都市部山岳トンネル工法による大規模地下駅の設計・施工〈ボスポラス海峡横断鉄道工事〉

大成建設(株)	土木本部	正会員	○小原	伸高
大成建設(株)	土木本部	正会員	松村	謙治
大成建設(株)	土木本部	正会員	岩野	政浩
大成建設(株)	国際支店	正会員	大塚	勇

1. ボスポラス海峡横断鉄道工事の概要

(1) 全体概要

ボスポラス海峡はトルコ北西に位置し, 黒海から マルマラ海にいたる延長 30km の海峡である. 地理 的にも経済的にも重要な場所である人口1,400万人 のトルコ最大の都市イスタンブールは、海峡により アジア側とヨーロッパ側に隔てられている. 海上交 通は発達しているものの,東京などに比べると圧倒 的に鉄道網が不足しており, 交通手段は車に頼らざ るを得ない状況にある.アジア側とヨーロッパ側を 結ぶ手段として、すでに2本の長大道路橋が架けら れているが,経済の発展にともなう交通需要の増加 に対応しきれておらず, 慢性的な交通渋滞を引き起 こしているのが現状である。当プロジェクトは、こ の交通渋滞の緩和を目的としたイスタンブール大 都市圏鉄道システムの向上を図る「マルマライ・プ ロジェクト」の一部で,アジア側とヨーロッパ側を 結ぶ鉄道トンネルを建設するものである.

当該工事は、ボスポラス海峡下を横断する 13.6km 区間に沈埋トンネル、シールドトンネル、山岳トン ネル、開削トンネル等の各工法でトンネルや駅舎を 建設するものである. 図-1 にボスポラス海峡位置図、 図-2 にプロジェクト路線平面図、図-3 に路線縦断 図を示す.本稿では、イスタンブール市中心部の歴 史観光・商業地区の直下に、山岳工法により建設す る大規模地下駅の設計・施工について報告する.

(2) 大規模地下駅(シルケジ駅)概要

シルケジ駅は図-4 に示すような建物密集地区の 地下約 50m に構築される.地表からのアクセス路 は限られており,東西2つの換気立坑を利用して水 平トンネルの掘削を行う計画であったが,遺跡調査 の遅延のため東立坑の掘削に着手できず,西立坑の みをアクセス路として掘削を進めることになった.

図-2 路線平面図

キーワード 都市 NATM, ウォータータイト, 地下駅, 交差部, 3 次元解析, 設計施工 連絡先 〒163-0606 東京都新宿区西新宿 1-25-1 (新宿センタービル)大成建設(株)土木本部土木設計部 TEL03-5381-5296 駅の主構造は、2本のプラットホームと並行 する中央通路トンネル、それに直行する4本の 横断通路トンネルである.また東西に換気立坑、 その立坑に接続する換気兼接続通路トンネル、 避難トンネルおよび避難立坑等も建設される. このような種々の設備を兼ね備える必要性か ら20ヶ所以上の交点部を施工しなければなら ず、また、全てのトンネルが近接施工となるこ と、大幅な断面変化点や勾配30度の斜坑があ ることなど、あまり例のない構造を都市部山岳 工法にて施工する難工事となっている.

図-5 にシルケジ駅鳥瞰図, 表-1 に各トンネ ル名称と掘削規模を示す.

(3) 地形・地質

当該施工箇所の地質は地表面近くの土砂部 (約 GL-20m)と深部の岩盤部に大別される. 土砂部は N 値 12~18 程度で,巨礫,礫,砂, シルトに加え,貝殻,木片,コンクリートやレ ンガ,モルタル片等の埋土を含んでいる.古代 都市の遺跡が出現する層であるため,事前の遺 跡調査が義務付けられている.

岩盤部は泥岩優勢の砂岩・泥岩互層で,褶 曲・断層作用を受けて,全体的に細かい節理を なす破砕構造を呈している.岩盤部の多くは地 山等級 DII相当で弾性係数 150MN/m²程度の 軟岩であるが,破砕帯を含んでいるなど,大断 面トンネルの掘削において慎重な計画が求め られる地質である.

2. 設計概要

(1) 一次支保

一次支保の設計は,岩盤部と土砂部とで設計 手法を分け,基本的に岩盤部には経験的設計手 法を適用し,土砂部には地山特性曲線法による 解析的設計手法を適用した.

