円周方向に3分割した P C ウェルの 計画と設計・施工

沖森 克文¹・平林 昌雄²・中尾 健太郎³・前野 裕文⁴・ 田辺 重男⁵・浜田 英彰⁶・深沢 猛⁶

¹正会員 名古屋高速道路公社 建設部(〒460-0002 名古屋市中村区黄金7-28-1)
²名古屋高速道路公社 建設部(〒460-0002 名古屋市中村区黄金7-28-1)
³正会員 名古屋高速道路公社 工務部(〒460-0002 名古屋市中区丸の内2-1-36)
⁴正会員 工博 名古屋高速道路公社 工務部(〒460-0002 名古屋市中区丸の内2-1-36)
⁵正会員 (㈱間組 土木事業本部 技術第一部(〒105-8479 東京都港区虎ノ門2-2-5)
⁶正会員 (㈱間組 名古屋支店 土木部(〒460-0003 名古屋市中区錦2-4-16)

場所打ち圧入ケーソン工法で設計された都市高架橋の基礎工事において,周辺条件の変化から急速施工 が要求された.これに対して,近接する地下鉄躯体への影響を極力抑制でき,かつ工期的条件を満足する 工法としてPCウェル工法を採用することにした.基礎径が大径(φ7.0m)であることから,鉛直方向の 分割だけでなく,円周方向にも3分割した.円周方向継手は継手施工時間の短縮を目的とし,鋼板を用い た現場溶接継手を用いるなど新技術を導入した.そのため,要求される施工品質および工程短縮を満足す る構造仕様,製作・施工方法を検討するとともに,耐震安全性を模型実験により確認した. 無事工期内 に施工を終了し,施工性,工程短縮効果を確認した.

キーワード: PCウェル、プレキャスト、高架橋、基礎、PRC、急速施工、溶接継手

1. はじめに

県道高速名古屋新宝線は名古屋高速環状線と第二 東名自動車道を結ぶ都市高速道路である.うち日比 野工区は,地下鉄を有する日平均交通量2.4万台の 幹線道路上に構築される高架橋である.交差点部に 位置し,地下鉄駅部を跨ぐ門形橋脚の基礎(図-1参 照)は4箇所とも場所打ち圧入ケーソン工法で設計 されていたが,うち1箇所について近隣環境の変化 により,元設計における12ヶ月の工期を3ヶ月短縮 することが要求された.

工期短縮策として,近接する地下鉄駅躯体に影響 を与える工法は採用できないこと,および,既に2 箇所については場所打ち圧入ケーソン工法で構築さ れており形状寸法の大きな変更は不可能であること 等から総合的に判断し,基礎躯体をプレキャスト化 して工期短縮を図ることができるPCウエル工法の 採用に至った.

PCウエルは一般的には工場製作されたリングブ ロックを積み重ね,構築するものである.本高架橋 の場合,基礎径が7.0mであるため、リング状態で 工場製作し現地に運搬することは、輸送上の制限に より不可能である.また,施工ヤードは幹線道路に 隣接し、かつ狭小であるため(**写真-1**参照)、リン グブロックを現地製作することも不可能である.こ のような問題を解決するため円周方向に3分割した PCウエルの施工方法を計画し、実施工に適用¹¹し た.本文では、計画・設計・施工にあたっての課題 とその解決策について示す.

図-1 交差点付近平面図

写真-1 交差点付近での施工状況

写真-2 円周方向の接合鋼板

2. 計画・設計上の技術的課題と解決策

(1) ブロック寸法の計画

ブロック寸法の計画は以下の3点によった. ①近隣に住宅が隣接するため、プレキャストブロッ クの搬入は昼間に限定されること、および、交通量 の多い交差点付近への搬入となることから、車両制 限令により、積載物を含む車両幅を2.5m,高さを 3.8mに抑える必要がある.このため円周方向断面 を3分割する.

