1502 新交通車両の転倒危険性に関する検討 A Study on Roll Over Limit of Automated Guideway Transit Vehicle

〇学 佐藤陽輔(日本大学院) 正 綱島均(日本大学)

Hitoshi TSUNASHIMA, Nihon University, 1-2-1 Izumi-cho, Narashino-shi, Chiba Yosuke SATO, Nihon University

The steering type of a mechanical guidance system has been used for Automated Guideway Transit (AGT) system in Japan. Recently, the single-axle bogie system has developed for AGT vehicle and applied to Yurikamome 7200 series. This paper describes dynamic characteristics of AGT vehicle with single-axle bogie system and steering system under earthquake. By using multibody dynamics models, a computer simulation in case of earthquake is carried out. And stability limit of roll over for sinusoidal input is shown for two types of mechanical guidance system.

Key words: Automated Guideway Transit, Earthquake, Tire, Vehicle dynamics, Multibody dynamics, Roll over

1. 緒言

近年の交通流の増大に伴い,大量型の鉄道と少量型のバス との中間的な需要に対応できる新交通システムが実用化以降, 国内外で多数導入されてきた.新交通車両は高架専用軌道上 に設置した案内レールに沿って自動運転走行するため,走行 輪の他に案内輪が設けられており,その案内方式の違いから 1軸ボギー方式とステアリング方式の2種類に大別することが できる.(図1)国内の標準型新交通車両にはステアリング方 式が主に採用されてきたが,最近では,台車構造の簡素化,本 線運用の自由度向上に有効なことから1軸ボギー台車方式の 採用が報告されている.^{1,3)}新交通車両を対象とした研究とし ては台車方式の検討として案内装置,サスペンションシステ ムの適用に関する研究,また運動解析として走行安定性,乗 り心地評価に関する研究等がある.地震時の構造物の耐震性 については多くの議論がなされているが,車両の挙動に関し ては鉄道車両や自動車に対する検討^{3,4}はあるが,ゴムタイヤ

(a) steering system

で走行する新交通車両を対象とした検討は十分なされていない。

本研究では地震時における新交通車両の転倒危険性に関し て検討するために、1軸ボギー方式とステアリング方式の新 交通車両に対してマルチボディダイナミクスDADS(Dynamic Analysis and Design System)⁵⁰を用いたモデルを構築し、2つ の案内方式の違いによる地震時の車両挙動及び転倒危険性に ついて検討を行った.

2. 車両モデル

本研究の対象とした車両モデルは国内で用いられている標 準型新交通車両とし、1軸ボギー方式とステアリング方式の 2つの案内方式を対象とした。

車両の案内機構は、1軸ボギー方式(図2)では走行輪の前 後に設けられた4つの案内輪によって軌道に拘束されて走行 する.一方、ステアリング方式(図3)は案内輪の変位がステ

(b) single-axle bogie system

〔Na03-51〕日本機械学会第10回鉄道技術連合シンポジウム講演論文集〔2003-12.9~11.川崎〕

アリング軌道により操舵角に変換され操舵する機構となって いる.本検討ではステアリングゲインは前後とも同一とし 1.3[rad/m]とした.

モデルの作成は,まず,車両を構成する各剛体を構成し,次

に、それらの要素を結合するための適切なジョイント要素、 ばね、ダンパー、アクチュエータ要素等を設定することに よって行った.(図4)車両は、車体、案内輪、旋回枠、平行 リンク、走行輪等の剛体により構成されており、弾性体や部

Fig.5 Characteristics of tire model

Fig.6 Excitation of vehickle model

材についてはばね要素を用いることにより表現している.走 行輪については図5に示す横力の飽和を考慮したモデルと なっている.これらの設定により、1軸ボギー方式とステア リング方式の車両モデルを構築した.

