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Cylindrical shell elements may be used as the piers of all-FRP bridges or the seismic retrofit
covering of existing reinforced-concrete bridge substructures. An elastic nonlinear Ritz analysis
is used to study the buckling behavior of axially loaded imperfect fiber reinforced polymeric
cylindrical shells. Extensive parameter studies demonstrate the existence of a well-defined lower
bound to buckling loads and the dominance of characteristic incremental deformation modes as
this lower bound is approached. It is shown that even for the fiber reinforced polymeric
composite shells as well as for the isotropic shell the reduced stiffness method provides reliable
estimates of the lower bounds to buckling loads and consequently an important basis for design.
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1. Introduction

Cylindrical shell elements may be used as the piers of all-FRP
bridges or the seismic retofit covering of existing
reinforced-concrete bridge substructures. Also for the design of
FRP pipes in trussed bridges, the precise estimation of their
structural load-carrying capacity would be required because the
demand and necessity for such light weight efficient structures
has recently led the bridge engineer to the field of structural
optimization and simultaneously to the use of such kind of
non-conventional materials. There exists a large activity in the
area of material characterization, analysis, fabrication and design
of composite structures. In this paper the FRP structural members
that are modeled are thin-walled orthotropic cylindrical shells and
it is their elastic local shell-type buckling criteria under axial
compression forces that are considered. It is well-known that
axially compressed cylindrical shells have a buckling behavior
which is very sensitive to initial geometric imperfections”.

At the IUTAM Symposium on buckling collapse, held in
London in 1982, a number of papers summarized aspects of the
research into shell buckling that had been carried out at Tohoku
University?. This showed that careful non-linear analysis could
reproduce, down to the finest detail, careful observations of the
buckling of both spherical and cylindrical shells. Recognizing an

opportunity to make good the lack of detailed theoretical
validation of the reduced stiffness approach, the third author
(J.G.A. Croll), subsequently contacted Professor Noboru Yamaki
(who died on 16 February 2004 at the age of 84) with a proposal
that some carefully planned joint studies be undertaken. It was
arranged that the first author (Seishi Yamada) would come to
London in 1985 and spend a year working at UCL. This was the
start of a collaboration that has been exceptionally fruitful.

First the collaborated project has been carried out for the
pressure buckling of cylindrical shells”. It was shown that a
classical critical load analysis predicts the upper bound
bifurcation pressure with an associated symmetric unstable form
of post-buckling behaviour. Increasing levels of imperfection
result in non-linear paths that display, at least initially, an
effectively 2/3rds power law dependence of buckling loads on
the level of imperfection. Incremental displacements at the
buckling loads show a gradual erosion of the levels of the
contributing membrane energy, eventually resulting in a loss of
any maximum load when the incremental membrane energy
becomes zero. This lower bound to the maximum loads is
observed to be closely predicted by the reduced stiffness
reinterpretation of the classical bifircation analysis.

A second example is drawn ftom a more recent
collaboration® seeking to validate the very much more complex

- 69 -



interactions that occur in the axial load buckling of cylinders. A
vital extension to the reduced stiffness method, appropriate to the
buckling of shells under axial load, had earlier been provided in
the work of Batista” . This seminal work had demonstrated the
existence of an additional stabilizing membrane energy term
within the modes of a classical critical load analysis that was
responsible for the special characteristics of axial load cylinder
buckling. It also allowed the reduced stiffness ideas to be much
more directly linked to the earlier analysis of this same problem
by both Donnell® and Koiter”. It was shown that a range of
imperfect paths, which, apart from their considerably greater
overall reductions in load carrying capacity and evidently greater
sensitivity to the levels of very small imperfection, show close
similarities with the above case of the pressure loaded cylinder.
Again, the classical bifurcation load provides an upper bound and
the reduced stiffness extension to this classical critical analysis a
lower bound to the imperfection sensitive buckling loads.

Referring to these collaboration and many other shell
buckling research works®'®, the present paper investigates the
non-linear buckling behaviour of the FRP composite cylindrical
shell having material properties similar to previously studied, by
Yamada and Komiya'®'”, as part of an experimental programme
on the behavior of columns. From accurate solutions of the
nonlinear shell equations it will be demonstrated that for
increasing amplitudes of initial imperfections the elastic buckling
loads exhibit well defined lower bounds.

