排泥のリサイクル利用が可能な新しい高圧噴射攪拌工法の開発 (排泥抑制型マルチジェット工法)

前田建設工業株式会	会社	正会員	〇山内	崇寛
	手塚	広明	安井 利	间彰
	川西	敦士	井手内	俊憲

1. はじめに

深層混合処理工法の一種である高圧噴射撹拌工法 は、小型のボーリングマシンを用いてセメントミル クとエアーの混合体を超高圧で地中に噴射して原地 盤と混合撹拌することでセメント改良地盤を造成す る.セメントミルクの噴射量や噴射圧力等を調節し て異なる改良径を形成する各種の高圧噴射撹拌工法 が実用化され、これまで主に土留め壁の欠損防護・ 先行地中梁・底盤改良、シールド工事の発進・到達 防護等の仮設利用として広く用いられ、近年では既 設施設の耐震補強で適用される事例が増加している.

高圧噴射攪拌工法は、同じ深層混合処理工法の機 械攪拌工法に比べ,施工機械が小さく大口径で高強 度の改良体を造成できる合理的な地盤改良工法であ るが、一方で改良体を造成する際に、地中で噴射し たセメントミルク同等量のセメント混り排泥を地上 面に排出させる必要がある.セメント混り排泥自体 は良質な地盤改良材となるため、現場条件によって は自ら利用として表層改良に利用されるケースもあ るが、産業廃棄物として場外処分するのが一般的で ある.そのため、高圧噴射攪拌工法は産廃処分費に よる工費増大と環境負荷の増大という課題がある.

そこで, 産廃処分費縮減と環境負荷軽減を目的と して, セメント混り排泥を循環利用して廃棄処分量 を抑制できる新しい高圧噴射工法を開発し, ここで 報告する.

2. マルチジェット工法概要

マルチジェット工法(図-1,以下標準型マルチジェ ット工法と記す)とは、円形状改良以外の、壁状、 扇形、格子状の自由形状改良(図-2)と、最大半径 4.0m(直径8.0m)と国内最大級の大口径改良(図-3) を可能とした高圧噴射攪拌工法である.

図-1 マルチジェット工法

図-2 自由形状

図-3 大口径改良

キーワード 高圧噴射攪拌工法,マルチジェット工法,排泥減容化,リサイクル,環境負荷軽減 連絡先 〒101-0064 東京都千代田区猿楽町2-8-8 前田建設工業㈱ 土木設計・技術部 TEL03-5217-9563

3. 排泥抑制型マルチジェット工法概要

3.1 システム概要

標準型マルチジェット工法を含む高圧噴射撹拌工 法では、セメントミルクを超高圧で噴射するが、粒 径 75 µ m 以上の材料は, 超高圧ポンプとノズル径 (2 ~5mm 程度)の問題から圧送・噴射することが不可 能である. そのため,発生した排泥をリサイクル循 環するには、土砂分離により排泥中の75 µm以上の 土粒子を取り除く作業が必要となる.しかし、排泥 中にセメント等の微粒子分が多く混入していると, 排泥の粘性が高くなり, 土砂分離を行うことが不可 能となる.

そこで,標準型マルチジェット工法の専用ロッド が、それぞれのラインが独立している多孔管方式(図 -4) を採用していることに着目し、排泥中のセメン ト分混入の抑制を目的として,噴射するラインを2 系統に分割した.

標準型と排泥抑制型を比較した工法概要図を図-5 に示す. 上側の噴射ライン(以下,上噴射と称す) は、地盤の切削を目的としたものであり、セメント 分を含まない泥水を超高圧ポンプ(40MPa, 適用最 大粒径 74 µm) と高圧エアーを併用して噴射する.

下側の噴射ライン(以下、下噴射と称す)は、地 盤の切削された部分へのセメントミルク(以下、硬 化材と称する)の置換を目的としているため、地盤 を切削するための超高圧ポンプが不要である. そこ で、下噴射には流量確保のための高圧ポンプ(7.0~ 10.0MPa, 適用最大粒径 40mm)と専用ノズル(φ15 ~20mm)を適用した.

