電食技術による杭芯材劣化工法

向谷常松¹ · 岡利博² · 荒川康広³

1飛島建設株式会社	機電統轄部	(〒102-8332	東京都千代田区三番町二番地)
2飛島建設株式会社	機電統轄部	(〒102-8332	東京都千代田区三番町二番地)
3飛島建設株式会社	機電統轄部	(〒102-8332	東京都千代田区三番町二番地)

本論文では、シールド工法の発進到達に伴う鏡切工について新しい手法を提案する.シールド機の発進 到達は、土留壁背面の地盤改良を行い、障害となる立坑土留め壁を人力により取壊し、シールド機を進め る方法が一般的である.本工法では、電気防蝕技術を逆利用した電食技術により、シールド機通過部の柱 列式地下連続壁(SMW)の杭芯材を電気的に強制腐食を起こし、内部から鋼材を薄肉劣化させ、シールド機 により直接切削を行い、地山を露出せずに安全で確実な施工を実施した.本報告では、実用化に向けた要 素実験結果、実証施工における電食および切削結果を示し、本工法の実用性を報告する.

キーワード:シールド,直接発進,直接到達,仮壁切削,電食

1. はじめに

都市部における鉄道,共同溝,上下水道等の地下構 造物は周辺環境等への影響を配慮して,シールド工 法が多く用いられてきた.しかし,シールド機の発進 到達部や急曲線部,ビット交換箇所等では地上作業 を伴う補助工法が必要となるが,過密化した市街地 においては,振動騒音,交通渋滞の誘発等により住民 の理解が得られ難くなっている.一方,都市部の道路 下は地下埋設物が輻輳しているため,新設管路の設 置場所は深層化傾向にあり,シールドトンネルの建 設に伴う補助工法のコストや工期の増大を招いてい る.

通常,シールド機の発進到達方法は、立坑土留め壁 を人力などにより取壊し、地山を開放してシールド 機を進める.その際、地山の自立性と止水性を確保す るため、地盤改良等の補助工法が必要となる.また鏡 切工は、開放した地山での作業となるため危険が伴 う.そのため、補助工法の省略もしくは低減によりコ スト縮減や周辺環境への影響を抑制し、安全性も確 保できる発進到達工法の開発が望まれている.

本論文に示す電食技術は,電気防蝕技術の逆転発 想を応用したもので,電食作用により土留め壁(柱列 式地下連続壁等)の杭芯材を溶解するものである. 劣化させた土留め壁の杭芯材は,シールド機で直接 切削することが可能であり,発進到達時の鏡切工や 補助工法の省略もしくは低減,安全性の向上,コスト 縮減,さらに周辺環境への影響低減が期待できる.

2. 電食理論

塩水のような電解液中に金属を入れプラス方向の 電流を流すと, 陽極側の金属中の電子が放出されイ オン化した金属が電解液中に溶け出す.これを電食 (アノード溶解反応)と呼び溶解した鉄イオン Fe²⁺ は, 電解液中で水酸化鉄 Fe(OH)₂「錆」となって沈殿 する.

式(1)に示す陽極反応は、金属の溶解反応で、鋼、銅, 真鍮、アルミニウム、亜鉛、マグネシウムなど活性溶 解する金属で発生し、金属が電子 e⁻を失い電解液 中にイオンとして溶け出す. 陰極では式(2)に示すよ うに、水(H₂0)の電気分解が発生し陰極表面に水素 が発生し、同時にアルカリ成分である水酸基 OH を生 成する.

$$Fe \rightarrow Fe^{2+} + 2e^{-} \tag{1}$$

$$2\mathrm{H}_{2}\mathrm{O} + 2\mathrm{e}^{-} \rightarrow \mathrm{H}_{2} + 2\mathrm{OH}^{-}$$
(2)

電解液中に溶解した鉄イオンは,式(3)に示すよう に陰極にて生成された水酸基と速やかに反応し二価 の水酸化鉄が生じる.電解液中に酸素(溶存酸素)が 存在した場合,式(4)に示すように,鉄イオンは二価 から三価に酸化され赤錆となり沈殿する.

$$\operatorname{Fe}^{2+} + 2\operatorname{OH}^{-} \to \operatorname{Fe}(\operatorname{OH})_{2}$$
 (3)

$$4Fe(OH)_2 + 2H_2O + O_2 \rightarrow 2Fe(OH)_3 \qquad (4)$$

電解液中の酸素は空気中より溶解したもので,室 温における塩水中の飽和溶存酸素濃度は約 9ppm で あるが,十分に空気を吹き込まないと飽和に達しない.電解に伴う鉄の腐食量,電解液量,溶存酸素の兼ね合いにより,酸素量が不足した場合,二価と三価の 混在した水酸化鉄となり,緑色から黒色を呈す¹⁾.

