新機構による柱列壁造成システムの開発と成果 大深度・大口径の高精度施工を目指して-

本田周成1・高瀬義行2・橋本聡2

¹正会員 大成建設株式会社 土木本部 土木技術部(〒163-0606 東京都新宿区西新宿1-25-1) ²大成建設株式会社 土木本部 土木技術部(〒160-0606 東京都新宿区西新宿1-25-1)

現在,都市部地下空間の高度利用が図られようとしているなかで,大深度の土留止水壁を高 精度に施工できる技術が求められている.そこで,従来の原位置撹拌工法の課題を解消した新 機構による施工機械(UD-HOMET)の開発に取組み,実用化した.大成建設は,この新 工法(UD-HOMET工法)を中之島新線事業における開削工事影響調査工事に提案し,採 用された.

本文は, UD-HOMET工法の概要と開発経緯,施工事例及びその成果について紹介する ものである.

キーワード: ソイルセメント連続壁工法, SMW工法, 中空油圧モータ UD-HOMET工法, 連続計測システム, 大深度, 大口径, 高精度

1.はじめに

従来のソイルセメント連続壁工法は,大深度の施 工では曲がりやすく,ラップずれによる不連続部の 発生が懸念されているので,大深度施工における土 留壁工法の選定では,RC連続壁等の他工法が採用 される場合が多く見られた.そこで,従来のソイル セメント連続壁工法における課題を解消し,大深 度・大口径の施工を高精度に行う新工法を開発し, 実用化した.

本文は,新工法の開発経緯及びその概要と新工法 の施工事例を元に,開発の成果について紹介するも のである.

2.新工法の開発

(1) 従来の技術

従来のソイルセメント連続壁工法における代表例 には、SMW工法(Soil Mixing Wa 11)が挙げられる.この工法での精度管理システ ムでは、DAMシステムがあり、この計測システム は、任意の深度における掘削変位を、混練翼の回転 を止め、傾斜計の安定を待った後に測定するもので、 掘削変位をリアルタイムに把握できるものではなか った.このため、掘削の曲がり始めを検出すること が不可能であった.

また,施工機械の機構としては,リーダ上部に減

速機及び多軸装置を装備し,地上部からオーガヘッ ド及び混練軸を回転させるトップドライブ方式であ る.本機構では,大深度になるにしたがい,掘削地 盤と駆動部の離隔が大きくなり,掘削地盤に駆動部 の力を100%伝えることはできない.掘削方式と しては,地上部からオーガヘッドと撹拌翼を押し下 げるものである.

大深度のSMW工法での掘削が曲がりやすい原因 には,前述のような要因が想定される.

(2) 新工法の開発コンセプト

大深度でのSMW工法の課題を解消する新工法の 開発に当たり,以下のコンセプトを元に開発を進めた.

「大深度 , 大口径のソイルセメント柱列

壁を高精度に施工できる新工法の開発」

まず,SMW工法の課題を解消するために,連続 的に掘削精度を検出できる連続計測システムの検討 を行った.掘削作業を実際に行う場合には,常時, 掘削精度を把握し,曲がり始めの段階で迅速に対処 することが高精度施工の実現に最も重要であると考 えた.次に,新しい駆動機構の検討を行った.施工 機械の駆動機構としては,従来のトップドライブ方 式から脱却し,駆動部を掘削地盤の近傍に設置する ことで,効率良く掘削できる新しい駆動機構の実現 が必要であると考えた.

このような開発方針のもと,連続計測システムと 新しい駆動機構の開発に着手した.