そして、上記の上噴射と下噴射の距離を確保する ことで地上に排出される排泥中にセメント分が混入 することを抑制し、排泥の粘性を土砂分離処分がで きる程度まで低下させることを可能とした.

なお,排泥抑制型マルチジェット工法は,標準型 マルチジェット工法と比較して以下の特徴を有する.

①排泥処分量 50%程度低減 ②トータルコスト最低 10%程度低減可能

③砂質土(中砂・細砂)での適応性を確認

図-5 排泥抑制型マルチジェット工法概要図

標準型

4. 試験施工による検証

- 4.1 試験施工概要
- (1) 試験施工場所

試験施工は,茨城県つくば市の社有地(図-6)で 実施した.

図-6 試験施工場所

(2) 土質条件

試験施工位置における土質柱状図を図-7に示す. GL-0.8mまでは埋土であり,GL-0.8~2.0mまでは, 関東ロームが堆積し,それ以深については,N値15 前後の中砂および細砂主体の地盤となっている.

(3) 試験施工配置図

試験施工における試験施工配置図を図-8 に示す. CASE1 で噴射テスト用のための1改良体, CASE2 でケーススタディ用改良体を7改良体, CASE3 で品 質・出来形確認のための掘り起こし用改良体を4改 良体造成した.

図-8 試験施工配置図

4.2 試験施工での検討項目

排泥抑制型マルチジェット工法の開発に当り,検 討項目を以下に示す.

①噴射可能な低 W/C 材料の配合設定及び上下噴射量 比率の検討

図-9 に示すように、高圧噴射攪拌工法では地中に 噴射した同体積分が地上への排泥として排出される. 排泥発生量を抑制するためには、噴射可能な範囲で 極力 W/C を小さくする必要があることから、配合の 検討を実施する.なお、排泥のリサイクル効率を向 上させるため、リサイクル泥水を練水として使用す るものとした.

図-9 発生排泥量

②上下噴射の距離の検討

図-10 に示すように、上下噴射の距離を変化させた 場合に排泥に混入するセメント量を測定し、極力セ メント分が混入しない上下噴射の距離を把握する.

図-10 上下噴射の距離

③掘起しによる品質・出来形確認

パラメータスタディにより決定した仕様を用いて 改良体を造成し, 掘起しにより改良体の品質と出来 形を確認する.併せて, リサイクル率と排泥抑制率 の計測を実施する.

④排泥リサイクル率と排泥抑制率の検証

⑤コスト試算による検証

4.3 検討結果

(1) 噴射可能な低 W/C 材料の配合及び上下噴射比率 の検討結果

噴射可能な低 W/C 材料の配合を設定するため,表 -1 に示す硬化材の配合で噴射テスト(約 12 分間) を実施した.練水にはリサイクル泥水を使用したが, 土砂分離機により処理した泥水の実績(削孔排泥の リサイクル実績)が $\rho \approx 1.05 \sim 1.15$ 程度であったた め,配合設計に使用する泥水の比重は安全側に見て 1.2 とした.噴射テストの試験結果を表-2 に示す. この結果から,排泥抑制型マルチジェット工法に適 用する配合は W/C=75%が適当であることを確認し た.

表-1 配合表

W/C	単位	高炉B	練混ぜ泥水 (p=1.2)	混和剤
85	kg/m³	963	799	19
75	kg/m³	1047	765	21
70	kg/m³	1095	745	22

表−2 試験結果

W∕C	試験結果	判定
85	練混ぜ、噴射共に問題なし	0
75	練混ぜ、噴射共に問題なし	0
70	ミキサーで練混ぜ不可	×

次に W/C=75%の材料を適用した場合の,上噴射 と下噴射の噴射量比率の検討を実施した.改良体の 強度自体は標準型マルチジェット工法と同等程度を 目標として,改良体内のセメント量が同等になるよ うに検討した.検討結果を図-11 に示す.