②施工ヤードが狭小であるため、分割ブロックをリング状に先組みすることは不可能であること、および、配置できるクレーンは100 t クローラークレーンが限度であり、吊半径の都合上、ブロック重量は20 t 以内に抑える必要があることから、鉛直方向のブロックの高さを1.52mとする.

③プレキャストブロック製作の標準化を図るため, 刃口部については場所打ち施工とする.

PCウェル基礎構造および断面構造を**図-2**, **図-3** に示す.

(2)円周方向の継手構造

円周方向に分割した PC ウエルの継手構造として,

図−3 3分割されたPCウエル断面構造

図-4 円周方向の継手構造

図-4, **写真-2**に示すように、各ブロック端に配置さ れた接合鋼板を現場で完全溶け込み溶接することで 連結する構造を採用した.完全溶け込み溶接は溶接 量を最小に抑えることができるため,溶接作業時間 も少なく,工程短縮効果も高い.また,接合鋼板は ブロックの帯鉄筋と工場でフレア溶接されている.

溶接の品質を確保するために現場でルートギャッ プや目違いを調整する必要がある.そのため円周方 向のブロック間には1cmの隙間を設け,溶接後に無 収縮モルタルを充填する構造とした.また,端面に はせん断キーを設け,ブロックの一体性や円周方向 のせん断力をスムーズに伝達する構造とした.

(3) 鉛直方向の継手構造

一般的なPCウェル同様,鉛直方向のブロックは 接続面に接着剤を塗布し,プレストレスを導入する ことにより接続した.また,地震時荷重に対する十 分なじん性を確保するため,鉛直鉄筋を配置したP RC構造を採用した. 組立,掘削,圧入のサイク ル施工の1単位であるロット(ブロックより構成さ れるリング4段分)の高さは,作業性の観点からの6 m程度とした.PC鋼棒は各ロットごとに緊張・接 続を行う.鉛直鉄筋については,躯体沈設終了後の 一括挿入とせず,各ロットごとに機械継手により接 続する仕様とした.これは,PCウエル躯体長が42 mと非常に長いことから,万一,挿入シース孔のず れ,角折れなどがあった場合,挿入不可能になるこ とを避けるためである.

3. 模型実験

(1)実験目的

本PCウェルの設計は「PCウェル工法 設計・ 施工マニュアル」²⁾に基づき行ったが、これは円周 方向に分割のないPCウェル構造を前提としている. したがって、本工事のPCウェル基礎で要求される 構造性能の観点において、円周方向に3分割し鋼板 完全溶け込み開先溶接を用いた構造が円周方向に分 割のない構造と同程度の性能を有していることを確 認する必要がある.

(2)供試体

円周方向に3分割した供試体(3分割供試体)と分割しない供試体(分割無し供試体)をそれぞれ1体 づつ作成した.

供試体断面寸法は、同種の実験3)を参考に縮尺率

図−5 3分割供試体構造図

写真-3 正負交番載荷試驗状況

1/5~1/4程度とし,試験装置の関係から直径1.5m (縮尺率1/4.67)とした.コンクリート断面積, 主鉄筋量,帯鉄筋量、PC鋼材量,接合鋼板断面積 については縮尺率をもとにした面積縮尺率を合わせ た.この結果,供試体の実構造物に対する耐力比は 曲げ耐力で0.015倍,せん断耐力で0.056倍となっ た.

供試体長さは、本体構造の破壊形態に合わせて曲 げ破壊となる載荷スパンを確保でき、かつ、試験場 に搬入可能な長さより設定した. また、局部破壊 を防止するため、載荷点、支点にはリブを設置した. 3分割供試体の形状寸法を図-5に示す.

(3) 載荷方法

写真-3に示す装置にて正負交番載荷試験を実施した.また,試験設備の都合により鉛直載荷とした. 載荷点,支点は回転自由とし,また,断面方向に極力均等に荷重載荷されるように工夫を施した.