2. Nonlinear Buckling Analysis

For an imperfect thin-walled circular cylinder of longitudinal
length L, wall-thickness ¢, and radius R, shown in Fig.l, the
change in the total potential energy, consequent upon the
application of a uniform axial compression stress of ¢; may be
written as

o~

Fig.1 A cylindrical shell

n=U,,+U,+V, 6y

where U), are the various contribution to the membrane strain
energies, Uy the bending energies and ¥ the increase in load
potential for an axial compressive stress of o; are given as

U, - % szzR f(nxgx +ne,+2n.¢6, )dxdy (2a)
U, = % LMR LL(mx’fx +myc, +2m K., )dxdy (2b)
v, =-ot f"R LL(—%)dxdy (2¢)

In these expressions, (7, 1y, 1iy,) and (m., my, , myy) are the total
bending and membrane stress resultants, and (s, &, &, ) and (%,
% , Ky ) are the comesponding strains associated with total
displacements (u , v, w) from an imperfect but stress-free
unloaded state.

The bending and membrane stress resultants are related to
strains through the orthotropic constitutive equations

nx = Allgx + lqizgy 4 ny = A128x + A’Zzgy ) nxy = 214668ch

m, =Dyx, +D,x,, m, =Dyx, +Dyx, ,m, =2Dx,,
€);
The strain-displacement relations associated with deformation

fiom an initial imperfection, wf , are taken to be of the
Donnell-Mushtari-Vlasov type for shallow shells®®for which
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The end boundary is assumed to be supported in such a way
as to conform with the classical simple support, corresponding
with the conditions.

ow 0

u
w=0,—=0,—=0,v=0at x=0,L (5
ox? x ©)

By taking displacement functions u, v and w as linear
combinations of the harmonic expressions,

u= Z%uw cos(iy/R)cos( jzx/L) (6)
v= ng,.,j sin(iy/R)sin(jzx/L) (6b)
w= Z%w&f cos(iy/R)sin(jzx/L) (6¢)

These boundary conditions will be exactly satisfied since each
separate component satisfies the boundary conditions of Eq.(6).
In these expressions, i and j are the circumferential full-wave and
the longitudinal half-wave numbers; u,;,v,;,w,; are the
amplitudes of each harmonic function.

The initial geometric imperfection is expressed as

v,

ij?

w’ =w, , cos(by/R)sin(f7x/L) )

To provide convergence the mode ranges taken in Eq(7) are
for this case adopted as

J¥ =(21,15,11,5) for i=(0,b,25,3b)
J? =(15,11,5)  for i=(b,2,3b) @®)
JP =(15119)  for i=(0,b,25)

The sets of nonlinear algebraic equations are obtained through
the stationary of the total potential energy with respect to each of
the displacement degrees of freedom included in Eq.(4). Solution
of these sets of nonlinear equations are achieved using a
step-by-step process in which either load or displacements are
used as control parameter. At each step a Newton-Raphson
iteration is used to provide convergence to an acceptable level of
precision. A similar description of the theoretical model is
included for the isotropic cylinders in Yamada and Croll”, which
lists the integration coefficients for all terms up to and including
the quadric energy terms. Appropriate numbers of
Newton-Raphson iterations and the choice of a suitable control
parameter, depend upon the nature of the local nonlinearities of
the equilibrium path?.

3. Axi-Symmetric Buckling Load and Structural
Modeling

For understanding the fimdamental local-buckling
load-carrying-capacity of orthotropic cylindrical shells, it would
be important to obtain the axi-symmetric buckling load which
would be associated to the classical buckling load in the case of
the isotropic materials. If we substitute i = 0 to Eq.(6), an
eigenvalue equation for the linear buckling problem on the basis
of the assumption of uniform pre-buckling membrane stress state.
Using (nx =-ot, n,=0, n, =O) the axi-symmetric
buckling and its associated buckling wave number in the axial
direction are now obtained as follows,

(%a)

s

' (AnAzz - A122 )-A?—U—

11
Jj :l L_2 iAquz"Alzz (9b)
T\ RANT2 D, 4,

The compressive stress may be written in terms of the
non-dimensional load parameter A or A defined as
A=clo,, A=0]E, (10)
where E, is axial Young’s modulus which from Eq.(3) can be
obtained as follows,

E = (Aquz "A122 )/(t A22) an

In this analytical study, a commercially available
unidirectional glass fiber laminar unit with a 0.2 mm thickness
has been adopted and the forty lamination of the unit has used to
develop four types orthotropic cylindrical shells with symmetric
three-layers and a ¢ = 8mm thickness as listed in Table 1; fiber
orientations are relative to the axial direction. Total volume of
fiber has been adopted to be V= 60% , and the fiber volume ratio
in circumferential direction ¥, is adopted to be a parameter in this
study. Lamination details are represented in Table 1 and Fig.2.
Table 2 shows the coefficients in Eq (4) obtained from the
classical lamination theory and coupon test by Yamada and
Komiya's!?.