電食概念図を図-1 に示し, 写真-1 に鋼管を内部から電食により薄肉化した状況を示す.

図-1 電食概念図

3. 工法の概要

本工法は、電食原理を利用して、柱列式地下連続壁 工法(SMW 工法)の土留壁杭芯材内のシールド通過 部に電食用杭芯材を配置し、シールド機で直接切削 できる状態まで内部から溶解、薄肉化し、人力による 鏡切工を行わずにシールド機のカッタービットで直 接切削し、発進到達する工法である. 図-3 に電食技 術による杭芯材劣化工法による施工概要図、図-4 に は例として、発進時における電食工の施工フロー図 を示す. 電食杭芯材は,応力部材としての矩形管(陽極管) と電食用の内管(陰極管)から構成され,矩形管と内 管の間に電解液を循環させながら,矩形管にプラス, 内管にマイナスの直流電流を通電することにより, 矩形管が電解液中に鉄イオンとして溶解し劣化する. 電解液中の鉄イオンは,陰極管表面にて発生する水 酸基と反応し水酸化鉄となり,循環液により地上部 に設置された電解液貯留槽まで輸送され,回収され る.

電食反応に伴う鋼材の溶解量は,ファラデーの法 則により,次式(5),(6)で表せる.

$$\mathbf{W} = \mathbf{A} \times \mathbf{q} \tag{5}$$

$$\mathbf{A} = \mathbf{I} \times \mathbf{T} \tag{6}$$

W:溶解量(g)

q:電気量(Ah)

A:電気化学当量 (g/Ah)²⁾

鉄の電気化学等量:1.0419(g/Ah)

I:通電電流 (A)

T:通電時間(h)

従って,溶解させる鋼材重量(矩形管重量)が決ま れば,通電電流の大きさを変えることにより通電時 間を任意に調整することが可能である.

電食に使用する電解液については,無害で導電性 の高いもの,入手,取り扱いおよびコスト面などから 塩水を利用する.電食時の通電抵抗,使用電力量を試 算する上で,電解液の抵抗率は重要な要因である.塩 水の場合,図-2 に示すように,塩分濃度が高いほど 抵抗率は減少する.また,電解液の抵抗率は温度の影 響も受け,温度が高いほど減少する.

単純な構造の場合,陰極陽極間の抵抗は抵抗率,間 隔,面積を用いて次式(7)のように表すことが出来 る.

$$\mathbf{R} = \rho \frac{\mathbf{d}}{\mathbf{S}} \tag{7}$$

R:抵抗,d:間隔,S:面積,ρ:抵抗率

この抵抗と通電電流から,通電電圧および目的の抵抗値を得るために塩分濃度を調整する.電解液の抵抗率は通電電流,陰極面積,両極間離隔により異なるため,個別のケースに併せて塩分濃度を調整するが,通常1~3%程度で電食を行う.

4. 要素実験

(1) 実験目的

電食によって鉄を強制腐食する場合,1g の鉄を溶 解させるのに約1Aの電流を1時間通電する必要があ る(電気量 1Ah).従って,シールド機通過部分の杭 芯材をすべて溶解するためには,長期の電食期間を 必要とし,工程に支障をきたす恐れがある.そのため, 期間短縮を図る電食制御方法として,陽極表面に絶 縁材を配置して非電食部を作成し,電食量を低減す る方法が有効であることを要素実験で確認してい る.

今後の実施工に向けて,実際の応力部材を使用した場合の,電食の効率化の可否確認,電食の進行状況 確認,電食完了時期の把握を目的として実験を行った.

