ニューマチックケーソン工法の函内掘残し形状計測システム

(株)大林組	正会員	○柳 東雲	(株)大林組	正会員	稲川雄宣
(株)大林組	正会員	中村清志	(株)大本組		尾形恒夫
(株)大本組		藤澤秀行	(株)大本組		橘伸一

1. はじめに

ニューマチックケーソン工法は信頼性の高い基礎工 法として各所で多用されている.同工法では情報化施 工が進んでおり,各所に設置された計測機器から刃口 反力,周面摩擦力,土水圧,函内気圧などのケーソンに 作用する荷重や,沈下量,傾斜量をリアルタイムで把握 し,その情報を次ステップの施工にフィードバックさ せている.

ニューマチックケーソンの掘削方法には、人が函内 に入って掘削機に搭乗する有人掘削と、人が函内に入 らずに遠隔で操作する無人掘削がある.有人掘削時,掘 削機のオペレーターは一部の施工情報(主に傾斜量)に 基づいて掘削作業を進める.地上の管理室では施工情 報の確認と同時に、函内または掘削機に設置されたカ メラ映像を見ながら函内土砂の掘残し形状を把握し、 掘削箇所の選定を行ってオペレーターに指示する.し かし、掘残し形状を映像のみで把握することは困難で あり、掘削箇所の選定はオペレーターの経験に依存し ていることが実情である.これは、遠隔操作による無人 掘削時でも同様である.函内掘残し形状はケーソン姿

写真-1 レーザースキャナの外観

表-1 レーザ	ースキャナの仕様
形式(品名)	UST-20LX-H01
検出距離	最大 20m
走查角度	270°
走査時間	25msec
角度分解能	0.125 度
サイズ	m W50 imes D50 imes
	H70mm
質量	130g
測距精度	± 40 mm

キーワード ニューマチックケーソン工法 情報化施工 掘残し形状 連絡先 〒108-8502 東京都港区港南 2-15-2 株式会社 大林組 TEL 03-5769-1302

勢を制御するための重要な情報であるが, 掘残し形状 を定量的に計測し, 評価する方法の事例報告はほとん ど見当たらない.本稿では二つの方法による掘残し形 状の計測システム(以降、計測システム)について報告 する.

2. 計測システムの概要

計測システムでは、①レーザースキャナを掘削機に 設置してレーザー走査により計測する方法と、②掘削 機のバケット位置を測定してその位置履歴に基づき掘 残し形状を把握する方法の二つの測定方法を用いる.

(1) レーザースキャナによる方法

写真-1に①のレーザースキャナの外観を,表1に その仕様を示す.レーザースキャナは測定可能な水平 角度が270°で、断面走査(2次元計測)のみ行うも のである.ニューマチックケーソン工法の特性上,函 内は高圧気下となる.このため、まず高圧気下でレー ザースキャナが正常に動作するかを確認するために耐

写真-2 レーザースキャナの耐圧試験状況

(a) 前方

(b) 後方

写真-3 レーザースキャナの設置状況

圧試験を実施した.写真-2に耐圧試験の状況を,図-1 に大気圧と0.6MPaまで加圧時のそれぞれの圧力容器内 の断面計測結果を示す.0.6MPaまで加圧しても誤計測 や計測範囲が狭くなる等の異常は発生せず,正常に動 作した.

レーザースキャナは,掘削機の前方に2台,後方に1 台の計3台設置した.写真-3にレーザースキャナの設 置状況を示す.前方は掘削機が左右どちらの方向に旋 回しても掘削された土砂形状を測定できるように2台 とした.後方のレーザースキャナは掘削されない箇所 での土砂形状の変状(例えば,ケーソンの沈下による, 相対的な土砂の上昇)を監視することを目的とする.

掘削機は,エンコーダー等により自らの座標や旋回 角度などの位置情報を把握する.レーザースキャナに より計測された土砂断面(点群データ)は,掘削機の位 置情報と随時同期を行って合成する.合成は掘削機の 旋回中心とレーザースキャナの計測中心,それぞれを 原点とした座標系の位置関係により算出される変換行 列を用いて行う.

合成された点群データの精度を確認するために,函 内の躯体形状を3次元レーザースキャナにて取得し比 較を行った.比較対象の点群データ取得に使用した3 次元レーザースキャナは4mmの誤差を持つ.図-2は躯 体の断面形状を示したもので,青色は3次元レーザー スキャナ,白色は計測システムにより取得した点群デ ータである.両者は天井と斜壁において,それぞれ約 30mm と50mmの差異を示した.これは本計測システムの レーザースキャナの計測誤差と,掘削機の位置情報の 誤差によるものと考えられる.