岩盤部の設計手順は次の通りである.地形・ 地質条件を把握し,これに基づいて技術的な判 断を加えて地山分類を実施する.地山分類の方 法は国内外に種々提案されているが,ここでは 旧日本道路公団の地山分類に従うこととし,地 山分類の結果を NATM 施工区間毎に地山等級 区分として整理した.なお,図-6 に示すよう

図-4 シルケジ駅付近地上部状況

図−5 シルケジ駅鳥瞰図

表-1 トンネル名称

記号	名称	掘削断面積(m ²)	覆工厚(cm)
WVS	西換気立坑	510.7	100-120
EVS	東換気立坑	510.7	100-120
CNV	換気兼接続通路トンネル	143.3	100
PF	プラットフォームトンネル	89.0	45
PFV-S	換気兼プラットフォーム(スモール)	110.4	45
PFV-L	換気兼プラットフォーム(ラージ)	192.4	100
CE	中央通路トンネル	60.2	45-75
CN	接続通路トンネル	36.6	45
ISS	斜坑(スモール)	73.1	45-75
ISL	斜坑(ラージ)	78.1	45-75
CP	避難連絡通路	16.1	40
ET	避難トンネル	11.6	35
ELT	避難トンネル(ラージ)	36.4	45-75
ES	避難立坑	50.3	45
NE	北エントランストンネル	46.3	45
SE	南エントランストンネル	46.3	45

日本道路 公団 [*]	電力中央研究所 (菊地·斉藤) ^{**}	鉄建公団	RSR*	RMR*	Q**
А		VN	100~75	非常に良 好100~81	普通
в	СН~В		75~59	良好 80~61	悪い 2.0~10
CI	СМ	IVN	58~44	普通 60~41	かなり悪い
СП		ШΝ	43~29	悪 い 40~21	0.1~2.0
DI	CL	ΠN		非常に悪い	… 非常に悪い 0.1~0.04
DI		IL, IS	28以下	20以下	
Е	D	特S,特L			… 極端に悪い 0.004以下

図-6 主要な岩盤分類の評価値の比較¹⁾

な日本と海外の岩盤分類の相関関係も参考にした¹⁾. 次に,施工区間毎に地山等級に応じた標準支保パタ ーンの適用ならびに掘削工法の選定を実施した.採 用した支保パターンは CII パターンから DII パター ンである.

立坑は,上部 21m の土砂部は柱列式連壁による土 留め壁および RC リングビーム,岩盤部となる地表 面下 21m 以深は NATM による支保構造とした(図 -9 参照). NATM 上部 12m の一次支保は通常の1重 支保構造であり,下部 24m の一次支保は2重支保構 造となっている.また,現地の施工条件に応じて適 宜補助工法の検討も行った.

換気立坑下部は,最大140m²の大断面開口部が東 西南北4方向にあり,立坑と水平坑の離隔が最小約 1mと近接している特殊形状のトンネルとなる.その ため,開口掘削時(CNV掘削時)の地山の不安定化 や一次支保の応力集中が懸念された.あまり類似事 例のない施工となるため,図-7に示すように複雑な 構造をできるだけ忠実にモデル化し,加背割を含め 施工手順を考慮した3次元逐次掘削解析により,施 工中の挙動予測や地山・一次支保の安定性評価を行 い,開口補強工等の事前対策を検討した.

(2) 二次覆工

本トンネルは防水構造が求められることから,二 次覆工には力学的機能を付加することが必要となる。 従って,覆工打設後の地下水位回復に伴う水圧を主 たる設計荷重とした構造解析により二次覆工の設計 を行った.トンネルー般部では2次元骨組構造解析 を適用したが,妻部や交差部では3次元的に複雑な 構造となるため2次元モデルでの設計は困難と考え, 3次元シェル解析を用いて設計を行った.いずれも, 二次覆工と地山の相互作用を構造要素の外周に地盤 バネを付加することにより評価している.

(3) 換気立坑下部の二次覆工

換気立坑下部は4つの開口部があること,連結す る水平トンネルは断面変化や交差部を有する複雑な 構造であることから,図-8に示すような3次元解析 モデルを用いて構造解析を実施した.覆工厚は部位 により45cm~120cmとし,底盤厚は370cmとした. 地盤バネ値は部位毎に掘削径に応じて算出した.