(2)実験概要及び装置

図-5の実験装置概要図に示す模擬杭芯材内部に 電食量低減のための絶縁材を設置して,電解液(塩 水)を循環させながら直流電流の通電を行った.また, 電食により発生する水酸化鉄の除去および,電食の 進行に伴い上昇するpH調整用として水酸化物処理 装置を設置した.**写真-2**に模擬杭芯材断面写真(電 食部矩形管)を示す.

写真-2 模擬杭芯材断面写真

(3)実験結果

÷ 4

表-1 に模擬杭芯材の重量及び電食量を示す.

	保険机心的の里里ねよい电長里里		
	重量 (kg)	重量比(%)	備考
電食対象重量	234	100	
電食重量	164	70	
非電食部重量	70	30	絶縁材による低減分

増収せせけの壬見いしび承承壬見

図-5 に示す模擬杭芯材の電食対象矩形管部に,平均759Aの直流電流を通電した.図-6に通電中の電圧及び電流の変位グラフを示す.図中の電食率とは,電 食部の全鋼材重量に対する通電電気量(通電電流と 通電時間の積を累計した値)の割合である.電食率 45%付近までは,通電電圧は20V以下で比較的安定し た数値を示し,45%以上になると徐々に上昇傾向と なった.実験に使用した直流電源装置は,最大出力 1000A-30V 定電流方式であるため,鋼材の溶解に従い,通電抵抗値が増加すると共に,出力電圧も上昇す る.

電食率 60% (約 217 時間) 通電した時点で電圧が 30V で飽和状態となり, 更に電食率 65%付近にて, 電流値 の減少が見られた.これは, 電食の進行により, 陽極 矩形管断面積が著しく減少し, 部分的に破断された 結果, 通電抵抗が急激に上昇したためと考えられる.

また実験では,陽極矩形管上下端にセンサーを設

置し、芯材自体の通電抵抗値(IR 値)の変化を計測した.通電抵抗値は、通電開始直後は電食矩形管の電気抵抗が極端に低いため、微弱な電圧値として計測されるが、電食の進行に伴い、矩形管上下間に微小電位差が発生、上昇傾向を示し、約 60~65%付近で急激に上昇した. 図-7 に IR の電位グラフを示す.

電食率 70%にて,通電を停止し,芯材内部の点検お よび解体を行い,詳細な電食状況を確認した.最終電 気量は,約 164 k Ah であった. **写真-3**, **写真-4** に模擬 杭芯材の解体状況を示す.

写真-3 模擬杭芯材解体状況

写真-4 非電食部の残存鉄片

模擬杭芯材解体後の目視結果は,非電食部の電食残 存鉄片が不連続に独立した形状(円形)で確認され た.残存鉄片の形状および重量には大差は認められ ず,矩形管内部の電食が全体的に均一に進行し,完全 に剛性を失ったものと考えられる.この結果を踏ま え,この時点を電食完了の時期と決定し,判断基準を 以下のように決定した.

(4) 電食完了判断基準

通常電食は、密閉された空間にて行われるため、内 視鏡等を利用する以外実施工では目視による内部確 認は不可能である.従って、電圧、電流、通電抵抗、IR 電圧値、電解液抵抗率、電解液液温および濃度を複合 評価し、間接的に電食の進行と終了時期を判断する. 以下に電食完了判断基準を示す.

①電圧上昇および,電流が顕著な減少傾向を示した時.

②陽極側矩形管上下 IR 端子部の計測による電圧上 昇が顕著な変化を示した時.

③上下 IR 部の溶解による電位が発生した時.

上記現象が複合確認された時点を,電食完了時期として実証施工へ反映させる.

5. 現場実証施工

本事例は,シールド外径 φ 3980mm の発進工法に電 食劣化技術を適用した例である.

(1) 工事内容

シールド延長:803m

シールド機 : \$ 3980mm土圧式シールド機

土被り : 8.0~10.0m

発進到達防護工:三重管高圧噴射攪拌工法(CJG) 薬液注入工

(2) 電食矩形管の検討

要素実験を基に、実証施工における電食矩形管の 検討を実施した.当該工事において電食方法に関し ては要素実験と同様であるが、柱列式地下連続壁(SMW) 構築において削孔径 φ 650mm、削孔間隔 450mm を適応 するため、電食用杭芯材に矩形管を使用した場合、隣 接孔を削孔中にオーガーが既設矩形管と干渉する可 能性がある.このため図-8 に示すような、矩形管と 同等な断面性能を有し、干渉しない特殊中空H形管 の電食用杭芯材を検討した.表-2 に杭芯材の性能表 を示す.

