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This study deals with the buckling behaviour of thin-walled steel cylindrical shells subjected to the
lateral pressure and the effect of the carbon fibre reinforcement polymer (CFRP) on it, when they are
reinforced externally and internally. A nonlinear numerical experiment has been performed in this study and
presents a novel way of strengthening thin-walled steel cylindrical shells during lateral pressure in which
application of a small amount of the CFRP composite can increase the buckling strength effectively, when
they are coated from the both side with the veneers of the CFRP. On the previous study, it has been pointed
out that the CFRPs, when they are applied to the thin-walled cylindrical shells under compression have
complex buckling behaviour which is very sensitive to initial geometric imperfections. In the case of the
orthotropic CFRP material, the angles and dispositions of fibre orientations, as well as the magnitudes of any
imperfections, have been suggested to affect the buckling behaviour. In this study, to obtain the valuable
information for the design of the FRP based hybrid structural elements having the complex buckling
collapse behaviour, the nonlinear numerical experiments have been carried out for the CFRP laminated
reinforced thin-walled steel cylinders under lateral pressure. Also, in this research, the best angle of fibre
orientations while CFRPs are sandwiched with steel in the case of laterally pressurized cylindrical shells has
been studied and its action on the buckling strength as well as on the associated buckling mode, amplitude
and imperfection modes adopting the symmetrical model for the analysis.
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1. INTRODUCTION

Fibre reinforced polymer (FRP) composites,
comparatively new and revolutionary class of
composite material manufactured from fibres and
resins, serves the constant demands of the society
and is an effective material to achieve the impressive

gains over high strength, light weight and safe
economical structures. For years, civil engineers
have been in search for alternatives to steel and its
alloys to combat the high costs of repair and
maintenance of steel structures damaged by
corrosion and heavy use. Carbon fibre reinforced
polymer (CFRP) is an alternate source of effective



material which has the benefit of high strength to
weight ratios along with corrosion resistance. In
addition, several researches have shown that these
CFRPs are ideally suited for short-term retrofits and
long-term rehabilitations because of having merit of
the ease of handling during construction1) with
excellent durability in aggressive environments.
Therefore; these composites are particularly suitable
for the design of bridges, large span structural
members, aerospace components and pressure
vessels. Since steel shells are considerably stiffer
than the CFRP composites, strengthening them
requires expensive high-strength fibres and thus, this
procedure has been generally deemed not
advantageous. Despite this fact, El Damatty et al. 2)

have shown both experimentally and numerically,
that glass fibre (GFRP) plates can be used to enhance
the load-carrying capacity. Nevertheless, there is no
doubt that CFRP are, of course, expensive and less
processable than GFRP, but has predominant
advantage of high stiffness. However, these
composites have drawback having relatively lower
stiffness driven by CFRP’s. Consequently,
serviceability rather than strength limit states tend to
provide the controlling influence on design
constraint in the context of thin-walled shell
structures. So that the required buckling strength
could not be obtained for the shells constructed just
from CFRP only. In this case, a novel way to improve
this drawback of CFRP would be, jointly use with
thin-walled steel plates. So that strength properties of
the steel could be increased and possibility of
corrosion inside the marine environments also would
be vanished because the carbon fibres are chemically
inert and have low surface energy. In this study,
CFRP laminated thin-walled steel cylinders under
lateral pressure are treated with nonlinear numerical
experiment to obtain the valuable information for
the design of CFRP based hybrid structural elements
and discusses the influence of CFRP reinforcements
to increase the load carrying capacity of the
thin-walled metallic structures having complex
buckling collapse behaviour. In the case of CFRP
material, the angles and dispositions of fibre
orientations, as well as the magnitudes of any
imperfections, have been suggested to affect the
buckling behaviour3).Since, the mechanical
behaviour of CFRP shells is much dependent upon
the fibre orientation 4), 5), the relative fibre orientation
has been given priority for the analysis for = 0° and
= 90°. Also, in our previous study, it has been
shown that for the axially compressed thin-walled
CFRP reinforced steel cylinders, depending upon the
imperfections, buckling modes as well as buckling

load carrying capacity differs and this capacity varies
with the adopted reinforcement together with the
angle of fibre orientation6). Therefore, in this paper, a
nonlinear numerical experiment has been performed
in the case of laterally pressurized CFRP reinforced
steel cylinders to determine how best to alter the
angle of fibre orientation.