図-2 函内断面形状の点群データ

図-3(a)に合成された点群データの表示例を示す. レーザースキャナで取得された断面形状を掘削機の座 標データと旋回角度を用いて座標変換しているので, 点群データは掘削機から放射状に合成されていること が分かる.また,掘削機に近い位置では点の密度が高く, 離れると点の密度が低い.

合成された点群データは計算の簡略化と表示の負担 低減を目的に格子化する.格子化とは、函内底面を正方 形の格子で離散化し,点群データの平面座標がどの格 子に属するかを判別して割り当てることを言う.2次 元配列を生成しておき,格子ごとに割り当てられた点 群データのz軸(鉛直方向)座標の代表値を配列のデー タとして入力する.格子の大きさは,レーザースキャナ の検出可能距離と角度分解能を考慮して1辺10cmの正 方形とした.図-3(b)に格子化データの表示例を示す. 格子化データは配列の高さによって色分けした表示で あり,暖色から寒色になるにつれ高さが低くなる.測定 データはビデオカメラ映像から確認できる掘残し形状 をよく表していることがわかる.

また,上記配列を予め生成していたケーソン刃口の 配列と比較することで,測定された土砂形状がどの位 置でケーソン刃口と接触しているかを判定する.図-3 (b)に示す格子化データ外周付近の紫色部分がケーソ ン刃口と計測された土砂が接触していると判定された 部分である.接触していると判定された掘残し形状の 面積と函内底面積を用いて,どれくらいの土砂がケー ソンの刃口を支持しているかの指標である開口率を求 め,それを表示する.

(2) バケット位置情報による方法

②の掘残し形状算出方法では,掘削機の位置情報に 加え,掘削機ブームの伸縮や起伏,回転を考慮したバケ ット位置の座標データも用いる.配列には予め作業室 天井の高さ座標を入力しておき,バケット位置データ の値で配列を更新していく.開口率の算出は①の方法 と同様である.

3. 計測事例と考察

図-3は沈下掘削作業中に、両方法を用いて求められ た格子化データを示したものである.表-2に両方法に よる開口率の算出結果を示す.原理が異なる二つの方 法において、算出された開口率は1.6%の差を示し、掘 残し形状の面積比は10%であった.両方法における

(a) 点群データ

(b) 格子化データとビデオ映像図-3 計測データ表示例

図-4のA部を見比べると,紫色の面積が相対的に大き いことから,①の方法がより多くの土砂でケーソン刃 ロが支持されていると判定したことが分かる.A部は作 業の都合上,掘削した土砂を土砂バケツに取込む前に 仮置きした箇所である.両方法による開口率の差は,土 砂形状の把握原理が異なることによる仮置き土砂の取 捨によって生じたと考えられる.しかし,仮置き土砂を 一律に取捨することが,より現実に近い沈下抵抗に寄 与する土砂を判定するとは限らない.それは砂質土や 粘性土など,土質によってケーソン刃口の支持機構が 異なるからである.土質による支持機構の違いは,仮置 された土砂でも掘削により解された土砂でも同様にあ るため,土質条件を考慮した両方法の最適利用が,より 精度の高い沈下抵抗力推定を可能にすると考えられる.

A部 方法②

(a) 方法①による格子化データ (サイド・ビュー)

(b) 方法②による格子化データ (サイド・ビュー)

(c) 方法①による格子化データ(トップ・ビュー)

(d) 方法②による格子化データ(トップ・ビュー)

図-4 両方法による格子化データの比較

4. まとめ

ニューマチックケーソンの沈下掘削において,原理 の異なる二つの計測方法を用いた函内掘残し形状の計 測システムを紹介した.計測システムはリアルタイム に函内掘残し形状を把握し可視化すると共に開口率を 算出することで沈下掘削管理を支援する.さらに沈下 掘削の過程と状況の詳細なデータを取得することで, それの定量的な評価を可能にする.計測システムによ る沈下掘削データの蓄積が,同工法における情報化施 工の発展に寄与するものと考えている.

	開口率:83.2%
方法① (レーザースキャナ)	グリッド数: (開口/全体) 10872/13071
	開口率:84.8%
方法② (バケット位置情報)	グリッド数: (開口/全体) 11083/13071

表-2 算出された開口率

参考文献

1) 日本圧気技術協会:大型・大深度地下構造物ケーソン設計マニュアル, 2017

2) 柳ほか:ニューマチックケーソン工法における函内掘残し形状の計測システムの開発,第54回地盤工学研究発表会,2019

3) 柳ほか:ニューマチックケーソン工法の函内掘残し形状計測システムの開発と計測事例の考察,土木学会全国 大会第74回年次学術講演会,2019