状態評価も施 行例がある<sup>1)</sup>。本論文は、新幹線スラブ軌道を想定して、乗り心 地改善に効果的な軌道変位整備計画の策定、すなわち移動量の算 定とその対象区間の選定のために、実際の車両の振動特性を把握 し、これをもとに車両振動を模擬し、軌道整備の効果を予測する 手法を提案する。

## 2. 車両の振動特性

走行試験から得られた車体振動加速度の PSD(Power Spectral Density)を軌道変位の PSD で除したもの(以下、応答特性という) を Fig.1 に示す。走行速度は 360km/h 前後、測定位置は先頭車 の後側台車上である。解析条件は、1m 間隔 4km(1,024 データ、7フレーム オーバーラップ512 データ)である。軌道変位は 10m 弦から検測倍率を補正して復元変位に対応する PSD とした。

Fig.1 では 10Hz より高い周波数で応答特性が大きくなってい るが、左右方向に関する既発表の車両応答特性 <sup>av</sup>ではこのような 特徴は認められない。これは、今回解析した上下振動については、 車体曲げ振動など高次の振動モードの寄与が大きいことによる ものと推定される。また、これまでよく引用されてきた上下応答 特性 <sup>av</sup>にもこのような特徴はないが、これも車体を剛体としてモ デル化し、弾性振動を考慮していないことによるものと考えられ る。

軌道変位から車体振動加速度および乗り心地レベルを推定す るためには、PSD にのみ着目するのでこの応答特性で十分であ るが、現象の理解のため時間応答を求める際は、位相特性も必要 である。今回の測定では、地上と車上を同期して収録していない ことから、理論的な応答関数をあてはめた。すなわち、車両を2 自由度系として、各モードの応答関数(減衰振動)の和としてあら わした。各モードは、振幅、固有振動数、減衰係数をパラメータ として持つ。これらの関数を実測の応答特性と比較しながら、エ クセル画面上でパラメータを合わせた。文末補足より、第1モー ドと第2モードは逆位相とした。式を(1)に、各モードごとの応 答関数をFig.2に、これらを重み付けして加えたものと、実測の 応答特性との比較をFig.3に示す。10Hzより高い周波数では応 答特性が大きくなっているが、今回は2次までのモードを模擬し ているため、高次のモードの周波数(3.66Hz)より高い周波数帯域 は逓減させることを目的として、分子のωの次数を2とした。



Fig.1 Vehicle Body Acceleration Response

$$H(\omega) = \frac{a_1(\omega/\omega_1)^2}{1 + 2h_1(\omega/\omega_1)j - (\omega/\omega_1)^2} + \frac{a_2(\omega/\omega_2)^2}{1 + 2h_2(\omega/\omega_2)j - (\omega/\omega_2)^2}$$

$$a_1 = -1.2, a_2 = 0.24,$$

 $\omega_1 = 2\pi \times 1.29, \ \omega_2 = 2\pi \times 3.66, \ h_1 = 0.3, \ h_2 = 0.45 \ \cdots \ (1)$ 

[No.03-51] 日本機械学会第10回鉄道技術連合シンポジウム講演論文集〔2003-12.9~11. 川崎〕



これをもとに軌道変位から車体振動加速度を算出した結果を Fig.4に示す。軌道変位をフーリエ解析し(4096データ、1m間隔、 矩形窓)、応答特性(複素数)を乗じて、逆フーリエ変換して求めた。 1 次のモードだけでなくより高次のモードもあらわされており、 高周波域を除く特性が再現できていると考える。

## 3. 検測特性に関する考察

乗り心地補正(Fig.5)後の応答特性と、40m 弦、20m 弦の検測 倍率を比較したものをFig.6に示す。走行速度は360km/hとし、 横軸の1Hz は波長100m に、10Hz は波長10m に対応する。乗 り心地補正曲線の周波数の下限は0.5Hz であることから、 360km/h でこれに対応する200m より短い波長については応答 特性が定義されていない。 今回考慮した周波数の範囲においては、固有振動数 3.66Hz ま で考慮していることから、短波長側においては、20m 弦が対応 する。これは、20m 弦測定の適応は波長 20m 以上であり、これ は 360km/h で 5Hz に相当することによる。

