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The purpose of this study is to develop a portable structural identification instrament combining a
wireless data acquisition system and the developing structural identification application in our research
group. The wireless data acquisition system is possible to transmit the digital signals of the observed
structural responses. This instrument is set up to a five stories model building and the absolute
acceleration at each story is measured. In this study, the Kalman filter and Monte Carlo filter techniques
are applied to identify dynamic characteristics of a five stories model structure using observation data
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from shaking table test.
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1. INTRODUCTION

In civil engineering, health monitoring of existing
civil structures has been treated as an important
subject because several bridges and buildings have
been reported their collapses caused by fatigue
loads or unexpected load such as earthquakes. To
prevent the damage to structure continuous
monitoring of structural deterioration and its repair
are essential. After the event rapid detection of
damage and its repair are also necessary to avoid
the occurrence of secondary disaster.

For that purpose, health monitoring of large
structure has been facilitated using by new
technologies developed in the field of sensor,
measurement, communications and computer.
Actually, many research efforts have been
conducted to develop health monitoring and
damage detection techniques for existing civil
structures’” ?. The improvement of infrastructure
system by applying developed techniques based on
these efforts will support the high quality of our life.
However, these methods are still in need of
improvement for application to a real civil structure,
more effectively.

In health monitoring, measurements such as
strain, acceleration, velocity, displacement, rotation
and other structural responses have been used for

detecting damage or deterioration to structures.
Wiring works of sensor connection to the data
logger system is one of the most time consuming
part of sensor deployment to the real structures. To
overcome this problem in health monitoring of
structure we develop a wireless data acquisition
system.

Over the last few decades, structural
identification techniques using Kalman filter ? )
and Monte Carlo filter® ® have been developed in
some useful forms for solving many practical
problems in health monitoring of civil structures.
Because the Kalman filter was firstly developed by
the assumption of linear system with Gaussian
uncertainty, its application to real system sometimes
has not been work well. However, the Monte Carlo
filter can be applied to nonlinear and non-Gaussian
state space model, very widely. We therefore
develop a package of computer programs to be able
to use for structural system identification including
not only above mentioned but existing efficient
algorithms. This package is installed into the
portable data processing system and combined with
the wireless data acquisition system to develop
portable structural identification instrument.

The wvalidity of the developed structural
identification instrument is verified by conducting
shaking table test of a model structure.
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2. IDENTIFICATION TECHNIQUES

(1) KALMAN FILTER
The state transfer and observation equations to be
used in Kalman filter are defined as v
X, =@, %, + LW, Y]
Yn=Hyx, +v, 2
in which, # is the time step, x, is the state variable

vector and y, is the observation vector,

wand v are system noise and observation noise
vectors, respectively, @ is the state transfer matrix,
I' is the state transfer matrix for system noise, and
H is the observation matrix.

The Kalman filter algorithm is defined as follows,

Step 1. Define an initial value of the state vector

X, and its covariance matrix Fyas well as the

covariance matrix of the observation noise R,, .

Step 2. Calculate the pre-estimation value of the
_state variable vector X, and its covariance matrix

M, as follows,
5En = q)n—l‘;en—l + 1—‘n—-lﬁ)n—l

- T T
M,=®, P 0, +T,,Q,,I,
Step 3. Calculate the post-estimation value of the
covariance matrix P, of the state variable vector as
follow, '
=M, +H, R, "H,)"
Step 4. Calculate the Kalman gain K, as follow,
Kn = 'PIIHPIR"—I
Step 5. Calculate the most likelihood estimation
value of the state vector x, as follow, '
)’en' = En +Kn(yn _Hn)_cn)

Step 6. Return to step 1 until the end of time step.

(2) MONTE CARLO FILTER
In Monte Carlo filter (MCF), the state transfer and
observation equations are described as follows,

X, =F(x,0,w,) €)

Y. =Hx,,v,) @
where, F and H are an arbitrary functions, wis
the system noise vector defined by an arbitrary
probability density function g(w), and v is the
observation noise vector defined by an arbitrary
probability density function r(v).

To introduce MCF, we need the following
relationship between the observation noise vector
v, and state variable vector x, as well as the

n
observation vector y, expressed by a function G
that can be differentiable with respect to the

observation vector y, as follows,

vnzH—l(‘xn’yn):G(xn>yn) (5)
The state transfer and observation equations can be
assigned any nonlinear functions.

