安倍川巨石付き盛土砂州の試験施工とその効果

EXPERIMENTAL CONSTRUCTION OF NATURAL SANDBARS WITH BOULDERS IN THE ABE RIVER AND ITS EFFECT

相川隆生¹・谷口淳²・長谷川敦³・五島暢太³・佐々木海人³ Takao AIKAWA, Atsushi TANIGUCHI, Atsushi HASEGAWA, Yota GOSHIMA and Kaito SASAKI

¹非会員 国土交通省中部地方整備局静岡河川事務所調査課長(〒420-0068 静岡市葵区田町三丁目-108)
 ²非会員 国土交通省中部地方整備局静岡河川事務所調査係長(〒420-0068 静岡市葵区田町三丁目-108)
 ³正会員 株式会社建設技術研究所中部支社河川部(〒460-0003 名古屋市中区錦一丁目5-13)

In the midstream and downstream of the Abe River, the discharge capacity has been lowered due to the raising riverbed which has been made by sedimental outflow from upstream. Therefore, their embankments and high-water channels might be eroded by the drift current even in the cases of small- and medium-sized floods. This report takes up experimental construction of natural sandbars with boulders and its effect to protect the riverbanks in the midstream and downstream based on comprehensive sediment control of the Abe River.

Key Words :Steep slope river with sediment transport, River-bed scour, Natural sandbars with boulders, River bank protection

1. はじめに

安倍川は、日本屈指の急流河川であるとともに、 地質構造の分布では西南日本外帯の最東端に位置し、 流域の東側には糸魚川・静岡構造線、西側には笹山 構造線が流域を挟む様に走り、破砕の影響を受け風 化しやすく崩れやすい地質構造となっている.また、 源頭部は日本三大崩れの一つである大谷崩に代表さ れる崩壊地が存在し、出水時には膨大な土砂流出が 発生する.そのため安倍川では、出水時に砂礫を含 んだ濁流が流下するため、河床変動が大きくなり¹⁾、 澪筋が固定できず偏流が発生するなど、河床洗掘や 河岸侵食の影響を受けて、古くから洪水による被害 を受けている.

本研究は、上流からの土砂流出により、安倍川中 下流領域で生じている河床上昇に起因する流下能力 不足、中小洪水の偏流による河岸や堤防の侵食など の課題を解決するため、土砂生産・流出、山地・中 下流河川、海岸の各領域が連携し、防災及び土砂の 連続性確保について、流砂系一貫として取り組む総 合土砂管理の観点から、中下流河川領域において実 施した巨石を用いた自然性の高い河岸侵食対策の試 験施工とその効果について報告するものである.

2. 巨石付き盛土砂州施工の背景

安倍川の土砂生産・流出領域では、土砂災害の発 生に備え砂防施設整備を行い、洪水時における急激 な土砂流出抑制対策を行っている.既設砂防堰堤は、 現在は満砂しており、洪水発生時の土砂の捕捉や、 洪水後の下流への土砂供給といった本来の機能を維 持している.しかし大規模な出水が生じた場合、多 量の土砂生産が生じ砂防堰堤の抑止を上回り、中・ 下流域に堆積する状況が生じていることから、今後 も土砂災害の抑制に向けた砂防施設の整備や維持管 理が必要である.

中・下流河川領域では、昭和30年代の初めから砂 利採取が行われたが、昭和40年代初めに全区間にお いて河床低下が発生したことから、昭和43年以降砂 利採取が規制された.その後、河床は上昇傾向とな り、平成20年代には流下能力が不足する程の堆積が 生じ、澪筋の偏流による河岸や堤防の侵食等に起因 する破堤はん濫の危険性が増大していることから、 河道状況を監視し、継続的な河道掘削を行う必要が あるとともに、洪水時の偏流による河岸侵食や局所 洗掘に対し、河岸や堤防の安全性を確保するため、 河岸防護機能を有する施設の設置を行う必要がある.

図-1 河床変動計算による対策箇所選定

また,防護施設に求められる機能は,土砂が流下し やすい河道形状を維持し,安定した流下能力を確保 し,海岸領域への流下土砂量を確保する機能も有す る必要がある.