一方で40m 弦の検測倍率のピーク(波長40m)より長波長側では、波長が長いほど応答関数が減少し、検測倍率の形と一致する。 1Hz付近より低い周波数域では、周波数→0で車体が軌道と同じ 変位をするため、車体振動加速度は加振周波数の2乗に比例し、 軌道変位の波長の2乗に反比例するが、これが弦の検測特性と一 致している、と説明される。

車体振動∝λ<sup>-2</sup> λ:軌道変位の波長

測定倍率 1-cos(L $\pi/\lambda$ )=2(L $\pi/\lambda$ )<sup>2</sup>( $\lambda$ >>L) L:弦長(40m) 1 H z 以上については、応答特性は周波数に対してフラットであ るが、乗り心地の補正曲線によって、1~4Hz で低周波ほど小さ くなり、40m 弦の検測特性に類似した形状となったものと推測 される。これによって、車両振動からみたこの波長域の軌道変位 は、40m 弦管理で整備できると考えられる。





Fig.6 Vehicle Body Acceleration Response vs. Track Measurement Gains (40m·/20m· chord)



キロ程(1目盛=200m) Fig.4 Vehicle Body Acceleration (Model vs. Measured)

## 4. 軌道変位整備効果の算出

式(1)の応答特性から軌道変位整備の効果を推定する。ケ ーススタディとして、40m 弦および 20m 弦高低軌道変位整 備を深度化した場合の例を Fig.7 および Fig.8 に示す。太線 は、軌道扛上区間の整正前の値を示す。同一の 600m 区間 であり、20m 弦整備の方が整備延長が短い。

整備値はそれぞれ現行の 7mm/8mm を 5mm として、整備軌道低下は考慮せずこう上のみにより、計画上の仕上が りが 2mm 以内となるようにした。

復元変位は中心線補正しない 10m 弦から求めたため縦曲 線の影響も含んでおり、Fig.7(b)中左および右端に認められ るように、40m 弦で 5mm を上回っていても整備していな いのは縦曲線部分である。



乗り心地レベルは、軌道整備で対象としない波長 10m 以 下すなわち周波数 10Hz 以上(360km/h)の成分もあるため、 軌道整備による低減効果が全体に寄与する程度をみるため に、実測された車体振動加速度のパワースペクトルを累積 させたものを、乗り心地補正前/後のそれぞれについて求め、 Fig.9 に示す。

「乗り心地補正前」の場合、周波数 10Hz 以上でも累積車 体振動加速度パワーが顕著に増大しており、Fig.6 の上限の 50Hz でもなお増大している。周波数 10Hz 以上は波長 10m より短い、従来の軌道管理では想定していない範囲である。



Fig.8 Example of Track Straightening (20m-chord 5mm)

Fig.5 に示した乗り心地補正曲線は 0.5Hz 以上について 定義されているので、「乗り心地補正後」は 0.5Hz 以下カッ トオフされている。10Hz より上ではほぼ収束し、これ以上 の周波数は考慮しなくて良いことが示唆される。この値を レベル変換したものが乗り心地レベルである。ただし今回 は FFT 解析において矩形窓を使用しているので、通常のハ ニング窓による計算結果と必ずしも対応しないことに注意 する必要がある。これは、窓関数を用いると、軌道整備箇 所と FFT のフレームの位置関係によって軌道整備効果が変 動するという、あいまいさが発生することによる。



Fig.9 Measured Vehicle Body Acceleration Power (Accumulated)

2 区間(各 4096m)について Fig.7 および Fig.8 に示す軌道 整備を想定し、FFT により周波数分析した後 Fig.3 に示す 車両の応答特性を乗じて、車体振動加速度の周波数分布を 求め、乗り心地を算出した。整備値超過箇所数と整備延長 を Table1 に、振動加速度パワー(乗り心地補正あり)の累積 を Fig.10 に示す。FFT は 4096 データ、1 mサンプル、1 フレームで計算している。

| Table 1 | Summary | of Track | Straightening |  |
|---------|---------|----------|---------------|--|
|---------|---------|----------|---------------|--|

| Section | Criteria | # of Excesses | Straightening<br>Length (m) |
|---------|----------|---------------|-----------------------------|
| (a)     | 40m-5mm  | 19            | 815                         |
|         | 20m-5mm  | 18            | 254                         |
| (b)     | 40m-5mm  | 16            | 515                         |
|         | 20m-5mm  | 2             | 41                          |