図-1 アウターモータ概要図

(3) 駆動機構の開発

減速機及び多軸装置に代わる新しい駆動部として, 2種類の中空油圧モータ(インナーモータ,アウタ ーモータ)の開発を行った.(特許第3484576号) a)インナーモータ

インナーモータとは,モータシャフトが回転する 一般的なモータ機構と同様であり,内部に土砂シー ルを備えており,土中及び水中での使用が可能な構 造となっている.

b)アウターモータ

アウターモータとは,モータ中空部を貫通した固 定軸(非回転)の周囲をモータ外周が回転する機構 であり,内部に土砂シールを備えており,土中及び 水中での使用が可能な構造なっている.

c)アウターモータの利点

混練翼にアウターモータを設置することが可 能となり,掘削とともに土中を掘り進む.こ のことにより,掘削深度が深くなっても,モ ータと掘削地盤の距離は変化せず,大深度の 施工であっても,モータトルクを効率良く地 盤に伝達することができる.

スクリュを装備したモータ外周が回転するの で,混練翼にモータを設置しても,排土を阻 害しない構造となる.

回転機構としては,貫通した固定軸の周囲を モータ及び外管(混練翼)が回転する機構と なる.固定軸に傾斜計や計測ケーブルを設置 することで,計測機器が外周の回転影響を受 けない構造となる.

図 - 2 UD - HOMET工法概要図

図 - 1 にアウターモータ概要図を示す 上記の特徴を持つ中空油圧モータを使用すること により、SMW工法の課題である連続計測システム と高精度施工が可能な掘削機構を実現した。

以下に,新工法であるUD-HOMET工法の概 要について述べる.

3.UD-HOMET工法

(1) 工法概要

従来の原位置撹拌工法における課題を解消した新 工法として, UD - HOMET工法を開発し, 実用 化した.

この「UD-HOMET工法」は,地中駆動 (Underground Drive)方式を中空油圧モータ (Hollow Motor)で実現した(Execution)新しい 技術(Technology)である.駆動部(中空油圧モー タ)が掘削とともに地中を推進する機構としたこと で,従来の常に駆動部が地上にあるトップドライブ 方式から脱却し,スクリュを装備した中空油圧モー タが土中を掘り進むシステムである.

本工法では,高精度を維持した施工が可能となり, モータ中空部を貫通した固定軸に静電容量式傾斜計 を取付け,通信ケーブルを敷設することで,施工中 にリアルタイムで掘削変位を監視できる連続計測が 可能となる.

図 - 2 に U D - H O M E T 工法の概要図を示す.

(2) 駆動機構

本工法は,従来の地上にあった駆動部をスクリュ 部に設置し,土中に推進させるシステムである.掘 削時は,駆動部と掘削地盤の距離が変化せず,駆動 部の力を100%地盤へ伝達することができる.こ のことにより,SMW工法では錐が振れていたが, 本工法では錐が振れのない掘削を行うことで,高精 度の施工が可能となる.また,掘削効率が高いため, SMW工法では先行削孔を必要とする地盤であって も,土質条件により先行削孔を省くことができる.

さらに,地上から貫通した固定軸に傾斜計や計測 ケーブルを設置することにより,リアルタイムに掘 削精度を監視することができ,SMW工法では不可 能であった連続計測を可能にした.

図-3にUD-HOMET工法の施工機械図を示 す。駆動部は,外周が回転するアウターモータと中 央のシャフトが回転するインナーモータを使用する.

回転部のモータ配置は,掘削時に先行する左右軸 にアウターモータを使用している.アウターモータ を使用することで,掘削時の排土を円滑に行うとと もに,左右軸には傾斜計を設置し,掘削変位を計測 する.左右軸を追従する中央軸には,インナーモー タを使用し,三軸の連結部に設置している.

モータトルクは,

・左右軸 アウターモータ:7.0〔t・m〕

・中央軸 インナーモータ:4.8 [t・m]

であり,モータの回転数は0~30〔r.p.m.〕で,自 由に調整可能である.

油圧モータは、プログラムにより回転方向の制御 が容易であり、この特長を利用し、正回転と逆回転 を一定周期で繰り返す揺動制御を付加している。例 えば、5秒間正回転した後に3秒間逆回転する動作を 繰り返すという制御である。この揺動制御を利用し、 玉石が点在する地盤においても、玉石を砕きながら 掘削することができる、揺動制御の効果については、 300mm~500mmの玉石を混入した模擬地盤を作成し、

実際に掘削することで,その効果を確認した.

