組合せ鋼材巻立て補強工法による高架橋柱の耐震補強工事

東急建設	(株)	正会員	○黒岩	俊之,	正会員	伊藤	正憲,	正会員	前原	聡
		東急	急建設(柊	朱)	正会員	笠倉	亮太,	正会員	三輪	昌義
				đ	官宣刍行雷	官鉄 (杉	‡)	正今日	宜蔭	和人

1. はじめに

兵庫県南部地震で鉄道施設が大きな被害を受けた ことを踏まえて,既設構造物の耐震性を検証し,今 後起こりうる大地震に備え,順次耐震補強が着々と 実施されている.耐震補強を推進していくうえで, 都市部の高架橋における耐震補強工事の課題として, 高架下利用がされている場合や,道路もしくは他の 構造物などと近接するなど,施工スペースの確保が 困難な狭隘部での施工が挙げられる.

本稿では、そのような施工条件に対応できる「組 合せ鋼材巻立て補強工法」(以降、CBフープ工法)の 特徴と工法開発の経緯、高架橋柱の耐震補強に適用 した施工事例を報告する.

2. 工法概要

CB フープ工法は、図-1 に示すように、高架橋柱 を対象とした耐震補強工法であり、組立て式補強鋼 材と吹付けモルタルで構成された工法である.

CB フープ工法の特徴は、補強帯鉄筋を4分割した ところにある. それぞれの材料は軽量化を図り、重

図-1 CB フープエ法の概要

機を必要とせず人力で組み立てられるとともに,分割することで狭隘部での施工を可能としている.分割帯鉄筋は,固定アングル鋼材およびくさび状の丸鋼(連結ピン)により躯体隅角部で緊結され,さら

図-2 施エフロー図

キーワード 耐震補強,高架橋柱,狭隘部施工,吹付けモルタル,せん断耐力,変形性能 連絡先 〒150-8340 東京都渋谷区 1-16-14 東急建設株式会社 土木総本部 土木技術部 TEL 03-5466-5272 に結束金具を設置することで帯鉄筋として機能する ことになる.なお,固定アングルは,分割帯鉄筋を 一体化させる効果と同時に,帯鉄筋を所定のピッチ に配置する段取り筋の役割も果たし,鉄筋の組み立 て精度の確保につながっている.実施工においては, 鉄筋組立て後,吹付けモルタルの施工を行い補強が 完了する.

3. 施工方法

図-2にCBフープ工法の施工手順を示す.

- 1) 補強する既設柱に4分割した鉄筋を配筋するた めのラック状の組立治具を設置
- 2) 分割した帯鉄筋の組立1
- 3) 分割した帯鉄筋の組立2
- 4) 固定アングルの設置
- 5)帯鉄筋と固定アングルとの間に連結ピンを挿入
- 6) 組立治具の取外し
- 7)帯鉄筋の継手部に結束金具を取付け、専用工具 を用いて結束金具を締め付ける
- 8) 吹付けモルタルの施工, コテ仕上げ

写真-1に組立が完了した状況を示すが,鉄筋組立 の試験施工では,高さ6m,幅900mm程度の高架橋柱 の施工時間としては約1.5時間で鉄筋を組み立てる ことができた.

写真-2に狭隘部での施工前後の状況を示す.既設 躯体と配管の間が 150mm 程度の狭隘部においても, 通常箇所と同等の効率で,施工が可能であることを 確認している.

4. 試験施工

耐震補強の実工事で課題となるのがひび割れの抑 制である.特に,都市部における鉄道高架橋の耐震 補強工事は,列車振動下で既存高架橋柱に吹付け施 工しても,有害なひび割れが発生しないことが要求 される.そこで,実施工前に写真-3,写真-4に示 すような実高架橋柱(□800×1500mm×2本)を対象 として試験施工を行った.試験施工の対象とした高 架橋柱は,列車振動の影響を受け易い条件下となる 営業線の線路分岐直下の柱とした.この高架橋柱に CBフープ工法を適用し,列車振動を受けたモルタル のひび割れの発生状況と,ひび割れ対策について最 も効果的な手法について検討を行った.

表-1 に吹付けで施工する高強度繊維補強モルタ ルの基本物性値,表-2 に各種ひび割れ対策条件を示

写真-1 鉄筋組立完了

写真-2 狭隘部施工前後の状況

写真-3 試験施工状況(吹付けモルタル)

写真-4 試験施工完了

表-1 モルタルの基本物性値

試験方法	項目	物性値	
	曲げ強さ	$11.7N/mm^2$	
	圧縮強さ	72.0N/mm ²	
JIS A 1171	接着強さ	2.7N/mm ²	
	長さ変化率	0.067%	
	中性化深さ	0mm	

表-2 ひび割れ対策条件

項目	No.1 A面	No.1 B面	No.1 C面	No.1 D面	No.2 A面	No.2 B面	No.2 C面	No.2 D面
繊維添加率 (vol%)	0.05	0.05	0.1	0.1	0.05	0.05	0.05	0.05
収縮低減剤塗布 [*] (回数)	1	I	1	I	1	I	2	1
メッシュの有無**	有	有	_	_	_	_	_	_

す. ひび割れ対策の効果を確認するため、補 強完了後2カ月までひび割れ観察を行った.