Table 1 Lamination details
14/4 Laminate configuration
C20T 02 9, / O0n / 90
C50T 0.5 N / Oxn / 9y
C80T 0.8 9 / Og / 90
Cs0L 0.5 O / 90y / Op
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(b) CS0T () C80T

(a) C20T

E Circunforential fiber

Longitudinal fiber

‘ :éd) CSOI‘:

Fig.2 Lamination detail

Table 2 Coefficients in Eqs.3)-(5)

Du[Diz[Dzless

An [ Ap | 4n | 4g

(MN/m) (N-m)
C20T | 312 | 149 | 125 | 234 | 1190] 572 { 1150 | 125
C50T | 218 | 149 | 218 | 234 | 540 | 364 | 1780 | 125
C80T | 125 | 149 | 312 | 234 | 345 | 41.6 | 1970 | 125
C50L | 218 | 149 | 218 | 234 | 1780 | 122 | 540 | 125

4. Nature of Buckling

In this paper only the results for shells having
Z=0954L/(Rt)=100 are adopted due to limitness of
space. It is weli-known that for complete cylinders the geometric
Batdorf parameter Z is significant to characteristic classical
critical behaviour when the shallow shell assumptions
(ODMV-formulation) are used. That is, linearized goverming
equations can be normalized in the terms of the single
independent geometric parameter Z. In non-linear postbuckling
behaviour, however, the independent geometric parameters are
needed. In the present study, the radius thickness ratio R# has
been selected to conform with previous studies'™, so that for R
=405 it follows that L/R=0.512.

Included in Fig.3 are representative imperfect curves
for C50T (b=11), where the horizontal axis represents the
total displacement component having circumferential
wave number b and the single axial wave number, f= 1.
It can be seen that the sensitivity of buckling load to
changes in imperfection is most severe when the
imperfection has a very small amplitude. It is also clear
that for moderate large imperfections the buckling loads
have induced sensitivity to change in imperfection
amplitude, and eventually reach a clear lower bound.

Selected buckling loads A", obtained from the nonlinear

analytical solution, are plotted in Fig4 for various imperfection
amplitudes at different circumferential wave number, b, of the
imperfection. The minimum buckling loads A¥~ on each figure
in Fig4 are listed in Table 3.

Figure 5 shows the examples of incremental displacement
modes at the buckling points for the imperfection mode, 5=9. In
a shell with relatively large imperfection amplitudes, for example
wW/t=1.60 in Fig.5(b), the same wave number as the adopted
imperfection wave number, 5=9, dominates. On the other hand,
in small imperfection level, the intrinsical buckling modes
dominates, and a 2 X b number in circumferential direction as
shown in Fig.5(b) is clearly seen in this case.

Table 3 Lower limits for non-linear buckling

A% b (LR w?, [t
C20T 0230 11(5.63) 1.20
C50T 0247 11(563) 140
C80T 0.216 9(4.61) 2.00
C50L 0.131 13(6.65) 0.80
A A
10 973

0 05 10 15 20 25 30

(w11,1 + wfm )/t

Fig.3 Load versus deflection curves for C50T with b=11

5. The Lower Boundedness and the Reduced Stiffness
Methed

The classical bifurcation analysis for a prospective buckling
deformation i = i°, j = j° from a uniform prebuckling stress and
strain state could be represented in terms of energy as

x y
U23+U2M+AC(%/;—M—+%%J=O 12)

In this equation, Usp is the linear bending energy, Uy, the
linear membrane energy, V;;, the linearized membrane
component associated with axial direction, while ¥, is
associated with circumferential direction. Here "linear" is
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related to the linear
strain-displacement relationships in the incremental
critical deformations. Solution of Eq.(12) will result in
the spectra A° of Fig.4. As in Ref.3 i, is defined to be the
circumferential full-wave number associated with the
lowest classical linear critical loads.