衣-2 所面性能比較衣				
項目	母材杭芯材	電食用杭芯材		
杭芯材形状	H-500×200×10/16	516×200×9/9		
断面係数 Zx(cm ³)	1870	1876		
断面 2 次モーメント Ix (cm ⁴)	46800	48410		
単位重量 W (kg/m)	88.2	121.0		

-2 断面性能比較表

(3) 電食工

a) 電食用杭芯材の構造

電食用杭芯材の構造は、削孔時の干渉を防止する ため特殊中空H形形状とし、中空内部に円形状の絶 縁材を配列し非電食部を作成して電食時間の短縮を 図った.計画電食重量は、電食対象重量と非電食部 (絶縁部の鉄重量)の差で示され、約80%の電食が 必要である.使用した杭芯材本数は10本で、全電食 重量4240kgに対して、計画電食量は3392kgである. 電食用杭芯材は工場で製作した後、現地で上下部に 母材H形鋼を添接板、高力ボルトにて接続を行った. 表-3に使用した電食用杭芯材重量表、図-9に電食用 杭芯材の詳細図、写真-5 に電食用杭芯材の内部構造、 写真-6 に電食用杭芯材とH形鋼のボルト接続状況 を示す.

杭芯材	電食杭芯長	電食長	対象重量	電食重量
番号	(mm)	(mm)	(Kg)	(Kg)
NO.1	3000	1920	240	192
NO.2	4310	3110	380	304
NO.3	4980	3880	470	376
NO.4	5400	4210	510	408
NO.5	5590	4280	520	416
NO.6	5590	4280	520	416
NO.7	5400	4210	510	408
NO.8	4980	3880	470	376
NO.9	4310	3110	380	304
NO.10	3000	1920	240	192
合 計	46560	34800	4240	3392

表-3 電食杭芯材重量表および計画電食量

写真-5 杭芯材内部構造

写真-6 上下部 H 形鋼と材芯材継手部

b) 電食用杭芯材の電食方法

発進坑口内(写真-7)に布設した電食用杭芯材を, 図-10に示す電食フロー図に基づいて電食を行った.

電食の進行に伴い,杭芯材は応力部材としての矩 形管強度が減少するため,地山土圧に対抗してエン トランス内にシールド掘進機を事前に挿入,切羽内 に泥土を充填し圧力保持を行った.また,杭芯材の 電食が進行すると矩形管内部より薄肉化が進行して 局部的に貫通し電解液が流出するため,防止対策と して杭芯材表面に止水壁を設置して漏液防止を行っ た.電食完了後は,杭芯材内部の空隙部に発砲モル タルを充填した後,シールド機で直接切削を行った.

(3) 電食結果

表-4 に電食用杭芯材の電食結果を示す.全電食芯 材重量4240kgに対し電気量3402kAhの通電を行い最 終電食率は 80%であった. 電食期間は**表-3** に示す電 食長毎に異なるが, 最大で 23 日間の通電を行った.

表-4 電食用杭芯材の電食結果

	重量	重量比率	備考
	(kg)	(%)	
電食対象重量	4240	100	電食対象中空管部
電食重量	3402	80	電食された重量
非電食部重量	838	20	絶縁材貼付部重量

図-11にNo.4芯材の電流,電圧推移,図-12にIR及び 通電抵抗値の推移を示す.電食状況は,計画通電電流 1000Aに対し平均744Aの通電を行い,電圧は4~30V で推移した.電圧は通電当初5V付近で推移した後, 電食率65%付近から急激に上昇した.IR計測値 は、50%付近より増加傾向が顕著に現れ、70%にて端子 部の溶解による電位が確認された.図-12にある通 電抵抗値は、写真-5に示す芯材内部位別(地山側,中 間部,立坑側)の電気抵抗推移を示すものである.電 食率が65~70%付近に達した時点において,電圧上 昇に伴う通電電流の著しい低下,通電抵抗の増加が 認められたため、この時点で電食完了と判断し、電食 を終了した.