図-3 に各条件(面)におけるひび割れ面 積率を示す.モルタル表面の乾燥が影響して 発生したと考えられる微細なひび割れが観察 されたものの,列車振動による有害なひび割 れの発生は確認されなかった.各種ひび割れ 対策のなかで最もひび割れが抑制できた条件 は,No.1-A面であり,次いでNo.1-C面で あった.施工性・経済性を考慮した場合,No.1 -C面の条件(補強繊維添加率0.1vol%,収縮 低減剤塗布1回)がひび割れ対策として最も 効果的であると考えられた.したがって,養 生方法として収縮低減剤の塗布あるいは,躯 体表面を塗装することを標準とした.

5. 補強の効果

(1) 実験概要

CB フープ工法により補強した柱の耐震性能は, せん断耐力および変形性能について載荷試験を行い確認した.

表-3 に本実験に用いた試 験体の諸元および補強内容 を示す.補強前の試験体はせ ん断破壊先行とし,2層式ラ ーメン高架橋によく見られ るせん断スパンが短く,補強 前のせん断耐力が極端に少 ないものを想定した.No.1は 縮小試験体での変形性能およ び分割タイプの固定アングル の影響の確認,No.2 はせん断 耐力の確認,およびNo.3 は実 大規模での変形性能の確認を 主な目的とした.図-4に試験 体配筋図を,表-4,表-5 に使

*:5日間シート養生後,	低級アルコール系収縮低減剤(150g/m ²)を塗布
**:2軸ビニロンメッシュを	仕上げ層にコテで埋込み

図-3 各面におけるひび割れ面積率

用材料の諸性状を示す.

No.1, No.3の載荷試験は、一定の軸方向圧縮力を 作用させた状態で、水平方向に正負交番載荷を行っ た.軸力 (N) は、地震時に高架橋柱に作用する軸圧 縮応力 (3N/mm²) を参考に、No.1 は N=750kN、No.3

表-3	試験体ー	·暫
	H- 1-3/11	~~

= = = = 4 / 1	補強前				補強			
試験体 No.	断面寸法 (mm)	軸方向 鉄筋	帯鉄筋	a/d	吹付厚さ (mm)	帯鉄筋	連結ピン	固定 アングル
1	500 × 500	SD345 D22-28本	SR235 ¢6ctc50	2.74	45	SD345 D10ctc50	SR235 φ9	分割タイプ t=6mm
2	500 × 500	SD390 D22-28本	SR235 ¢6ctc220	2.74	45	SD345 D10ctc200	SR235 φ9	連続タイプ t=6mm
3	800 × 800	SD345 D35-24本	SR235 ¢9ctc150	2.67	70	SD345 D19ctc90	SR235 φ13	連続タイプ t=9mm

表-4 鋼材の降伏強度

-		30111 + 21-4	
	種別	降伏強度 (N/mm ²)	備考
	D35	391	No. 3
	D22	442	No. 2
	D22	378	No. 1
	D19	381	No. 3
	D10	383	No. 1, 2
	$\phi 9$	373	No. 3
	$\phi 6$	356	No. 1, 2

表-5 圧縮強度の一覧

試験体 No.	コンクリート (N/mm ²)	モルタル (N/mm ²)
1	33. 2	67.7
2	36.5	52.0
3	28.0	65.5
注1)	コンクリートの最近	大粗骨材寸法
	No. 1, 2	2 Gmax=13mm
	No. 3	3 Gmax=20mm
注2)	モルタルは吹付け	後の圧縮強度

は N=1920kN とした. 載荷パターンは, 軸方向鉄筋が 降伏した変位を降伏変位(δy)とし, この降伏変位 を基準とした3サイクル載荷とした. No.2は, 軸力 を導入せずに単調増加による水平載荷を行った.

(2) 実験結果

図-5 に No.2 の荷重-変位関係を,写真-5 に破 壊状況を示す.図中には,RC標準¹⁾により求めた曲 げ耐力(Pu)およびせん断耐力(Vy)の算定値と, 二羽らの研究²⁾によるせん断スパン比の影響を考慮 した Vyを示す.No.2 は,曲げひび割れが徐々に斜め ひび割れに移行し,500kN付近で柱の引張側上部から 圧縮側下部に向けて斜めひび割れが発生した.既設 帯鉄筋は 572kN,分割帯鉄筋は 550kN で降伏ひずみに 到達してせん断破壊した.最大荷重は642kNであり, 算出したせん断耐力 Vy = 392kN および 538kN を大き く上回ることが確認された.以上のことから,吹付 けモルタルおよび補強帯鉄筋が既設柱部分と一体と なって挙動しており, RC 標準を適用できる破壊形態 と考えられる.