回転部の上部に接続する固定ロッドは,左右が回 転しないロッドで,中央に中空油圧モータに作動油 を供給する油圧配管が設置されている.実施工では, 固定ロッドを順次、接続するとともに,油圧配管の 接続も行う.

油圧配管の接続では,作動油の通過抵抗の少ない ワンタッチカプラを使用し,1本ずつ接続を行う.

図 - 3 UD - HOMET工法施工機械図

図 - 4 連続計測システム概要図

(3) 連続計測システムの概要

連続計測システムは,静電容量式傾斜計を左右の 錐の固定軸に設置し,錐の傾斜角と同時計測してい る掘削深度データを利用し,変位量を算出するもの である.図-4に連続計測システムの概要図を示す.

地上の基準位置から変位量を深度方向へ順次加算 し,この変位量を現在の錐先端におけるXY方向の 変位量として,計測画面に表示する.

また,本システムは掘削精度だけでなく,

- ・中空油圧モータの駆動データ
- ・掘削速度
- ・錐先端荷重
- ・セメント系懸濁液の注入量

を合わせて計測でき、ベースマシンのオペレータ室 に伝達できる.このことにより、掘削状況と掘削精 度をリアルタイムに監視することができ、施工状況 の把握が容易になる.なお、無線で近傍に設置した 計測室へデータを送信することにより、計測室でも 同様の管理を行うことができる.

管理画面には,以下に示す3種類のデータ表示画 面がある.

a)深度方向に対する掘削変位量

図 - 5 に表示画面を示す.表示画面は,掘削深度 での左右軸のXY方向の変位である.画面には掘削 深度毎の変位量が表示されるので,ソイル柱列壁の 全体的変位を把握できるとともに,掘削の曲がり傾 向を把握できる.

図 - 5 深度方向に対する掘削変位量の表示画面

図-6 掘削平面位置

図-7 施工データ表示

b)掘削平面位置

図 - 6 に表示画面を示す.表示画面は,錐先端位 置が設計位置に対して,どのような位置にあるかを 確認できる.

c)施工データ表示

図-7に表示画面を示す.表示画面は,掘削深度, セメント系懸濁液の注入量,中空油圧モータのトル クを時間軸で表示するものであり,深度毎の注入量 の把握や各深度におけるモータ負荷を把握すること ができる.

比較項目	SMW工法	UD - HOMET工法	効 果
	常に地上	掘削とともに土中に推進	モータトルクが地盤にダイレクトに伝わり,
駆動部の位置			精度の良い掘削が可能
			駆動部が地中にあるため,騒音が少ない
回転機構	軸全体が回転する	固定軸を有する	回転しない固定軸を利用して , 連続計測が可能
桦城重心位罢	高い	低い	重い駆動部が地中にあるため,低重心となり,
懱械里心位員			ベースマシンの安定性が高い
姿勢制御方法	ターニング	回転数,回転方向により制御	各軸が個別に制御できるため,各軸の回転数,
			回転方向を変化させ,変位の修正を行う

表 - 1 従来工法と比較したUD - HOMET工法の特長

(4) UD - HOMET工法の特長

従来工法(SMW工法)と比較したUD-HOM ET工法の特徴を表 - 1に示す.駆動部が地中にあ ることで,高精度施工が可能であり,連続計測シス テムを併用することで,さらに精度の高いソイル柱 列壁を造成することができる.

さらに,ベースマシンとして三点式杭打機以外に も,汎用クレーンを使用することにより,施工位置 からベースマシン設置までの離隔を取ることができ, 施工位置に対してベースマシンが正対する必要がない.