海岸領域では、昭和40年代以降に静岡・清水海岸 の海岸侵食による護岸の倒壊や高波の越波が生じた ことから、海岸保全施設の整備や安倍川からのサン ドバイパス、漂砂下手側の堆砂領域から土砂を回収 するサンドリサイクル等により砂浜の維持管理が必 要である.また、安倍川、河口テラスからの土砂供 給による海岸の維持・回復を行う必要がある.

これらの対策は、各領域で連携し、山地河川領域 から海岸領域で流砂系一体となった維持管理に努め、 洪水に対する安全性を確保しながら、安倍川特有の 河川環境を維持し、かつ安定的に海岸へ移動させる 土砂動態を目指す必要がある².

3. 巨石付き盛土砂州の施工

(1) 急流河川での河岸防護

急流河川での河岸防護施設の整備では,河岸際の 砂州を活かし,洪水の主流を堤防から滑らかに離す 必要がある.そのため,対策箇所のみに視点を置く ものでは無く,澪筋の線形を是正しこれを維持する という,河川全体を俯瞰する視点を持つことが重要 である³⁾.また,流量規模によっては,河床形状に 支配され蛇行を伴った流れとなり,河岸際に洗掘・ 侵食の力が最も強く作用する発生頻度の高い中小洪 水(平均年最大流量相当の洪水)に対して,河岸際 に走る流れを河道中央に寄せる事で河岸を防護する 必要がある.それに加え,施工後の維持管理(修復 の容易さ)の観点から,安価かつ効果的な対策工を 採用する必要がある.

(2) 巨石付き盛土砂州の機能

巨石付き盛土砂州は、河道内の砂州上流端の水衝 箇所に巨石を配置することで、砂州の侵食や河岸前 面の洗掘を防ぎつつ、砂州沿いに流れる中小洪水時 の流向を改善させることが可能である. さらに、繰 り返し発生する中小洪水での洗掘・侵食の作用に対

表−1 対策工法の選定表			
No	対策必要箇所	対策工法	備考
1	4.00k~4.25k左右岸	根固工	狭窄部であり、河積減少を 考慮
2	5.75k~6.25k左岸	巨石砂州	水衝邨が移動しわすい笛正
3	6.50k~7.25k右岸	巨石砂州	不国即の 仮動して 9 い 回所
4	7.50k~8.50k左岸	巨石砂州	そのり、支化への追随住を
5	8.00k~8.50k右岸	巨石砂州	方底
6	10.75k~11.75k左岸	水制工	
7	12.00k~12.75k右岸	水制工	経年的に観ても水衝部が
8	13.25k~13.75k左岸	水制工	固定していることを考慮
9	16.0k~16.2k右岸	水制工	

し、洪水流を河岸から離すことで護岸の機能確保や、 侵食による構造物の弱体化を軽減することができる. また、現地の土砂や石を使用するため、自然砂州の 持つ治水・環境面の機能を有し、施工後の砂州は群 体として連続する低い水制の様な機能を持ち、コン クリート等で固めた水制に比べて柔らかく、滑らか に流れを制御するとともに、洪水時にある程度の変 形を許容することができる.そのため、砂州自体が 被災した場合の修復や維持管理も容易に行うことが できる.

(3) 施工箇所の選定

河口から中下流河川領域を対象に,平面二次元河 床変動計算により,整備計画流量流下時に河岸沿い で局所洗掘されやすく,対策が必要な箇所を図-1に 抽出した.抽出した箇所については,箇所毎の水理 特性を考慮し,河道が湾曲し水衝部が固定している 箇所については水制工,河道が直線的で水衝部が移 動しやすい箇所については巨石付き盛土砂州,狭窄 部で河積の減少が懸念される箇所については根固工 を選定することとした(表-1参照).