図-8 換気立坑付近の二次覆工設計モデル

図-7 3次元逐次掘削解析モデル

3.施工概要

(1) 西換気立坑 (WVS)

シルケジ駅の施工は西立坑 WVS の掘削から開始 した.西立坑掘削時の施工概要を図-9 に示す.

掘削時には,坑内計測A,B(内空変位測定,地中 変位測定,吹付けコンクリートおよび鋼製支保工応 力測定)を実施し,地山挙動の把握に努めた.

立坑は,深さ 58m, 直径約 25m, 掘削断面積 500m² の大断面立坑である. 立坑周辺地山は泥岩の間に硬 い輝緑岩が貫入しており, 境界部は破砕・変質して かなり脆弱化し, 立坑に高角度に交差している. ま た泥岩基質部にも節理が発達し、設計にて想定した 地山等級より1ランク以上悪い地山状況である.

写真-1のコア写真に示すように, GL-39.5mの地点 では,地山状況確認のため,東西南北4方向水平に コア採取と孔内載荷試験を実施した.変形係数100 ~500MN/m²のものが大半であったが,全体的にばら つきが多く,100MN/m²に満たないものや,孔くずれ してコアが採取できないほど脆弱な部分も存在した. **写真-2**に立坑掘削時の岩盤状況を,**写真-3**に立坑掘 削状況を示す.

0 m

BOREHOLE NO . BH . 04

AREA SEA

図-9 西立坑施工概要図

 8 m
 6.50

 9 m
 Sox No: 01 (Depth: 0.00 m - 8.00 m)

 13 m
 Sox No: 02 (Depth: 8.00 m - 13.00 m)

 Box No: 02 (Depth: 8.00 m - 13.00 m)
 13 m

 15 m
 15 m

Box No : 03 (Depth : 13.00 m - 15.00 m)

写真-1 西立坑水平ボーリングコア写真(GL-39.5m)

Diabase (dbs) (Slightly weathered-fresh, highly fractured) Laminated Mudstone (mst) (Moderately-highly weathered) (Slightly weathered-fresh)

写真-2 西立坑岩盤状況 (GL-56m)

(2) 横断通路トンネル・中央通路トンネル

図-10 に示すように、CE トンネルと CN トンネル の交差部は四差路の十字の構造であり、あまり事例 のない難しい工事である. 掘削断面積は CE トンネ ルが 68.6m², CN トンネルが 42.1m² である.

まず,①2本の PF トンネルを掘削した後に,② CE トンネルの交差部範囲を掘削した.その後,③二 重支保となる H 形鋼を開口部の前後に4基ずつ建て 込み,④開口部は天端部を H 形鋼と C 形鋼で格子状 に補強し,吹付けコンクリートを実施,⑤長さ 6m のロックボルトを打設した.さらに,⑥交差部の地 山の残る 4 隅をレジン注入にて補強した.次に,⑦ CNトンネルをPFトンネルからCEトンネルに向け て掘削した.交差部には,天端沈下,内空変位計測 (A 計測)以外に地中変位計,傾斜計,支保工ひず み計,吹付けコンクリート有効応力計を取り付け, 地山や支保工の挙動を監視しながら慎重に施工を進 めた.計測結果は事前に行った解析結果とほぼ等し い値であり想定内の挙動を示した.CE-CN 交差部の 掘削完了写真を写真-4に示す.

写真-3 西立坑掘削状況

写真-4 CE-CN 交差部掘削完了状況

図-10 CE-CN 交差部平面図

(3) 大断面トンネル(PFV)の施工

換気兼プラットホームトンネル (PFV) は図-5 に 示すように東西立坑 (WVS, EVS) の両側に計4箇 所建設される. 掘削断面積は 192.4m² である. 図-11 に加背割り図, 図-12 に施工フロー図を示す.

施工方法は、まず導坑を PFV トンネルの上半部に 掘削し、上半掘削・中半掘削・下半掘削・インバー ト掘削の順に掘削する.補助工法は、まず導坑内か らトンネル軸方向に 50cm ピッチで左右両側に、上 半脚部を対象にシリカレジンで地山改良を実施し、 上半掘削時の沈下抑制対策を行った.

次に,地表面沈下の抑制および天端補強を目的に AGF を打設し,上半仮インバートを実施し沈下を極 力抑えるように施工した.上半掘削後,沈下抑制対 策と中半側壁の地山改良を目的に上半盤から 1m ピ ッチで左右両側にフットパイルを実施し,シリカレ ジンを注入した.中半掘削でも沈下抑制のために仮 インバートを行いながら掘削を進めた.中半盤から も上半で行ったようにフットパイルを施工し,沈下 抑制と下半側壁の地山改良を行った.写真-5 に PFV 中半掘削完了時の写真を示す.

