リングビームスキャナーの改良と現場密度試験孔の計測事例

前田建設工業株式会社	正会員	〇平田	昌史
前田建設工業株式会社		武田	智治
フジミコンサルタント株式	佐藤	寛	
NPO 法人三次元工学会		鎌倉	吉寿

1. はじめに

ダムや盛土等に代表される土構造物では、土の締固 めを密度で管理することが一般的である.近年,RI (Radioisotope) 計器を用いた現場密度試験が主流にな っているが、土材料や状況等によっては RI 計器を適用 できない場合も多く、これらの現場では砂置換法や水 置換法による現場密度試験が実施されている.砂置換 法や水置換法とは,測定箇所の地盤に試験孔を掘り,掘 り取った土の質量と、掘った試験孔に砂や水を充填し て求めた体積を利用して原位置の土の密度を求める試 験である.これらの試験では、砂や水を充填する際に誤 差が生じやすく,測定用の標準砂や水の準備,試験終了 後の回収作業等,手間や時間も掛かる.そこで,砂置換 法や水置換法の体積測定をリングビームスキャナー1).2) に置き換えることができれば、大幅な時間短縮や計測 精度の向上が見込まれる. リングビームスキャナーは, リングビームデバイス 3).4) を用いることで, 地盤内空洞 等の寸法・形状を非接触で測定するスキャナーである. リングビームデバイスとは、図-1 に示すように半導体 レーザービームを円錐ミラーで円盤状に反射させるこ とで、写真-1のようなリングビーム(Ring Beam)を生 成し、測定対象内部に二次元の光セクショニング形状

(Optical Sectioning)を投影する装置である.本スキャ ナーでは、この光セクショニング形状を CCD カメラで 撮影し、その画像から断面形状を計算し、位置情報に基 づいて繋ぎ合わせることで対象物内面の三次元形状を 測定する.迅速かつ精度良く測定できることが、本スキ ャナーの特徴である.ここでは、砂置換法や水置換法の 体積測定を対象として改良したリングビームスキャナ ーの概要を述べるとともに、ロックフィルダムの水置 換法による現場密度試験の試験孔に対して、リングビ ームスキャナーによる測定を計 2 回実施し、水置換法 と体積を比較した結果について報告する.

前田建設工業株式会社 フェロー会員	石黒	健
前田建設工業株式会社	中島	秀樹
有限会社キットコーポレーション	鈴木	崇
NPO 法人三次元工学会	吉澤	徹

図-1 リングビームデバイスの模式図

写真-1 リングビームと光セクショニング形状画像

2. 改良型リングビームスキャナーの概要

リングビームスキャナーは、計測プローブと画像処 理するモバイル PC から構成される.計測プローブの下 端には、高出力の緑色半導体レーザーを用いたリング ビームデバイス、上端には光セクショニング形状を撮 影する CCD カメラと、位置情報を取得するための 3D モーションセンサー (3DMS) が内蔵されており、これ らをアクリル円筒で接続するシンプルな構造となって いる.また、プローブの接続部は地下水等の侵入を考慮 して防滴処理を施すとともに、プローブ内部に窒素を 充填し結露等を防止する仕様となっている.計測プロ ーブで撮影取得した画像と位置情報データはモバイル PC に転送・計算処理され、測定結果をその場で確認す ることができる.

従来のリングビームスキャナーは、地下資源採掘後 に放置された廃坑や地下施設、鍾乳洞等の地盤内空洞 を対象として製作しており、計測対象範囲は直径 2.0~ 4.0m(最大 5.0m 程度)である.このため、計測プロー

キーワード 現場密度試験,水置換法,体積計測,画像処理,リングビームデバイス 連絡先 〒302-0021 茨城県取手市寺田 5270 前田建設工業株式会社 ICI 総合センター TEL 0297-85-6171

ブも長さ 750mm, 重さ約 5kg と比較的大きい.これに 対して,砂置換法や水置換法の試験孔は直径 0.3~1.0m 程度であり、測定時の移動等を考慮すると従来のリン グビームスキャナーでは大きすぎる. そこで, 計測の対 象範囲を直径 0.3~1.0m (最大 1.5m 程度) にした計測 プローブを新たに製作することで,装置の小型化・軽量 化を図った 5. 図-2は、新たに製作した改良型の計測プ ローブである.計測プローブの長さは 550mm, 重さは 約3kg である. また, 従来のリングビームスキャナーは レーザー光の光強度を撮影するため、暗所での使用が 必須であった. 閉鎖空間である地盤内空洞を対象とし た場合、必然的に暗所での計測となるため問題なかっ たが,砂置換法や水置換法の試験孔を対象とした場合, 明るい場所での計測が求められる. そこで, 新型プロー ブでは従来のモノクロ CCD カメラをカラーCCD カメ ラに変更し、取得したカラー画像からリングビームの レーザー光のみを抽出する画像処理フィルターを採用 することで、明るい場所でも測定可能な改良を施した.