(4) 施工の概要

試験施工は、巨石付き盛土砂州の先端部の約 130mのみとし、水衝部の効果を確認することとした(図-2参照).また、リップラップ工、基礎工部 の根石工に使用した巨石は、整備計画流量流下時の 移動限界粒径よりφ700mmを採用した.その他の天

端被覆工,中詰め盛土工には,現地発生土を使用した.

施工するにあたり,特殊な重機は使用せず,バッ クホウのみで施工を実施した.平成28年度は左岸8k 付近,平成29年度は右岸8.5k付近にて実施した(図 -3参照).なお,試験施工により効果を確認後は, この場所において巨石付き盛土砂州を下流へ延伸す る本施工を行う予定である.

4. モニタリングと設置効果

(1) モニタリングの目的と手法

試験施工の目的としては,巨石付き盛土砂州整備 による,河岸の侵食及び洗掘の軽減機能の把握,洪 水流を河岸から離す効果の把握,設置箇所前後の河 床変動状況の把握,巨石付き盛土砂州自体の流出状 況の把握をすることとした.調査手法については, 出水の前後において,定点写真による砂州近傍の状 況の把握,UAV測量による砂州の上下流区間の状況 把握,横断測量による砂州付近の洗掘状況と河道中

央付近の澪筋形成の状況把握とした(表-2参照).

(2) 出水の状況

モニタリングの対象とする出水は、平成30年の台 風21号及び台風24号によるものを対象とした. 図-4 に示す台風21号出水では、流域の戸持雨量観測所に おいて時間最大36mmの降雨を記録し、本川の手越 観測所において、水防団待機水位1.5mを超えるピー ク水位2.15mを記録した.

図-5に示す台風24号出水では、戸持雨量観測所に おいて時間最大53mmの降雨を記録し、手越観測所 において、はん濫注意水位2.4mを超えるピーク水位 3.2mを記録した.

 図-7
 左岸8k 横断測量比較

 山水前 の滞筋
 No.1
 No.2
 No.3
 No.4
 8.0k
 No.5

 「
 小市
 小市
 小市
 小市
 小市
 小市

 「
 小市
 小市
 小市
 小市
 小市
 小市

 「
 第筋が河道中央方向
 一市
 市
 市
 市
 市
 市
 市
 市
 市
 市
 市
 市
 市
 市
 市
 市
 市
 市
 市
 市
 市
 市
 市
 市
 市
 市
 市
 市
 市
 市
 市
 市
 市
 市
 市
 市
 市
 市
 市
 市
 市
 市
 市
 市
 市
 市
 市
 市
 市
 市
 市
 市
 市
 市
 市
 市
 市
 市
 市
 市
 市
 市
 市
 市
 市
 市
 市
 市
 市
 市
 市
 市
 市
 市
 市
 市
 市
 市
 市
 市
 市
 市
 市
 市
 市
 市

図-8 左岸8k UAV測量比較

(3) モニタリング結果

a) 左岸8k 巨石付き盛土砂州

出水前では、低水護岸法線に対し、巨石付き盛土 砂州先端の角度に添って中央に向かう形で流れが生 じ、出水後も同様に、砂州形状に添って流れが誘導 されていた(図-6参照).

巨石付き盛土砂州前面では、出水後に堆積傾向となり、河道中央で洗掘傾向が見られ、河道中央で漆 筋の形成が確認された(図-7参照).

巨石付き盛土砂州自体の形状変化は見られず,群 体として安定していた.砂州の上流側では土砂堆積 により,澪筋の河道中央への移動が確認された(図

図-9 右岸8.5k 定点写真比較(台風21号)

-8参照).

b) 右岸8.5k 巨石付き盛土砂州

出水前では、低水護岸法線に対し、巨石付き盛土 砂州先端の角度に添って中央に向かう形で流れが生 じ、出水後も同様に砂州形状に添って流れた痕跡が 見られた(図-9参照).

巨石付き盛土砂州前面では、出水後に洗掘傾向となり、河道側でやや洗掘傾向が見られた(図-10参照).

巨石付き盛土砂州自体の形状変化は見られず,群体として安定していた.砂州の下流側では土砂堆積により,流路の回り込みが小さくなっていた(図-11参照).