4. UD - HOMET工法による施工事例

(1) 工事概要

本工事は,中之島新線事業における最適な土留工 法を選定するために行われた調査工事である.実際 の工事区間内で先行して4種類の土留壁を造成し, 各土留壁の変位や背面地盤への影響及び止水性能等 の設計上の要素と施工時間や施工精度及び騒音等の 施工上の要素を確認し,比較・検討するものである. 4種類の土留工法は,SMW工法,UD-HOM ET工法,SC連続壁工法,ONS-8工法である. 図-8に調査工事の標準断面図を示す.

(2) 工事数量

SMW(従来工法) 9set 削孔径 900 @600 造成長 40.5m 応力材 H700×300×13×24 L=40.0m 施工延長 10.8m 施工数量 437.4 m² 先行削孔 900 L=40.5m 10本 DAM計測 1式

UD-HOMET(新工法) 15set 削孔径 900 @600 造成長 40.5m 応力材 H700×300×13×24 L=40.0m 施工延長 17.4m 施工数量 704.7㎡

応力材の長さは床付け深度と関係なく,各工法に おける応力材の挿入性を確認するために,造成長と ほぼ同じ長さにしている.

SMW工法ではDAM計測を実施し, UD - HO MET工法では連続計測を行った.

(3) 土質概要と調査工事の必要性

中之島新線事業で計画している開削部の床付けは, GL-16m~GL-30mと大きく変化している.事業区間の 地層は,厚く軟弱な沖積粘土層の下に硬質の沖積砂 礫層,天満礫層が続き,強度の急変する地層構造で ある.また,一部の区間では,これらの硬質な砂礫 層を貫き,その下の遮水粘性土層まで土留壁を築造 する必要がある.当該砂礫層は固結度が高く,被圧 滞水しているため,施工精度不良による漏水は土留 壁の破壊につながりかねない.このことにより,土 留工法の選定の正否が事業に大きな影響を与えるこ とから,4工法の比較検討を行う調査工事を実施し た.図-9に調査工事の土質柱状図を示す。

4.UD-HOMET工法による成果

(1) 施工時間

UD-HOMET工法では,従来工法(SMW) に比べ,掘削精度の向上により応力材建込み時間が 短縮された.削孔,造成時間が長くなっているが, これは施工期間中に実施したUD-HOMET工法 見学会の整備時間等が含まれているためである.

表 - 2 に示すとおり, UD - HOMET工法は, 先行削孔を省けるなど,先行削孔併用方式のSMW

表 - 2 各工法の1 set 当りの施工時間

	先行 削孔	削孔 造成	応力材 建込み	合計
SMW	5 M W 35 42 DAM 計測		23 (2 本)	100
UD-HOMET	-	55 連続計測	15 (2 本)	70

図-10 40m付近における掘削変位の分布図

工法に対して,約30%の工程短縮が可能となった.

(2) 掘削精度

SMW工法では,掘削精度は通常 1/150~1/ 200であり,砂礫層では精度が多少低下する.

本工事では,深度40mの掘削・造成をUD-H OMET工法により施工し,その平均掘削精度は1 /400~1/500であった.

図 - 10にSMW工法とUD-HOMET工法に よる深度40m付近における掘削変位の分布図を示 す.SMW工法は変位のばらつきが大きいが,UD -HOMET工法は中心部分に集中しており,掘削 精度が良いことがわかる.

表-3 30m地点における騒音測定結果

暗騷音	SMW	UD-HOMET
70 (dB)	75 (dB)	70 (dB)

表 - 4 事前揚水試験

	揚水量	透水係数	透水量係数	影響圈半径
	m³/min	cm/sec	m²/min	m
Asg	0.50	8.15 × 10 ⁻²	0.47	750
Tg1	0.82	2.10 × 10 ⁻¹	0.67	650

(3) 騒音

施工機械から30m離れた地上面において,夜間 に騒音測定を行った.測定結果を表-3に示す. UD-HOMET工法は暗騒音と同等であり,S

MW工法より騒音が低いことが確認できた.