3. 画像のフィルタリング処理

CCD カメラで得られるカラーデジタル画像は、一般 的に RGB (R:Red, G:Green, B:Blue) で規定される. 一 方,半導体レーザーは,特定の波長の可視光線スペクト ルを発生させる装置であり、そのレーザー色 (RGB) は 発生させる波長によって決まる. 図-3は, CIE (国際照 明学会)の定義する三刺激値から求めた可視光線スペ クトルの波長に対する RGB の混合比である. 例えば波 長約 550nm の緑色半導体レーザーの場合、デジタル画 像からこの RGB 比率を有する画素をバンドパスフィル ター等により抽出することで、レーザー光を判別する ことが可能である.しかしながら,地盤に反射するリン グビームを撮影したレーザー画像は、実際に照射され るレーザー光とは色相が若干異なるため、この RGB 比 率で判別するのは困難である. そこで, CCD カメラで 得た RGB 画像を, 次の式を用いて色相 (H: Hue), 彩度 (S: Saturation),明度(V: Value)のHSV画像へと座標 変換し(図-4参照)、この色相および彩度を用いて半導

体レーザー光の判別を行う.

$$H = 60 \times \frac{G - B}{MAX - MIN} \quad (if \ MAX = R) \tag{1}$$

$$H = 60 \times \frac{B - R}{MAX - MIN} + 120 \quad (if MAX = G)$$
(2)

図-2 改良型リングビームスキャナーの計測プローブ

図-4 RGB から HSV への座標変換

[0.255.255]

$$H = 60 \times \frac{R - G}{MAX - MIN} + 240 \ (if \ MAX = B) \tag{3}$$

図-5 色相および彩度のフィルター関数

(a) 元画像
(b) フィルタリング画像
(c) グレースケール画像
写真-2 フィルタリング処理による緑色半導体レーザー光の抽出例

$$S = \frac{MAX - MIN}{MAX} \tag{4}$$

$$V = MAX \tag{5}$$

なお,式中のMAXおよびMINは,RGBの最大値と最小 値を示しており,以下のように定義される.

$$MAX = max(R, G, B), \quad MIN = min(R, G, B)$$
(6)

以上のように HSV に変換した画像に対して,色相(H: Hue),彩度(S: Saturation)を用いた次のようなフィル ター関数を定義する.

$$f(H) = I_H \cdot exp\left(-\frac{(H - H_0)^n}{2\sigma_H^n}\right)$$
(7)

$$f(S) = I_S \cdot exp\left(-\frac{(S-S_0)^n}{2\sigma_S^n}\right) \tag{8}$$

 I_H および I_S は色相および彩度のフィルター関数最大値, σ_H および σ_S はフィルター関数の半値幅, H_0 および S_0 は 抽出対象となる半導体レーザーの色相および彩度の値 である.また,nはフィルター関数の形状を決める係数 であり, 図-5に示すようにn = 2の場合にはガウジアン フィルターとなり, n = ∞の場合にはバンドパスフィル ターに漸近する. これら色相および彩度のフィルター 関数を, 次のように明度Vに掛けることで, 画像の明る さに対してフィルタリング処理を行う.

$$V = f(H) \times f(S) \times V \tag{9}$$

以上のようなフィルタリング処理を行うことにより, 指定した色相・彩度付近以外の画像が暗くなり(明度V がゼロとなり),半導体レーザー光のみが抽出される. 写真-2 は、このフィルター関数を用いて緑色半導体レ ーザーを抽出した例である.抽出対象となる緑色半導 体レーザーの色相H₀は130°,彩度S₀は0.9,フィルタ ー関数形状の係数は2としている.この写真に示した ように、元画像からフィルタリング処理により緑色レ ーザー光のみ抽出することができていることがわかる. また、このフィルタリング画像をグレースケール化す ることで、写真-1 に示したようなリングビームの光強 度を映した光セクショニング画像となり、明るい場所 でもリングビームスキャナーによる計測が可能となる.