表−1 PC鋼材および鉄筋の実強度一覧

図-7 ひび割れ状況展開図

表-1に示す材料の降伏強度を用い,供試体断面の 最外縁鉄筋が降伏する時の荷重 Py(=428 k N), 変位 δ y(=2.9mm)を算出し, Pyに達するまで は荷重制御載荷とし, 80 k N刻みで載荷ステップを 設定した. Py以降は変位制御とし, δ yの整数倍 (1 δ y, 2 δ y, 4 δ y, 8 δ y)になる載荷ステッ プを設定した. 各ステップごとにの正負3回づつの 交番載荷を行った.

(4)実験結果

3分割供試体のP-δ曲線を図-6に示す.鉛直方向 に交番載荷したため,供試体自重の影響により載荷 方向により変位量が異なっている.

図-6 3 分割供試体 P-δ曲線

P=250kN付近でスパン中央の軸方向接合部下縁 の目地開きが発生した.その後,先に設定したPy 付近までほぼ線形挙動を示しひび割れは発生しなか った.それ以降4δyまでは目地開きを伴いながら 変位量が増加した.4δyまでは正負交番3サイクル 載荷を実施したが,その次の載荷ステップである8 δy載荷の下向き1サイクル目の7δy付近で載荷荷 重の低下がみられ,終局状態に達した.

終局状態は、軸方向の継手部分の引張側縁に近い 鉄筋数本の破断と、圧縮側縁のコンクリートの一部 破壊であった.これは3分割供試体に限らず、分割 無し供試体においても同様であった.

ひび割れ状況展開図を図-7に示す.曲げひび割れ については,理論値より小さい荷重段階で,スパン 中央の軸方向継目部に目地開きが発生し,以後,目 地開き幅が増加するだけであり,他へのひび割れの 分散は見られなかった.

図-8に3分割供試体および分割無し供試体に関し

写真-4 高剛性鋼製型枠

PC鋼棒連結工
¥
鉛直鉄筋連結工
¥
接着剤塗布工

ブロック組立(1段リング)
<u> </u>
接着剤塗布工
*
ブロック組立(2段リング)

接着剤塗布工
*
ブロック組立(3段リング)
*
接着剤塗布工
*
ブロック組立(4段リング)
*
PC鋼棒緊張·定着工
*
PC鋼棒グラウトエ
*
鉛直鉄筋グラウトエ
*
円周方向鋼板溶接工
*
円周方向接続部充填工

図-9 組立サイクル

て、各載荷ステップにおける正負3回載荷での荷重、 変位を平均化しプロットとした. 3分割供試体、分 割なし供試体ともにほぼ同じ挙動を示し、終局にい たることがわかる.また、鉄筋、コンクリートの実 強度をもとに道路橋示方書で定義される応力ひずみ 曲線を用いて算定した理論値も合わせて示す.両試 験結果ともに最大荷重、終局変位が理論値と比べ、 大幅に小さいことがわかる.

(5)考察

最大荷重,終局変位が理論値と比べ小さいのは, ひび割れがスパン中央の軸方向継目部に目地開きと して集中的に発生し,それに伴い引張側鉄筋ひずみ も目地開口部に集中し,一部が破断したためである.

軸方向継目には断面の一体化を図る目的で接着剤 (「プレキャストコンクリート用エポキシ樹脂系接 着剤(橋げた用)品質規格(JSCE-H 101-2001)」 を満足)を塗布しているため、コンクリートの引張 強度以上を期待でき、ひび割れは分散すると想定し ていたが、塗布量が十分でなく、このような結果に なったと考えている.なお、この結果から実際の施 工においては軸方向継目の接着剤塗布厚(2mm)、塗 布範囲および接合面の管理を慎重に行った.

4. 施工方法

(1)製作

全81個のブロックを工場製作した.ブロックコン クリート中には接合鋼板が取り付いた帯鉄筋のほか, 鉛直鉄筋用シース,PC鋼棒用シース,滑材注入用 配管が配置される.各々は円周上の両側ブロックあ るいは上下のブロックと接続されるため,製作精度 が重要である.ブロックの製作精度を確保するため, 鉄筋組立時,コンクリート打設時におけるそり,ひ ずみが起こりにくいシールドセグメント用型枠をべ ースにした高剛性鋼製型枠を用いた(**写真-4**参照).