MCF is an algorithm to approximate probability
density functions by many of their realizations
named as particles or samples. Thus, the state
variable vector is described by many realizations
instead of first and second moments of any
distribution. :

MCEF consists of the following recursive algorithm
to obtain one step-ahead prediction and filtering.
Step 1. Generate thé initial distribution of state
variable vector as k-dimensional random number
assuming an arbitrary probability density function:
fO(J)Npo(x) ,j=L+,m
Step 2. Repeat the following steps at each time step
(a) Generate the probability density function of
system noise as random number:
WP ~qw) j=Lem
(b) Compute the particles to estimate predictor
density using the state transfer equation:
b,gj)=F(f(_j]),wflj)) ,j=1--,m
(c) Compute the likelihood of each particle by

a2t = p(y, 15" =Gy, b)) %G-

(d) Generate m filtered particles fn(f) by

resampling of p{ (j=1,...,m) as proportional
to the likelihood of each particle:
1 . - OWA S
b, with probability «a, / ZH a,
f(j) -
by with probabiliy a3 af
Step 3. Return to step 1 until the end of time step

3. WIRELESS DATA ACQUISITION SYSTEM

A wireless data acquisition system is an instrument
that transmits signals of observed structural
responses using wireless transmission technique.
This system has functions to convert the analog
signals obtained from sensors to the digital signals
and send these signals to the host computer through
a signal processing unit. Structural identification is
directly carried out at the host computer. Figure 1
shows the wireless data acquisition system. The
main wireless signal processing unit uses LAN
standard (IEEE802.11b) and each unit composes of
the four wireless components. Because we have
four units right now it is possible to process digital
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Figure 1. Wireless data acquisition system

signals from 32 channels simultaneously.

The power of the wireless signal transmission
system is possible to use both DC and AC sources.
In this observation we use the AC100V20VA source
because the shaking table system is well facilitated
for experimental purpose. The distance limit of
communication between the host and user wireless
signal transmission system is restricted within 30m
in-doors and 1km outdoors.

The processing unit carries out the sampling in
the 100 Hz and its decomposability is 16-bit. The
size of measurement unit is 200(W) x 190(D) x
145(H) mm. The communication protocols use
UDP (User Datagram Protocol) and TCP
(Transmission Control Protocol), and the command
part and data part of two protocols are used
simultaneously. The sampling precision is possible
to maintain during 10 minutes within the range of 1
ms and the broadcast method defined in UDP is
used for sampling of analog time histories.

4. STRUCTURAL IDENTIFICATION

The dynamic responses of a five stories model with
rubber bearings at the four edge comers of each
layer as shown in Figure 2 are measured to identify
for dynamic characteristics of this structure.
Accelerometers are attached to each layer and the
“surface of shaking table. Each sensor is connected
to the wireless data transmission systems. The
servo-accelerometer (Akashi, JAE — 6A3) is used to
measure the dynamic responses of the model
structure.

The absolute accelerations at each layer and the
surface of shaking table were observed and the
observed data are processed using a band pass filter
(BPF) with the frequency range of 0.5~10Hz by
which the base-line correction for time integration
is performed. The relative accelerations were
obtained by subtracting the acceleration on surface

e

Figure 2. A five stories model structure

ms =2.6224 ton

my =2.0956 ton

m; = 2.0956 ton

m, =2.0956ton

m; =2.0956 ton
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Figure 3. Shear building model

of shaking table from the absolute acceleration of
each layer. The relative velocity and displacement
of each layer were obtained by time integration
from the processed relative accelerations. Those
time histories were used to identify dynamic
characteristics of this model structure.

The shear building model of five degree of
freedom system as shown in Figure 3 is used for
identification of the five stories model structure.
The input motion to this structure model is assumed
to be the measured acceleration on surface of
shaking table. The mass of each layer is given as
shown in the figure. We identify the damping
coefficient and stiffness of each layer under the
condition that the relative acceleration and velocity
of each mass are measured.

The frequency transfer functions between the
ground and each layer are shown in Figure 4 that is
calculated using the processed time history of
observation data.
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Figure 4. Transfer functions for each layer

Table 1 Natural frequencies of model structure

1% Mode | 2™ Mode | 3 Mode | 4™ Mode
1* floor 0.61 1.86 2.96 3.91
2 floor || 0.61 1.86 3.05 3.75
3" floor 0.61 1.86 2.90 3.78
4" floor 0.61 1.80 2.90 3.91
5™ floor 5
i Average w

(Unit : Hz)

The natural frequency of each layer is tabulated as
- shown in Table 1.

As shown in Table 1, the large amplitudes at
0.61Hz, 1.85Hz, 2.95Hz, and 3.82 Hz are
correspond to the first, second, third and fourth
vibration modes of the  structural system,
respectively.

(1) IDENTIFICATION USING KALMAN
FILTER
The state variable vector at time step 7 is given by,
xn:{yiayiﬂci’ki}T (l.=1,"',l’ld0f)
in which, ndofis the number of degree of freedom.
The reference values of the stiffness and damping
coefficient of each layer are given in Table 2. The
initial values of the state vector is defined as
follows in which the initial values of stiffness and
damping coefficient of each layer are equal to the
reference values,
%, ={0.0,0.0,¢;,k}  (i=1,---,ndof)
The initial covariance matrix of the state vector is
assumed as,

P, ={107,107,1.2%,100.0°},"
The covariance matrix of the observation matrix
(R,) is a diagonal matrix with its component of
0.01.