2. METHOD OF ANALYSIS

2.1. CFRP Lamina and CFRP Reinforced Steel
Lamination

As shown in Fig. 1 a section of thin-walled CFRP
reinforced steel cylinder, which is termed as
FSF-model (fibre steel fiber) is considered in which
x-y denotes the coordinate of thin cylindrical shell

and 1-2 denotes the coordinates along fibre direction.
The material constants are obtained by using
Halpin-Tsai equation 7) as
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In Eq.1 subscript F and P relate to fibre and polymer,
respectively. E1 represent elastic coefficient and EF
and EP as elastic constants for fibre and polymer,
respectively. Also, VF and VP represent volume
fraction for fibre and polymer and 12 and 21 as
Poisson’s ratios. In Eq.1 E2 is the elastic coefficient
normal to the fibre and calculated
as    2 1 / 1p F FE E V V    Parameters  is
taken as  =2 and
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shear modulus of elasticity G12 can be calculated
as    12 1 / 1p F FG G V V    and the associated
parameter  for the calculation of G12 is taken as
=1+40 10
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     / 1 / / .F P F PG G G G     The resulting
transformed linear elastic constants after the
transformation of the linear elastic constants from
the principal material fibre directions to a global x-y
coordinate is as below
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Where,
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( , ,x y xy  　 　 ) are the principal stress and strain
components associated with x-y plane, and similarly,
(x, y, xy) and (x, y, xy) are the corresponding
membrane and bending strains on the middle plane
of the shell respectively. Also, by integrating the
whole thickness of lamina, the membrane and
bending stress resultant matrices can be obtained as
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Where, (nx, ny, nxy ) and (mx, my, mxy ) are the total
membrane and bending stress resultants respectively.
Similarly, Aij, Bij and Dij are respectively the
membrane, membrane bending coupling and bending
stiffness respectively. From Eq. (3) the constitutive
relation for the laminated plate can be calculated as

11 12 11 12

12 22 12 22

66 66

11 12 11 12

12 22 12 22

66 66

0 0
0 0

0 0 0 0 2
0 0
0 0

20 0 0 0

x x

y y

xy xy

x x

y y

xy xy

A A B Bn
A A B Bn

A Bn
m B B D D
m B B D D
m B D

     
        

                  
        

(4)

In the present study, symmetric laminations are
adopted. So that, all the components of Bij will be
zero.

2.2 Nonlinear Imperfection Analysis

For an imperfect CFRP reinforced thin-walled
steel cylinders the change in the total potential
energy, consequent upon the application of lateral
pressure p may be written as

m b      (5)
where Πm are the membrane strain energies, Πb are
the bending energies and Πλ are the external pressure.
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In Eq. 6, (nx, ny, nxy ) and (mx, my, mxy ) are calculated
using the constitutive relation for the laminated plate
as shown in Eq. 4.
To get the strain-displacement relationship

Donnel-Mushtari-Vlasov type is adopted for the
deformations from the initial imperfections 0w as
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End boundaries are assumed to be supported in

such a way as to conform to the classical simple
support, corresponding with the conditional
expression as

(8)

The linear sum of bi-harmonic function that satisfy
the above boundary condition, the displacement
functions u, v and w as
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where, ui,j, vi,j and wi,j are the amplitudes of each
harmonic function; i and j are the circumferential
full-wave and the longitudinal half-wave number,
respectively. The initial geometric imperfection is
taken to consist of a harmonic of

   00
, cos / sin π /b fw w by R f x L (10)

in which b and f represent the circumferential
full-wave and longitudinal half-wave number,
respectively.
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3. RESULTS AND DISCUSSIONS For the analysis of laterally pressurised reinforced
shells, steel and FRP’s are laminated with constant
steel with wall thickness of ts = 4mm as shown in
Fig.1 and the adopted geometrical parameters are
L/R= 0.512 and R/ts= 405. Also, tf represents the
thickness of carbon fibre ranging the thickness of
fibre from 0 to ts. Similarly, Model S indicates for
steel with no reinforcement and FSF-1 indicates for
steel with reinforcement 1 mm CFRP on each side.
While, Young’s moduli for steel, fibre and polymer
are taken as Es = 205GPa, EF = 235GPa, EP3.5GPa,
and Poisson’s ratios for steel, fibre and polymer are
s = 0.3, F = 0.3 and P = 0.34, respectively.