(2)施工手順

プレキャストブロックの組立サイクルを**図-9**に示 す.プレキャストブロックの組立状況を**写真-5**から **写真-8**に示す.

(3)施工時の課題と解決策

ブロックの組立は、鉛直鉄筋およびPC鋼棒が数 十本突出した状態で次のブロックをシース孔にあわ せ設置することになる.これについては**写真-8**に示 す挿入用治具を開発し、スムーズな挿入を可能にし た.

鋼板完全溶込み開先溶接の品質確認は全数カラー チェックおよび1ロット当たり6箇所(継手2箇所に つき1箇所)の超音波探傷試験によった.

5. 工程短縮効果

図-10に現場打ち圧入ケーソン工法で施工した同 一基礎形状の道路反対側基礎とPCウエル工法で施 工した本基礎の実施工サイクルの比較を示す.

PCウエルの採用により、1ロットあたりの施工 日数が7日(26日-19日)短縮されたこと、および、 ロット高さを5mから6mに変更し、ロット数を10ロ ットから9ロットに低減したことにより、全体とし て、約3ヶ月(12ヶ月→9ヶ月)の工期短縮が可能に なった.

写真-5 プレキャストブロックの搬入

写真-6 鉄筋, PC鋼棒の組立

場所打ち圧入ケーソンの1サイクル(h=5.0m)日数						20日×1.3=26日					
足場	内枠搬入組	立 鉄筋	i	夘	枠搬入·組立	コンク リート 打設	養生	型枠 解体	圧入 装置 組立	圧入掘削	圧ノ装置解
1	4	3			4	1	1	1	1	3	1
PCウエルの1サイクル(h=6.0m)日数 14日×1.3=19日											
足場 鉄筋 PC	ブロック設置 ・緊張	鋼板容接 PCグラウト ・モルタル注入	足場 撤去	圧入 組立	圧入掘削		圧入 装置 解体				
1	3	3	1	1	4		1				

図-10 圧入ケーソンとPCウェルの工程比較

6. おわりに

実施工にあたっては、各ロットごとに鉛直鉄筋を 設置するなど、後戻りのリスクの少ない手順を考え、 また、鉛直鉄筋、PC鋼棒が林立する個所へのブロ ックの設置方法など、細かな施工ノウハウも蓄積し た.施工を終了し、当初想定した工程短縮効果も実 証され、本工法の有用性が確認できた.

これまでに施工されてきた都市内の基礎構造物と してのPCウエルは、輸送上の制約からリングを分 割する必要のない小断面構造が主流であった.今回 の施工のように円周方向を分割し、かつ継手の施工 性も確保することにより、PCウエルの大口径基礎

写真-7 プレキャストブロックの吊り込み

写真-8 鉄筋およびPC鋼棒の挿入

への適用も可能になる.今後、製作・施工・品質管 理方法も含めさらなる経済性を追求する必要がある と考えている.

謝辞

模型実験の計画・実施にあたっては愛知工業大学 土木工学専攻 青木徹彦教授に指導を受けるととも に,同大学耐震実験センターで大型載荷実験を実施 した.ここに謝意を表す.

参考文献

- 1)細井 元,松元拓磨,簾 壽志,佐藤琢己,鈴木省三, 新野佳史:姥山高架橋下部工の施工,橋梁と基礎, Vol. 37/11, pp. 2-7, 2003.
- 2) P C ウエル工法研究会: P C ウエル工法設計・施工マ ニュアル(設計編), 2006年7月
- 3)山中典幸,津田和義,内藤義彦,佐藤琢己:円周分割 プレキャストブロック構造の耐震性能に関する実験的 研究、土木学会第56回年次学術講演会、、2001.1