*比率とは、改良体中に占める硬化材の割合、排泥抑制型は硬化 材を置換することを目的としているため 90%相当(地上に 10% 排出)と仮定した.

図-11 上下噴射量比率

上噴射:下噴射=1.0:0.4 とした場合に,改良体 中のセメント量をほぼ同等とすることができること を確認した(安全率 1.27 確保).なお,実際の強度 特性の確認については,改良体を掘起した際のサン プリングによる強度試験で検証を行った.

(2) 上下噴射の距離の検討結果

上下噴射の距離を設定するため,表-3に示す検討 を実施し,土砂分離後の排泥比重計測結果を図-12 に示す.

上下噴射の距離が 1.10m では,下噴射開始直後に 排泥比重が増加しているのに対し, 1.85・2.60m の ケースでは,下噴射の有無に関わらず排泥比重がほぼ 一定であった. 土砂分離後の排泥沈沈降試験では, 排泥を A:上噴射直後, B:下噴射直後, C:下噴射後 20 分後でサンプリングを行い, 採取直後, 30 分後, 12 時間後, 24 時間後の沈降状況を確認した. 沈降試験 結果を表-4 に示す.上下噴射の距離が 1.10m の場合, 下噴射開始後 20 分の排泥は 12 時間後に固結したの に対し, 1.85・2.60m のケースでは排泥は固結しな い結果となった

表-3 噴射距離の検討

上下噴射	確認内容
の距離	
1.10m	・十孙公離後の排泥比重計測
1.85m	・土砂刀確後の排泥地座計別
2.60m	- 工物力酶该切开加加酶試験

また,造成時間が進むにつれ,細粒分の沈降量も 全体的に増加しているが,これはセメント混入量に 関わらず,リサイクル排泥を循環していくと地盤の 細粒分が累積していくため考えられる.

以上の排泥比重計測と排泥沈降結果から、上下噴 射距離を 1.85m が適当であることを確認した.

経過時間	上下噴射の距離 2.60m	上下噴射の距離 1.85m	上下噴射の距離 1.10m
採取直後			UNCAT ARTS CATER > 74 CATERS A
30分		KEL 1 2 800-13 L 25 0-2 3 128 1150	40KO - 1 28110 CASTO - 2 74 CASEO - 4
12時間		UKEL 1 ERIO-3 2280. + 195	Watto - L: #ft : L: #ft : T
24時間		CAFE 0-2 77 (14-a+ 13)	
評価	0	O採用	×

表-4 沈降試験結果

(3) 掘起しによる品質・出来形確認結果

前述のパラメータスタディより設定した改良仕様 で,掘起し用改良体の造成を実施した.改良仕様と 出来形確認結果を表-5に示し,掘起しによる改良体 の出来形状況を図-13~17に示す.

標準型マルチジェット工法に対して同等以上の改 良径を確保できていることが確認できた.なお,排 泥抑制型マルチジェット工法の改良体表面が乱れて いるのは、早期材齢(中1日)で、改良体が固結す る前に掘起したのが原因であると考えられる.

	CASE	CASE	CASE	CASE
	3-1	3–2	3–3	3–4
タ イ プ	標準型	標準型	排泥 抑制型	排泥 抑制型
設計改良 径	5. Om	3. 5m	5. Om	3. 5m
実測改良 径	5.4m	5. Om	6.8m	5. Om

表-5 出来形確認用改良体(CASE3)

図-13 掘起し改良体全景

図-14 CASE3-1 掘起し改良体

図-15 CASE3-2 掘起し改良体

*早期掘起しのため,表面に乱れが発生 図-16 CASE3-3 掘起し改良体

*早期掘起しのため,表面に乱れが発生 図-17 CASE3-4 掘起し改良体

次に、図-18 に示す位置において、改良体のブロッ クサンプリングを行い、室内で一軸圧縮試験(材齢 150日)を実施した.試験結果を図-19 に示す.