4. ロックフィルダムにおける水置換試験孔の計測

(1) リングビームスキャナーによる測定概要

ロックフィルダムの施工現場において,現場密度試 験(水置換法)で掘削した試験孔に対しリングビームス キャナーによる計測を計2回実施し、水置換法との比 較を行った. 第1回の測定では、ロック材に対してリン グビームスキャナーによる計測を実施しており、測定 箇所は深さ D=0.8m の試験孔 9 箇所 (転圧回数 3 ケース ×3箇所), 深さ D=1.0mの試験孔9箇所(転圧回数3ケ ース×3箇所)の計18箇所(直径はすべて1.0m)であ る. なお、この内の 6 箇所については、試験孔を上・ 中・下に3分割して計測することで、試験孔内部のバラ ツキも考慮している. 第2回の測定では, ロック材の他 にフィルター材とコア材も含む計7箇所に対して、リ ングビームスキャナーによる計測を実施した.なお、水 置換法では試験孔内側にシートを張るため、通常はこ のシートの密着性や破損防止のため孔壁のトリミング 作業を人力で行うが,第2回の測定では作業の効率化 および計測時間の短縮を図るため、小型バックホウの みで掘削を行った (写真-3 参照). 表-1 に, 実施した計 測の一覧を示す.

リングビームスキャナーによる計測は、図-6 に示す ように計測プローブを測量用三脚からワイヤーで吊る し、手動ウインチを用いてプローブを引き上げること で実施した. 試験孔には水置換法と同様にベースプレ ートを設置し、このベースプレートが含まれる位置ま で計測することで、試験孔の上端を確認している. ウイ ンチによる引き上げ速度は約 11m/min (約 0.18m/s), CCD カメラのフレームレートが 30fps であるため, 鉛 直方向に約7mm間隔で光セクショニング画像が取得で きる計算となる. なお,図-2 に示したように計測プロ ーブの下端にはコーンミラーがあるため、プローブの 下端 1cm 程度は測定ができない. そこで, 試験孔の底 面に深さ 2cm 程度の溝を掘り、この溝に計測プローブ 先端を入れることで試験孔の底面から測定している. ちなみに、リングビームスキャナーの測定後に水置換 法による体積測定を行っているが、その際にはこの溝 を埋め戻してから計測を行っており, 密度を計算する 際の土の重量にもこの溝の部分の重量は含めていない. 写真-4 に、リングビームスキャナーによる計測状況を 示す.

表-1 リングビームスキャナーによる計測一覧

	材料	測定用掘削孔	転圧回数	測定数	備考
笙	第	深さ:0.8m	4	3	冬冬件で3カ所ある測定の内の11
			6	3	
1			8	3	所 (計(も所) については 「掘削」
1 日 9 9 約		4	3	たト・由・下に2公割して計測	
		深さ:1.0m	6	3	を上・中・下に3万割して計測
			8	3	
第	コア材	直径:0.2, 0.4, 0.6m		3	シート破損防止のための孔壁処理
2	フィルター材	直径:0.6, 0.8m	6	2	を省略し、掘削をバックホウのみ
口	ロック材	直径:0.8, 1.0m		2	で行うことで作業を効率化

写真-3 小型バックホウによる掘削状況

写真-4 リングビームスキャナーによる測定状況

⁽c) Core- ϕ 20 の点群データ画像とポリゴン処理画像

(b) D100-N4-1の点群データ画像とポリゴン処理画像
Flter-\$60

図-7 リングビームスキャナーによる計測結果例(三次元形状)

(2) 計測結果と水置換法との比較

図-7 は、リングビームスキャナーで取得した各光セ クショニング画像に対して1°毎に点距離を計算し、点 群データとして出力した図と、この点群データを基に ポリゴン処理した図の例である.この図に示したよう に、水置換法では試験孔の体積しか計測できないのに 対し、リングビームスキャナーでは試験孔の三次元形 状も確認することができる.なお、これらの出力結果は 計測後すぐにモバイル PC で処理・表示されるため、現 場における計測の際には、この出力結果を確認してか ら次の測定箇所へ移動している.

表-2 は、水置換法とリングビームスキャナーによる 体積計測結果の一覧である.なお、この表に示したリン グビームスキャナーの体積測定結果は、上端のベース プレートの体積を除いた数値である.図-8 は、表-2 に 示した水置換法とリングビームスキャナーによる体積 測定結果を比較したグラフである.横軸は水置換法で 測定した体積、縦軸はリングビームスキャナーで測定 した体積である.このグラフを見ると、両者の値はほぼ 一致しており、第2回で実施した小型バックホウのみ の簡易掘削でも、リングビームスキャナーが十分な精 度で測定できていることがわかる.なお、全体的に約 1%程度リングビームスキャナーの方が体積を大きめに 評価する傾向にある.Selig and Ladd⁶ によると、水置換 法では孔壁に張ったシートの厚みや密着性の影響によ り実際の体積よりも小さ目に評価される.今回の水置