Table 2 Reference values of stiffness and damping
coefficient of each layer (Kalman filter)

Stiffness Damping Coefficient
(KN/m) (KN-sec/m)
1* floor 400.0 1.158
2" floor 300.0 1.003
3" floor 600.0 1.418
4" floor 600.0 1.418
5" floor 200.0 0.916
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Figure 5. Time histories of identified stiffness
(upper) and damping coefficient (lower) computed
by Kalman filter technique

The identified time histories of the stiffness and
damping coefficient of each layer are shown in
Figure 5. The stiffness value of each layer is
converged to a certain value whereas the damping
value is fluctuated time to time. This means that the
stiffness identification is more robust than that of
damping coefficient. As general identification of
damping coefficient is not stable comparing with
stiffness identification because the sensitivity of
damping is related to velocity response whereas that
of stiffness is related to displacement response.

The identification values of stiffness and
damping coefficient of each layer are estimated as
mean value after 20 seconds from start of times
histories as shown in Figure 5. These values are
summarized in Table 3. Using the identified
stiffness of each layer, the natural frequencies of the
first, second, third and fourth modes are calculated
as 0.61Hz, 1.77Hz, 2.89Hz, and 3.58Hz,
respectively. The natural frequency of each mode
has similar value with that obtained from the
transfer function.
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Table 3 Identified values of stiffness and damping
coefficient of each layer (Kalman filter)

Stiffness Damping Coefficient

1% floor 385.69 -2.383
2" floor 32939 8.211
3" floor 679.26 10.088
4" floor 479.09 -5.968
5" floor 327.95 9.206
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Figure 6. Comparison of observed response and
re-simulated response computed by using dynamic
characteristics obtained from Kalman filter
technique

Using identified stiffness values and damping
ratio of 0.02, we re-simulated the structural
response of the fifth mass of the analytical model
input band passed acceleration time history on
shaking table as shown in Figure 6. Amplitudes of
re-simulated response are slightly different from
observed ones but both phases agree well.

(2) IDENTIFICATION USING MONTE
CARLO FILTER

To conduct the structural identification using Monte
Carlo filter, the distribution for initial state variables
and system noise are defined as the Gaussian
distributions as shown in Table 4. The reference
values of stiffness and damping coefficient are
given as shown in Table 5. The number of particles
in Monte Carlo filter is 8000. The covariance
matrix of observation matrix is a diagonal matrix
with its component of 0.0001.

Time histories of mean stiffness and damping
coefficient of each layer are shown in Figure 7. The
identified values of stiffness and damping
coefficient are fluctuated but almost have similar
values in some interval. The stiffness identification
is also more robust than that of damping coefficient
like as the case of Kalman filter. The identified
values of stiffness and damping coefficient are
summarized in Table 6.
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Table 4 Probability distribution of initial state
vector and system noise

Initial Distribution of

Distribution System Noise

Displacement N (0, (10%%) N (0, (10%?%)

Velocity N(0, (1049 N (0, (107)%)
Stiffness N (0, (c*0.03") | N(0, (c*0.003))
Damping 2 2
coofficient N (0, (k*0.032) | N (0, (k*0.003))

Table 5 Reference values of stiffness and damping
coefficient of each layer (Monte Carlo filter)

Stiffness Damping Coefficient

1% floor 400.0 1.158
2" floor 400.0 1.158
3" floor 400.0 - 1.158
4" floor 400.0 1.158
5" floor 600.0 1.587
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Figure 7. Time histories of identified stiffness
(upper) and damping coefficient (lower) obtained

" by Monte Carlo filter technique

Table 6 Identified values of stiffness and damping
coefficient of each layer (Monte Carlo filter)

Stiffness Damping Coefficient
1* floor 378.40 1.413
2™ floor 59921 1.485
3" floor 543.97 1.350
4" floor 45315 0.865
5" floor 474.18 1.633
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Figure 8. Comparison of observed response and
re-simulated response computed by using dynamic
characteristics obtained from Monte Carlo filter
technique

These identification values of each layer are
estimated as average value of the time history of
mean value between 25 and 29 seconds from start
of times histories as shown in Figure 7. Using the
identified stiffness - of each layer, the natural
frequencies of the first, second, third and fourth
modes are defined as 0.65Hz, 1.86Hz, 3.11 Hz, and
4.07Hz, respectively. The natural frequencies until
third mode are similar with that obtained from the
transfer function. The natural frequency of fourth
mode has a little lager value.

Using identified stiffness and damping
coefficient values, we re-simulated the structural
response of the fifth mass of the analytical model
with the input value as acceleration on the surface
of shaking table as shown in Figure 8. The
resimulated acceleration time history, especially
amplitude, dose not agrees well with the observed
one although the predominant period is almost
same.

5. CONCLUDINGS

Using a wireless data acquisition technique, a
portable structural identification instrument is

developed. The dynamic characteristics of a five
stories model structure are identified using by
Kalman filter and Monte Carlo filter techniques.

In both techniques, the identification of stiffness is
more robust than that of damping coefficient.

In Kalman filter, re-simulated responses were well
agreed with observed responses. However
re-simulated and observed responses are not agreed
well in Monte Carlo filter.
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