No.1, No.3 の荷重-変位関係を図-6, 図-7 に, 破壊状態を写真-6, 写真-7 に示す. 図中には, 既 往の研究³⁾において, モルタル吹付けによる巻立て 補強に対して提案されている骨格曲線を示す. No.1 は,軸方向鉄筋の降伏後, $4\delta y$ でモルタルの剥離が 観察され, $6\delta y$ の正側で柱基部の圧壊が進み, 負側 で荷重低下した. No.3 は,軸方向鉄筋の降伏後, 2

写真-5 試験体破壊状況 (No. 2)

写真-6 試験体破壊状況 (No.1)

図-6 荷重変位曲線(No.1)

δyで柱基部が圧壊し,6δyの負側で荷重低下した. 補強によって、どちらの試験体の破壊形態も、せん 断破壊型から曲げ破壊型へ移行したと考えられる. 図-6, 図-7より, No. 1, No. 3の荷重-変形関係は, 既往の手法により算定した部材降伏点(Y点),最大 耐荷力点(M点)および終局点(N点)を包絡する結 果となった.

以上の実験結果をまとめる.

- (1) CB フープ工法で補強した柱部材のせん断耐力は, RC 標準に示される棒部材のせん断耐力の設計式 により評価できることを確認した.
- (2) せん断破壊する試験体を CB フープ工法により補 強することで,破壊形態を曲げ破壊型へ移行で きることが実大規模の試験体で確認できた.
- (3) CB フープ工法により補強した柱部材の変形性能 は、同種の既往の実験により提案された手法に

写真-7 試験体破壊状況 (No.3)

図-7 荷重変位曲線 (No.3)

より,評価できることが確認できた.

6. 施工事例

(1) 工事概要

補強対象の高架橋柱は,2層式3径間ラーメン高架 橋の柱63本である.図-8に耐震補強工事を行う高 架橋の標準構造図を示す.

本工事では高架橋柱に側道が近接しており,道路 側の作業スペースの確保が困難であった.このよう な狭隘箇所での耐震補強工事は,一般に労力と施工 期間を要するため,工事費が増大する原因となって いた.さらに,本工事終了後,引続き高架下商業施 設の建築工事が行われる予定であり,短期間での施 工が必要であった.そこで,狭隘部での施工,短期 施工が可能な工法としてCBフープ工法が適用された.

鋼材の組立作業を写真-8 に示す. CB フープ工法は,補強材に分割帯鉄 筋を用いているため各部材が軽く, 近接する道路により作業スペース の確保が難しい箇所(幅 40 c m以

下)での組立も円滑に作業を行うこ

写真-8 鋼材の組立状況

写真-9 吹付け定規の設置状況

写真-10 モルタル吹付け作業

写真-11 施工完了

(3) モルタル吹付け

とができた.

(2) 鋼材の組立

モルタル吹付けは所定のかぶりを確保するために 目標となる定規を設けて行った.吹付け定規は4面 から長ねじを締めつけて固定を行い,躯体を傷つけ ないようアンカーレスで施工できるものである.ま た,柱幅に合わせてフレームを調整できるようにし た(写真-9).

吹付け作業を写真-10 に示す. 補強後の状況を写 真-11 に示す.

(4) 工期

63本中の4本を先行して施工し、その後,残り59 本を約3ヶ月で施工することができた.

さらに、高架下に商業施設や電気設備等が設置さ れている場所においても、耐震補強工事による撤去 復旧範囲の縮小が期待できることから、付帯工事を 含めた耐震補強事業全体に対する進捗率向上や事業 費圧縮にも効果があると考えられる.

7.おわりに

都市部の鉄道高架橋などで施工スペースの確保が 困難な狭隘部の施工にも対応するための耐震補強工 法として CB フープ工法を考案し,ひび割れ対策のほ か,せん断耐力および変形性能を確認した実大規模 の載荷実験結果などを踏まえて,狭隘箇所のある耐 震補強工事に適用した.

最後に,平成23年3月に発生した東北地方太平洋 沖地震により市民生活を支える重要な社会基盤であ る土木構造物が甚大な被害を受けた.本報告が地震 災害に備えた対策の一助となれば幸いである.

謝辞

本工法の構造性能の評価において,(公財)鉄道総 合技術研究所にご指導いただきました.ここに,関 係各位に感謝の意を表します.

参考文献

- 1) 鉄道総合技術研究所:鉄道構造物等設計標準・ 同解説(コンクリート構造),丸善,2004
- 二羽淳一郎、山田一宇、横沢和夫、岡村甫: せん断補強鉄筋を用いない RC はりのせん断強度式の再評価、土木学会論文集、第 372 号/V-5, 1986
- 前田友章,岡本大,谷村幸裕,庄野昭,中村敏 晴:補強鋼材と吹付けモルタルで補強した RC 柱の変形性能算定手法,土木学会第64回年次学 術講演会概要集,2009.9