表-2 体積測定結果一覧

	ケース名		体積 [m ³]		
			水置換法	リングビーム スキャナー	
	D80-N4-1		0.4467	0.4456	
		上段	0.1941	0.1969	
	D80-N4-2	中段	0.1261	0.1260	
		下段	0.1311	0.1275	
	D80-N4-3		0.5588	0.5580	
	D80-N6-1		0.4426	0.4406	
		上段	0.1703	0.1652	
	D80-N6-2	中段	0.1253	0.1245	
		下段	0.1055	0.1125	
第	D80-N6-3		0.4357	0.4182	
	D80-N8-1		0.4226	0.4211	
		上段	0.1635	0.1582	
	D80-N8-2	中段	0.1138	0.1160	
		下段	0.0909	0.0940	
1	D80-N8-3		0.3954	0.3932	
	D100-N4-1		0.6281	0.6272	
凹	D100-N4-2	上段	0.1860	0.1776	
		中段	0.1599	0.1570	
		下段	0.1741	0.1750	
	D100-N4-3		0.6267	0.6106	
	D100-N6-1		0.5821	0.6167	
		上段	0.1714	0.1709	
	D100-N6-2	中段	0.2417	0.2405	
		下段	0.1692	0.1660	
	D100-N6-3		0.6313	0.6232	
	D100-N8-1		0.5622	0.5618	
		上段	0.1922	0.1987	
	D100-N8-2	中段	0.2192	0.2165	
		下段	0.1606	0.1545	
	D100-N8-3		0.5606	0.5489	
	Core- <i>φ</i> 20		0.0057	0.0058	
http:	Core- <i>φ</i> 40		0.0326	0.0328	
弔	E Core- ϕ 602Filter- ϕ 60		0.1129	0.1153	
2			0.1015	0.1022	
日	Filter- ϕ 80		0.2405	0.2404	
	Rock- <i>φ</i> 80		0.1697	0.1708	
	Rock- <i>φ</i> 100		0.5335	0.5327	

換法で用いたシート厚 0.1mm と誤差約 1%という結果 は、Selig and Ladd の結果とも合致しており、リングビ ームスキャナーの測定精度は十分高いと考えられる.

5. おわりに

本報告では、ダムや盛土等の土構造物で実施される 砂置換法や水置換法の体積測定を対象として製作した, 改良型のリングビームスキャナーの概要について述べ た. 今回の改良では,現場での移動を考慮して小型化・ 軽量化を図るとともに, 取得したデジタル画像から半 導体レーザー光のみを抽出する画像処理フィルター を採用することで、明るい場所でも測定可能な改良 を施している. また, ロックフィルダムの水置換法に よる現場密度試験の試験孔に対して,この改良型リン グビームスキャナーによる体積測定を計2回実施し、 水置換法との比較を行うことで、測定時の時間短縮や 精度向上を検討した.この結果,リングビームスキャナ ーによる測定は水置換法と同等以上の精度を有してお り、水置換法による体積測定の代替として十分有用で あることが確認できた. なお, リングビームスキャナー を用いた移動・設置・計測を含めた1箇所あたりの測定 時間は5分程度と非常に迅速に測定できており、現場 における計測時間は、試験孔の掘削作業がクリティカ ルとなっている.このため、第2回の測定では試験孔の 掘削作業を小型バックホウのみで行うことで、作業の 効率化および計測時間の短縮を試みており、リングビ ームスキャナーを用いれば,小型バックホウによる簡 易掘削でも十分な精度で計測できることが確認できた.

参考文献

- 平田昌史,清水英樹,安井利彰,矢嶋貴宏,若山俊隆,吉 澤徹:地盤内空洞等を対象としたリングビームスキャ ナーの開発,土木学会第 71 回年次学術講演会, III-159, pp.317-318, 2016.
- 2) 平田昌史,清水英樹,安井利彰,矢嶋貴宏,若山俊隆,吉

図-8 水置換法とリングビームスキャナーの結果比較

澤徹:地下空洞調査機器の開発とその適用,土木学会, 土木建設技術発表会 2017 概要集, I-10, 2017.

- 3) T. Yoshizawa, M. Yamamoto and T. Wakayama: Inner profile measurement of pipes and holes using a ring beam device, Proc. of SPIE 6382, 2006.
- T. Wakayama and T. Yoshizawa: Development of an inner profile measurement instrument using a ring beam device, Proc. of SPIE 7855, Optical Metrology and Inspection for Industrial Applications, 78550B, 2010.
- 5) 清水英樹, 佐藤寛, 平田昌史, 石黒健, 武田智治, 中島秀 樹, 鎌倉吉寿, 吉澤徹: リングビームスキャナーによる 現場密度試験掘削孔の計測事例, 土木学会第75回年次学 術講演会, III-57, 2020.
- Selig, E.T. and Ladd, R.S.: Evaluation of Relative Density and Its Role in Geotechnical Projects Involving Cohesionless Soils, ASTM Special Technical Publication 523, pp.207-233, 1972.