写真-7 杭芯材布設状況

図-12 電食進行に伴う IR 電位変化

(4) 電食杭芯材切削結果

図-13 に切削特性グラフを示す. 横軸はシールド 機ストロークを表し,185~701mm 間が, 電食杭芯材 切削中のデータである. 切削は無負荷に近い状況で あり, 電食杭を切削した後の地山切削において, 多少 のカッタートルク上昇が見られる. このことからも, 電食により鋼材が完全に剛性を失っていることが認 められる. 掘進速度は, 初期掘進および電食杭の切削 状況にあるため, 3mm/min とした. 切削された電食残 存鉄片も, 問題なく掘削残土と一緒に搬出された.

写真-8 にシールド機スクリューコンベヤより搬出 された電食残存鉄片を示す.表-5 に電食用杭芯材の 切削データを示す.

表-5 電食杭芯材切削データ			
計測項目	計測値	備考	
掘進ストローク	185~701(mm)	電食杭切削範囲	
平均切削卜协	360 (KN-m)	通常は1200(KN-m)程度	
平均推力	1415(kN)		
平均掘進速度	3(mm/min)		

図-13 杭芯材切削時の推力およびカッタートルク

6. 干涉影響調查

(1) 測定方法

電食工法は, 直流電流を切羽に通電し鋼材を強制 腐食させる工法であるため, 実証施工に際し, 立坑に 近接して模擬埋設物を設置し, 通電電流の周囲に対 する影響調査を行った. 図-14 に示す位置に模擬埋 設管 (P1 裸鋼管, P2 被覆鋼管)を設置した. 各配管両 端には, 亜鉛照合電極 (Zn1, Zn2, Zn3, Zn4)を埋設し, 電食用直流電源装置の出力 0N/0FF 時における埋設 管と照合電極間の電圧計測を行い, 電位変化量を確 認した.

図-14 模擬配管と照合電極設置位置

(2)計測結果

図-15 に電位変化の計測結果を示す.

電食進行に伴い,電食杭から迷走電流が流れ出す ようになれば,模擬配管に影響が出ることになる.電 食率が42%以降で電源電圧の上昇が発生し63%付近 にて30Vに達しているが,それに伴い模擬配管の電 位変化も増加し,マイナス方向への変化は-10~ -20mV程度,プラス方向への変化は約+4mVである.

腐食が促進されるプラス方向への電位変化は+4mV で、この値は、判断基準を大きく下回る値であり、電 食工法による他構造物への影響は少ないと判断され る.しかも、上記の判断基準は他構造物が長期的な迷 走電流の影響下にあることを前提にしているのに対 して、電食工法の場合は仮設で、迷走電流の影響が顕 著に現れる期間は10日間程度であることからも、他 構造物への影響はないものと判断される.

7. まとめ

今回,電食技術を利用した,シールド機の直接発進 到達工法を開発し,要素実験および実証施工を行っ た結果から,本工法を以下のように整理する. ①陽極矩形管内部に絶縁材を貼付する事により,電 食電気量の低減と電食期間の短縮が可能である. ②電食用杭芯材は,電食後,完全に剛性が失われるた め,シールド機への過度な負担が少ない. ③鏡切工に伴う,地盤改良等の補助工法が省略また

は低減可能. ④一般的なシールド機の発進到達工法に見られる立

④一般的なシールト機の発進到達工法に見られる立 坑土留壁の人力による撤去とは異なり,地山の開放 がないため,安全性が高い.

8. おわりに

シールド工法は、都市部には欠かせない技術であ るが、その施工条件は厳しく、要望は高くなってきて いる、特に近年、安全性の向上や周辺環境への負荷低 減、コスト縮減に係る技術開発が求められている.こ れらの要望に応えるべく電食技術を用いた、シール ド機による杭芯材劣化工法を開発した.今後、更なる 効率化や実施工を通じて技術の確実化、コスト低減 を目指す予定である.

最後に、本工法の開発にご協力、ご指導いただきま した方々に感謝の意を表します.

参考文献

- 1) 荒木ら5人編集:水酸化物の性状,鉄鋼腐食科学, 朝倉書店発行,1972
- 岡本,松田,松島:腐食反応とその制御,産業図書 発行,1989
- 3) 化学便覧,日本化学会編,丸善,1993