For the CS50T shell, Fig.6 show the breakdown of the total
potential energy, where the energies are normalized by 247zDL/R.
It can be seen that 7, provides the negative destabilizing
contributions to the critical loads A°. Both the linear bending U
and membrane Uy, energies contribute to the stabilization, as
does the linearized circumferential component V3, . In Ref3 it

in the sense of being

has been demonstrated that both the linear membrane, Us, and
linearized circumferential, V7, , energies are with increasing
imperfection eventually eliminated at buckling. Based upon a
reduced energy, the critical load, A, may be obtained by solving
the equation for the prospective buckling deformation i =i * and
j=J",as follows

« OV

U,y +A =0 (13)

This equation gives a simple expression for RS criterion,

916 1168
763 973
610 779
458 584
0 ( 389
A
1153 - ( 1195
o
0 ( 0
x A"
LROrBLR @ ¥ (uf i = 0.40) il/RorbL/R
(a) C20T A Y (w) fr=0.60) (b) CS0T
- B A"(w;,/t=0.80) _
2 ' A 2
1212 L« 1952 ©  AY(w),/t=1.00) L« 2123
+ A" (w),[t=120)
10 1627 O A"(wy,/t=140) 1769
A A (w), [1=1.60)
08 Bor O A"(wy,/t=1380) 1416
g ; O A" (wy, /t=2.00)
06 " 976 1062
L 4
+
]
04 A 651 2 708
S
02 325 354
a———
%% 2 4 6 8 10° 0

(c) C80T

(d) C50L

Fig.4 Plots of nonlinear buckling loads for various imperfection amplitudes and circumferential wave number b
with single axial number compared with the linear buckling loads or the reduced stiffness buckling loads
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R A 0.15 for T-series and V,/V'= 0.80 for L-series. Shown in Fig.7 are
=7 (AnAzz -4y )D—“ that o, is almost constant and the lower bound for design
" maybe independently determined with the ratio V;/V.

*

A
Dyl 'm)* + 2Dy, + D) 7Y (i 'L/ RY + Dy (i "L/ R
(24, 4y, — A5G 7)Y + A, 4, ("L R)
(14)

Using Eq.(14), the various reduced stiffness spectrum
curves for i “and j " can be obtained as shown in the solid
curves in Fig.4.

To provide additional confirmation of the lower boundedness
of the present reduced stiffhess critical load A", the lower limits
of the non-linear analytical buckling loads plotted by various dots
in Fig4 have been compared with the present reduced stiffhess
analytical results. The many dots in Fig4, for example, show the
buckling loads for imperfections in modes 7<b<19

(3.58<bL/R<9.73) and f =1. Those shown for =13

(bL/ R = 6.65) relate to the results described in Fig.4(d). For
this shell the integer mode nearest to that resulting in the
minimum critical load for /=1 is =13 (iL/ R = 6.65).

It is evident that the imperfection sensitivity in this mode is at
its highest; an imperfection of 80 percent the shell thickness is
enough to almost reach the reduced stiffhess load.

Figure 7 shows the variation of the linear buckling and reduced
stiffness criteria with the circumferential fiber volume 7,/V. The
reduced stiffness analytical results o, ; are defined as the
minimum reduced stiffhess load for axial wave number; ; o, is
the minimum of o, ;. It can be seen that the circumferential Fig.5 Incremental displacement modes
wave number associated with ¢, , o, increases as the ratio at the buckling points
V,/V increase. The maximum of . o7, is obtained when V,/V'=

(@) C50T (b=9, w//t=0.10)

(b) C50T (=9, W'/ t=1.60)

energies/(247DL/R) energies/(247DL/R)
0.010 0.10
0.008 0.08
0.006 0.06 U;M
0.004 004 Uz, U,y
0.002 002 — |
0 0 Vi

Us;, ¢ 6 8 10
-0.002 -0.02 iR
-0.004 VzJ;u 0.04 =
0.006 -0.06 M
-0.008 008
-0.010 -0.10

a) C50T forj°=1 (b) C50T forj“=4
y)
Fig.6 Energy Components
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Fig.7 Effects of the ratio /" on the buckling loads

6. Conclusions

In the present study an elastic nonlinear Ritz analysis has been
developed to allow mvestigation of the imperfect behavior of
axially compressed orthotropic cylindrical shells. ks buckling
loads and modes are strongly influenced by the constitutive
material coefficients and are sensitive to initial geometric
imperfections. Just as for the previously analysed isotropic
cylindrical shells, the reduced stiffness criteria are shown to
provide lower bounds to imperfection sensitive elastic buckling
loads for orthotropic cylindrical shells. The benefits of the use of
the reduced stiffness theoretical results for the optimal design of
this kind of complicated composite structures, are in this paper
illustrated through the determination of the volume of
circumferential fiber instillation volume ratio in detail.
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