Figs.(2a), (2b) and (2c), are the outcome of
nonlinear imperfection analysis, linear buckling
analysis and the reduced stiffness (RS) analysis with
the horizontal axis as circumferential full wave
number i for model S (tf = 0mm) and FSF-1 (tf =
1mm) model with angle of fibre orientation 0° and
90°, respectively. The linear buckling loads with
varying longitudinal half-wave number j are defined
as Pcm.j. Then the corresponding circumferential
full-wave number is obtained as icm(j). After that, its
RS critical load associated with icm(j) is calculated as
P*

cm,j. Consequently, from all the calculated P*
cm,j,

the minimum value can be selected as defining the
RS criterion8) P*

cm as depicted on figures.But in this
paper, predicting the lower bound by RS buckling
load and its impact will not be discussed briefly, only
the influence of nonlinear numerical experiment of
larger imperfections having a form (b,f) = (13,1) with
amplitude 0

13,1( ) /w t =0.8 for model S, (b,f) = (13,1)
with amplitude 0

13,1( ) /w t =0.6 for model FSF-1 having
an angle of fibre orientation 0° and (b,f) = (12,1) for
model FSF-1 with amplitude 0

13,1( ) /w t =0.8 having an
angle of fibre orientation 90°, where the minimum
nonlinear buckling loads exhibits and are observed to
produce buckling loads that are lower than P*

cm
associated with the mode (i*

cm,1). What is fascinating
about the nonlinear results are that despite the shape
of initial imperfection, 0

12,1( ),w the incremental mode
at buckling, at least when imperfection amplitudes
are large, is dominated by wave form having
considerably shortened circumferential and axial
wave lengths. For the case of FSF-1 model and =
90° shown in Fig. 5b, for example, the incremental
mode at buckling for the large imperfection 0

12,1 /w t =
0.8, has through a process of modal coupling reached
localised shapes closer to that associated with (i,j) =
(12, 1.82).

Figs. 3a and 3b are the result of nonlinear
numerical experiment for model S, b=13 where the
minimum
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nonlinear buckling load occurs. Fig. 3a is the load
versus displacement curves with increamental
displacement at the buckling mode in the case of
b=13 and Figs. 3b are the incremental cirumferential
at x=L/2 and axial y=0 wave forms at the buckling
points. Similarly, Fig. 4a is the load versus
displacement curves with increamental displacement
at the buckling mode in the case of circumferential
full wave number b= 13, for model FSF-1 with an
angle of fibre orientation =0° and Figs. 4b are the
incremental cirumferential at x=L/2 and axial y=0
wave forms at the buckling points. Figs. 5a and 5b
have the same explanations for the same model as
Figs.4a and 4b but with an angle of fibre orientation
=90° and b=12.






While compairing the Figs. 3a, 4a, and 5a, it can
be understood that the buckling load carrying
capacity is higher for reinforced condition (Figs.,4a
and 5a)  and attains maximum strength in the case of
90° for all the amplitudes and this capacity will be
the highest as we decrease the amplitude. Similarly,
the outward increamental displacement at the
buckling points is sharp during nonreinforced
condition (Model S) and if we look for the reinforced
condition (FSF-1 model) in both cases of =0° and
=90°, it is determined that the sharpness of outward
increamental displacement goes on decreasing and
attains the least value during angle of fibre
orientation at =90° exhibiting the considerable

Fig.4b: Incremental wave forms at buckling
points for model FSF-1 with =0°
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dependence upon the angle of fibre orientation, on
the other hand, the buckling loads for large
imperfections also remarkably shows load
dependence upon the angle of fibre orientation
within it. For this mechanism, it can be stated that
CFRP reinforcements act as the stiffners from the
both sides reducing the axial and circumferential
outward increamental displacement and thus load
carrying capacity of the proposed model is increased.
Again, Figs. 3b, 4b and 5b shows the typical
significant changes in mode at buckling as compared
with the form of initial imperfection in the case of
axial (y=0) and circumferential (x=L/2). These all

figures shows the process of modal coupling which
reached the localized shapes closer to that associated
with the (i,j)= (13, 2.13) for model S, (13, 1.41) for
model FSF-1 with =0° and (12, 1.82) for model
FSF- with=90° , respectively.

4. CONCLUSIONS

In this paper, nonlinear numerical experiments have
been carried out for the CFRP laminated reinforced
thin-walled steel cylinders under lateral pressure and
found that with the CFRP reinforcement, load
carrying capacity of the thin-walled steel cylinders
will be increased tremendously but depends upon the
angle of fibre orientation. For the symmetrical case
of laterally pressurized CFRP reinforced thin-walled
steel cylinders, it is best to adjust the angle of fibre
orientation at =90° to obtain the maximum load
carrying capacity. Also, from the analysis it is
understood that the influence imperfection is very
high for pressurised cylindrical shells.
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