(4) 換気兼接続通路トンネル (CNV)

西立坑下部4つの大断面開口部を設けるため,三 次元解析に基づき開口部の補強を行った.また,CNV の掘削は図-13に示すように加背を小さくして慎重 に施工を進めることとした.施工手順を図-13に,施 工状況を写真-6,写真-7に示す.

CNV を掘削するに当たっては,WVS 底盤から CNV 導坑までは約 15m の高低差があるため,施工 機械が届く高さまでWVSを埋戻して作業盤とした. しかし,WVS が地上と地下をつなぐ唯一のアクセス 路であるため,埋戻し時に土留め壁によりアクセス 路を確保しWVS 以外のエリアでの作業も同時に進 めた.

施工時は立坑および既設トンネルの天端沈下,内 空変位,支保工応力等の各種の動態観測を併用し, 施工段階ごとに3次元解析結果と比較しながら慎重 に施工を進めた.図-14に西CNV 掘削時のPFVト ンネルの変形の経時変化を示す.PFVトンネル天端 沈下の計測値は事前解析による予測値とほぼ一致し ている.また,PFVトンネル内空変位は予測値よ り若干大きな変形を示したが,一次支保の変更等は なく,無事に掘削を完了させることができた.

図-11 PFV 加背割図

写真-5 PFV 中半掘削完了状況

図-12 PFV トンネル施エフロー図

(5) 二次覆工

二次覆工施工状況を写真-8~写真-10 に示す.大断 面であること、トンネル交差部では配筋量が多く加 工形状も複雑となること、断面変化点が多いこと、 常に工事用車両の通路を確保する必要があること等 に配慮し、1 スパン毎に段取りを変更しながら二次 覆工の施工を進めた.

写真-8 PFV-CNV 交差部インバート施工状況

写真-9 PFV アーチ覆工施工状況

写真-10 PF-CN 交差部覆工施工状況

4. おわりに

本稿に示すように、シルケジ駅は歴史遺産都市イ スタンブール中心部の建物密集地域の地下に位置し、 狭隘な地上施工ヤード、断面変化や交差部が多数存 在する複雑な構造を建設する国内では例をみない難 工事である.また、掘削を進める過程で明らかにな ってきたことであるが、褶曲と変成作用により脆弱 化して不均質の度合いが極めて高い地質条件であっ た.

西立坑下部は4方向に大断面開口部を設ける特殊 な形状で,掘削時の地山や一次支保の不安定化が懸 念されたが,施工手順を考慮した三次元逐次掘削解 析による挙動予測や補強対策,施工段階ごとの計測 管理の下で慎重に掘削を行い,複雑な西換気立坑周 りの掘削を無事に完了させることができた.また, 施工時挙動が事前解析結果と比較的よく一致したこ とから,検討手法の妥当性を確認することができた.

国内では、複雑な構造の地下駅等は開削工法また はシールド工法で構築されるのが一般的であるが、 地上部の制約が大きい都市部では山岳工法の適用が 有利となる場合もあり、このシルケジ駅の設計・施 工実績は今後の類似計画に資するものと考えられる.

2012年8月現在,二次覆工の打設を進めていると ともに,地表部の遺跡調査のために着手が大幅に遅 れた東立坑を掘削中である.最後に残る東立坑下部 の開口部・交差部についても,西立坑での実績を参 考に慎重に施工を進めたい.

参考文献

- 1) 日本トンネル技術協会: TBM ハンドブック, p.65, 2002.1
- 2) 岩野他:ボスポラス海峡横断鉄道工事-都市部山岳工 法による大規模地下駅の設計と施工-,土木学会・第38 回岩盤力学に関するシンポジウム講演集,2009年1月
- 大塚他: Observational construction management by field measurement of large scale underground railway station by urban NATM, 12th International Congress On Rock Mechanics, Beijing, Oct.2011
- 4)坂井他:ボスポラス海峡横断鉄道建設工事における大 規模・大深度地下駅掘削時の安定性検討-三次元逐次 掘削解析による事前評価と情報化施工,土木学会・第 40回岩盤力学に関するシンポジウム,2011年1月