3. 地震時の走行シミュレーション

構築した2つのモデルを用いて地震時における案内方式の 車両挙動に与える影響を計算した.入力となる地震波は兵庫 県南部地震(震度7)と同等の周波数成分を含む地震波を生 成し、上下、左右方向に入力した.(図6)ただし、入力した 地震波は高架軌道の影響は考慮せず、地面に設置した軌道に 対して新交通車両が走行しているものとして検討を行った. シミュレーション条件は運行最高速度である時速60km一定で 走行させ、図7に示す地震波を入力した.図8に地震時の車 両挙動を示す、図8よりステアリング方式車両は1軸ボギー 方式車両に比べてヨー運動は大きいことがわかる.また、1 軸ボギー方式とステアリング方式の前位台車の左右加速度, ヨーレイト,ボギー角(あるいはステアリング角),タイヤの 横滑り角の時刻歴応答を図9に示す. 図9より台車の左右加 速度の最大値に関しては1軸ボギー方式もステアリング方式 も大きくは変わらないことがわかる.また、ヨーレイト、ボ ギー角(あるいはステアリング角),横滑り角はステアリング 方式の方が大きいことがそれぞれの図からわかる.以上のこ とから今回構築したモデルによって案内方式の差異による車 両挙動の違いが表現できていることがわかる.

4. 転倒限界の検討

前節において2つの案内方式による地震時の車両挙動について検討した.本節では基本的な検討として,各案内方式において車両の転倒限界の検討を行った.

シミュレーション条件としては前節までと同様に空車時を 想定し,時速60km一定で走行させ,周波数と振幅の異なる正 弦波を左右方向のみに入力して車両の転倒限界を計算した. 図11にそれぞれの案内方式による転倒限界を示す.転倒限界 線より上の範囲では車両が転倒状態となり,転倒限界線より

Fig.7 Acceleration of running surface

(a) single-axle bogie system

(b) steering system

Fig.8 AGT vehicle motion in earthquake

- 439 -

Fig.9 Simulation results in earthquake

下の範囲では転倒はせず安定状態へと復帰する.図11より低 周波数では比較的大きい振幅であっても転倒に至らないが, 周波数が大きくなるにつれて転倒限界振幅が小さくなること がわかる.また,1軸ボギー方式に比べ,ステアリング方式 の方が転倒限界線が低いことがわかる.このことによりステ アリング方式では地震時の転倒危険性を軽減するために減速 するなどの対応が必要となる.

5. 結言

マルチボディダイナミクスを用いて1軸ボギー方式とステ アリング方式の新交通車両のモデルを構築し、2つの案内方 式の差異による地震時の新交通車両の車両挙動及び転倒危険 性を検討した.本論の主な結論は次の通りである.

(1)構築したモデルを用いて地震時の走行シミュレーションを 行い、1軸ボギー方式とステアリング方式の案内方式の違い

Fig.10 Stability limit on roll over for sinusoidal input

による車両挙動の差異を検討した結果,1軸ボギー方式に比 ベステアリング方式はヨーレイト,ボギー角(またはステアリ ング角),タイヤの横滑り角が大きいことがわかった.

(2)各案内方式において地震時の転倒危険性の検討として,周 波数と振幅の異なる正弦波を用いて転倒限界を計算した.そ の結果,ステアリング方式の方が1軸ボギー方式よりも転倒 限界線が低く,地震時に減速するなどの処置が必要であるこ とがわかった.

今後はマルチボディモデルの剛性または減衰の適正化,実 軌道を表現できる軌道モデルの構築を行い,より詳細な転倒 限界の検討する行っていく予定である.

参考文献

- [1]長浜・玉井,ゆりかもめ7200系の概要~制御装置と走行装置~,鉄道車両と技術、レールアンドテック出版(1999-3)、9-19
- [2] 綱島・國瀬・片桐, 1軸ボギー方式台車を用いた新交通車 両の運動特性(第1報, 基本的な運動特性の検討), 日本機 会学会論文集C, 67-653 (2000), 209-216
- [3]宮本・石田・松尾, 地震時の鉄道車両の挙動解析(上下, 左 右に振動する軌道上に車両運動シミュレーション),日本 機会学会論文集C, 64-626(1998), 236-243
- [4]鎌田・浅野・永井,高架橋走行中の自動車の地震に対する 挙動解析(水平横方向に地震をうけた場合),(社)自動車技 術会,学術講演前刷集,6-01(2001-5),4-7
- [5]中村・橳島・宮本他,鉄道車両の地震に対する走行安定性 (機構解析言語による解析および模型実験),日本機会学会 第11回交通物流部門大会講演論文集,No.0250(2002-12), 331-334