(b) Section2 Fig10 Effect of Track Straightening

Fig.10(a)(b)とも、40m 弦軌道整備の効果は周波数 1Hz から認められるのに対し、20m弦軌道整備の効果は周波数 3Hz以上であらわれている。区間(a)(b)とも軌道整備前は3 ~4Hzで振動加速度パワーが増大しており、この周波数域 の20m 弦軌道整備は効果的であると考えられる。たとえば、 区間(a)で、20m 弦整備は延長 254m で 1dB 程度の効果、40m 弦整備は延長 815m で 1.5dB 程度の効果となっている。

検討した車体振動加速度成分は、10Hz 付近で頭打ちとなっているので、実測の Fig.9 と比較すると、半分(3dB)強の 寄与である。Fig.10 における軌道整備効果は0~2dB であ ることから、全体に対する低減量は最大でも2dB となる。

区間(a)における 20m 弦整備の効果は区間(b)より大きか った。区間(b)では 20m 弦 5mm を上回る箇所がわずか 2 箇 所であり、軌道状態が良好であったといえる。

軌道整備延長に対する乗り心地改善効果は、区間(a)の 20m弦5mm整備と、区間(b)の40m弦7mm整備が、図か らほぼ同等である。軌道整備延長は、Table1からそれぞれ 254m と 515m であり、20m 弦整備の方が効果的と考えら れる。ただし、さきに考察した通り、あくまでも 20m 弦軌 道変位が残存している場合に限られると理解される。

#### 5. 今後の方向性

 ・実車両の走行試験から求めた応答特性を、車両台上試験 結果等と合わせ、精度を向上する。

・実車両における車体振動と軌道変位の位置合わせの精度 を向上し、位相特性を評価する。

・軌道整備手法を提案し評価する。

#### 6. まとめ

 ・実測データから車体上下振動加速度と軌道高低変位の PSD を求め、車体振動応答特性を2自由度の減衰振動の和 で近似し、実測波形の低周波部分を再現した。

・軌道整備の効果を乗り心地レベルで評価する手順を提案 した。

## 謝辞

本研究において、車両振動応答関数の乗り心地重み付けな どについて、(財)鉄道総合技術研究所の矢澤副主任研究員に アドバイスをいただきました。ここに御礼申し上げます。

#### 補足

車体モデルの2自由度系で、軌道からの変位入力に関する 車体の応答は、減衰のない場合、1次モードと2次モード は互いに逆相となる。 運動方程式は

る。

$$\begin{pmatrix} k_1 - m_1 \omega^2 \\ \mu_1 - k_1 \mu_2 = 0 \\ -k_1 \mu_1 + \begin{pmatrix} k_1 + k_2 - m_2 \omega^2 \\ \mu_2 = k_2 \nu \end{pmatrix}$$

$$u_{1} = \frac{\begin{vmatrix} 0 & -k_{1} \\ k_{2} & k_{1} + k_{2} - m_{2}\omega^{2} \end{vmatrix}}{\begin{vmatrix} k_{1} - m_{1}\omega^{2} & -k_{1} \\ -k_{1} & k_{1} + k_{2} - m_{2}\omega^{2} \end{vmatrix}}v$$

右辺の分母の固有振動をω1、ω2(ω1<ω2)とすると、

$$\frac{u_{1}}{v} = \frac{k_{1}k_{2}/m_{1}m_{2}}{(\omega^{2} - \omega_{1}^{2})(\omega^{2} - \omega_{2}^{2})}$$
$$= \left(\frac{1}{\omega^{2} - \omega_{1}^{2}} - \frac{1}{\omega^{2} - \omega_{2}^{2}}\right)\frac{k_{1}k_{2}/m_{1}m_{2}}{\omega_{2}^{2} - \omega_{1}^{2}}$$

で、車体変位は低次のω1、高次のω2 に対してそれぞれ同 相、逆相の応答となる。加速度応答はその逆となる。

#### 参考文献

<sup>2)</sup> 永沼泰州:正矢法から脱却した東海道新幹線の乗り心地 管理、新線路、pp.26-18、平成11年9月

<sup>3)</sup> 佐藤吉彦、梅原利之編:線路工学、p.60、1987 など