(4) 壁面状況及び土留壁の変位

掘削坑内における土留壁からの漏水は,SMW工法,UD-HOMET工法ともに目視確認では,認められなかった.

また,掘削に伴う土水圧による土留壁の変位量は,

・設計値 最大 32.9mm (深度 GL-16.0m)

・SMW 最大 23.8mm(深度 GL-16.0m)

・UD-HOMET 最大 21.7mm (深度 GL-16.0m) であった。

(5) 土留壁の遮水性能について

a) 遮水性能評価フロー

事前のシミュレーション解析(FEM浸透流解析) により, 土留壁の止水性の違いによる揚水量と土留 壁内外の水位低下量を算出し, 土留壁構築後の揚水 試験による揚水量と水位低下量の関係から土留壁の 止水性能を評価する.

b) 揚水対象層

揚水対象となる滞水層は,Asg層とTg1層である. 両滞水層は土留壁が根入れされるMa12層の上層に あり,土留壁で遮水される滞水層である.これらの 滞水層より揚水し,揚水量と土留坑内と坑外の水位 低下量より土留壁の遮水性能を評価する.

Asg層 GL-21.7~31.3m:砂・礫混じり砂層 Tg1層 GL-32.5~37.8m:砂・砂礫層

c)事前揚水試験とシミュレーション解析結果

事前揚水試験により,表-4に示す揚水対象層の 水理定数が得られ,FEM浸透流解析により土留壁造 成後の揚水試験における揚水量と水位低下量及び土 留壁の透水係数の関係を求めた.解析結果を図-1 1に示す.山留壁造成後の揚水試験の結果を図-1 1のグラフ上にプロットし,土留壁の透水係数を推 定する.

d) 遮水性能の評価

山留壁造成後の揚水試験

(Asg層)

- 揚水量:0.024m³/min
- 水位低下:掘削坑内の水位が時間に対して直線 的に低下した. 水位低下量が13m以上となっても定 常状態とならない.
- 背面地盤:水位低下量は0m

図-11 揚水試験による浸透流解析結果

(Tg1層)

扬水量:0.002m³/min

水位低下:Asg層の揚水時に水位が低下してお り,揚水量を下げて実施した. 掘削坑内の水位が時間に対して直線 的に低下した.

水位低下量が10m以上となっても定 常状態とならない.

背面地盤:水位低下量は0m

結果を図 - 1 1 にプロットする.この結果から, 土留壁の透水係数は1×10⁻⁶cm/sec以下であると推定 した.

地層 SMW UD-HOMET 2.5×10^{-8} 2.3×10^{-8} Asc 6.3×10^{-8} 8.3×10⁻⁸ Ac 5.0×10^{-8} 2.7×10^{-8} 2.8×10^{-8} Asg 1.7×10^{-8} 3.3×10^{-8} Tg1

表 - 5 供試体の透水係数(cm/sec)

表-6 供試体の圧縮強度(kN/m²)

-1.		
地層	SMW	UD-HOMET
Asc	2139	1306
Ac	1400	1782
Asg	2657	3726
Tg1		3004

e)ボーリングコアの透水係数及び圧縮強度

土留壁造成完了後にコアボーリングを行い,採取 した供試体の透水試験及び圧縮強度試験を行った. 結果を表 - 5,表 - 6に示す. 圧縮強度は500kN/m² 以上である.

5.おわりに

本工法は、2003年8月から開発に着手し,約 1年という短い期間の中で,調査工事を行うに至っ た.

今後,本工法が普及していくためには,以下の課 題について検討する必要があると考える.

施工機械の保守の簡素化 油圧配管接続作業の簡易化 掘削精度修正手法の確立 クレーン施工による適用範囲の拡大 大深度化が進む都市部での施工やベースマシンが 近寄れない等の特殊条件の施工に際して有効な工法

であり,適用範囲の拡大が一層望まれるとともに, 本文が同種工事の一助になれば幸いである.