図-18 ブロックサンプリング位置図

図-19 一軸圧縮試験結果 (ブロックサンプリング)

試験結果から,標準型マルチジェット工法に対し て,排泥抑制型マルチジェット工法の改良体強度は ほぼ同等の値を示している.また,改良体の中心と 外側で強度の値がほぼ同等であり,排泥抑制型マル チジェット工法の改良体の強度にバラつきがなく均 一であることが確認できた.

(4) 排泥リサイクル率と排泥抑制率の検証結果

CASE3 の改良体造成時に、排泥リサイクル率と 排泥抑制率の計測を行なった.検証結果を表-6に示 す.

表-6 排泥リサイクル率と排泥抑制率

項目	硬化材 噴射量比	リサイク ル率	排泥 処分量	排泥 抑制率
標準	1.0	0%	1.0	
排泥抑制	1.4	70%	0.42	58%

排泥抑制型マルチジェット工法は、排泥のリサイ クルを70%程度可能とし、標準型マルチジェット工 法に対して排泥処分量を50%程度縮減できることが 確認できた.また,標準型マルチジェット工法では, 排泥が泥土であるため通常はバキューム車による運 搬であるのに対し, 排泥抑制型マルチジェット工法 の排泥は90%がセメント混り土砂となるため、ダン プ運搬が可能であり、量だけでなく運搬方法の面で も排泥処分費のコストダウンが見込める.

(5) コスト試算による検証結果

前述の排泥抑制率から,標準型マルチジェット工 法と排泥抑制型マルチジェット工法のコスト比較を 行うため、都市圏を想定した標準的な施工規模にて コスト試算を行った.表-7に検討条件を示す.

我 / 我的本门		
施工場所	関東近辺	
対象土層	砂質(N≦50)	
改良直径	ϕ 5. Om	
角度	180°	
本数	20 本	
削孔長	15.Om	
造成長	10. Om	
排泥処分費 (バキューム運搬)	8,000 円/mឺ	
排泥処分費 (ダンプ運搬)	4, 000 円/㎡	

試算結果を表-8に示す.標準型マルチジェット工 法と比較して、排泥処分量が約50%減となるのに加 え, 排泥運搬方法の違いによる単価差の発生で排泥 処分費が約70%減であるのに対し、排泥抑制に必要

な追加の資機材で機械損料費が60%増となり、全体 工費は10%減となった.しかし、地方部など排泥処 分費が割高な地域では、さらなるコストダウン効果 に期待できる.

表-8 コスト比較

項目	標準型	排泥抑制型
全体工費	1.0	0. 92

内訳 (コスト比)

項目	標準型	排泥抑制型
材料費	1.0	0. 84
労務費	1.0	1.04
機械損料・整備費	1.0	1. 16
消耗費	1.0	1. 59
燃料費	1.0	1.04
運搬費	1.0	1. 17
排泥処分量	1.0	0. 53
排泥処分費	1.0	0. 31
プラント組立解体	1.0	1.00
特許権使用料	1.0	1.00
現場管理費	1.0	0. 92
一般管理費	1.0	0. 92

5. 最後に

試験施工を踏まえた検証結果から本施工への適用 が十分可能であることが確認された. なお、本施工 に向けては以下に示す課題および留意事項がある. ①シルト,粘性土地盤への適用性の拡大

試験施工においては、砂質土(中砂・細砂)に対 して、本工法の検証を実施した. 今後、シルト、粘 性土に対しても適用可能とするため,本工法適用の 際,データを蓄積し検討を進めていきたい. ②適切な強度特性の把握

試験施工においては、強度特性の確認として、標 準型マルチジェット工法の改良強度に対して, ブロ ックサンプリングにより確認を実施した. 今後は, 合理的な設計を可能とするため、適用現場に対して 室内試験でデータを蓄積し検討を進めていきたい. ③上下噴射の距離による歩掛りロス

本工法は、排泥をリサイクル循環するために、噴 射ラインを2系統に分割し、上下噴射の距離を1.85m 確保した.このため、標準型マルチジェット工法に 対して、削孔長・造成長が1.85m 増加することにな る. 従って、1本当たりの改良長が短い場合など、 歩掛りロスによりコストが増大する場合があるため, 注意が必要である.