(4) 令和元年台風19号出水前後の速報

図-12に示す昨年の台風第19号では、5カ所の雨量 観測所において日降水量の既往最大値を記録し、安 倍川の流域平均雨量は347mm/12hrに達した.整備計 画対象降雨(昭和54年10月実績)に比べて緩やかに 雨量が増加し、短時間に降雨が集中しなかったため、 手越観測所のピーク水位ははん濫注意水位超過にと どまったが、水位の高い状態が長時間続いた.

現在,出水後のモニタリングを進めているが,こ こでは速報としてUAV測量による洪水前後の比較を 図-13に示す.

航空写真の比較より右岸8.5kの巨石付き盛土砂州 の前面に明瞭な澪筋が形成され,顕著な水はね効果 が確認された.右岸から左岸8kへの澪筋も河道中央 への移動が見られ,平成30年,令和元年の複数回の 出水により澪筋が変動する過程で,河道中央に澪筋 が形成され,左右岸一対の巨石付き盛土砂州により 連続的に澪筋を是正する効果が確認されたと考えら れる.

図-13 台風19号前後のUAV測量比較

(5) 巨石付き盛土砂州の設置効果

モニタリング結果より出水後では、巨石付き盛土 砂州による澪筋を中央に移動させる効果が見られ、 河岸防御としての機能を発揮したとみられる.また、 2回の出水後においても、巨石付き盛土砂州自体に 大きな変化は見られず、群体として安定していた.

5. シミュレーション (大規模出水を想定して)

実績の出水より規模が大きい出水を想定して,整備計画規模,長時間型(平成13年9月洪水波形)が 生じた場合の効果を平面二次元河床変動モデルにより評価した.巨石付き盛土砂州施工箇所については, 巨石粒径を設定した.

平面二次元河床変動モデルはiRICをプラット フォームとし,著者らが開発した混合粒径の平面二 次元河床変動解析のソルバーを用いた.

図-14、図-15に示すピーク流量時の流速ベクトル と洪水前後の河床変動状況より、右岸の巨石付き盛 土砂州は、河床変動モデルに設定したLP測量時点 (2018.4時点)の澪筋が河岸から離れているため効 果は限定的であったが、左岸の巨石付き盛土砂州に より澪筋を中央に移動させる効果が確認された.

6. 結論

本研究では、急流河川における砂礫を含んだ濁流 の影響により、各領域で生じる課題を解決するべく、 中下流河川領域において、巨石による河床や河岸の 安定効果を活用した河岸侵食対策として、巨石付き 盛土砂州の試験施工を実施した。

モニタリングの結果,平成30年度に発生した二度 の出水に対し,巨石付き盛土砂州自体に大きな支障 は無く,群体としての安定性が確認され,速報では あるが,令和元年の出水においても当初想定した出 水時に澪筋を河岸から離し,河道の中央へ移動させ る効果も確認された.また,シミュレーションによ る整備計画規模の大規模な出水においても同様に, 澪筋を河道の中央へ移動させる効果が確認された.

今後は、先端部のみの試験施工から、砂州の延長 全てを施工する本施工へ移行するとともに, 左右岸 に計画される4箇所の砂州全てが施工された際の効 果について河道の安定化の検証を行い、出水時の被 災等補修の容易性など、維持管理に係るコストの削 減や工期の短縮などの効果も確認を予定している. また、自然石を用いたことによる安倍川本来の砂礫 河床空間の保全に係る環境面での効果や、生物の生 息・成育環境の保全・創出などの種の多様性に関す る効果も確認検証する予定である.

参考文献

- 1) 長田健吾, 福岡捷二, 氏家清彦: 急流河川における砂 州を活かした治水と環境の調和した河道計画、河川技 術論文集, NO.18, pp.227-232, 2012.
- 2) 国土交通省中部地方整備局:安倍川総合土砂管理計画, 2013.
- 3) 北陸地方整備局,河川部,北陸急流河川研究会:治水 と環境の調和した新たな河岸防護技術の手引き、巨石 付き盛土砂州を用いた河岸防護工, pp.13, 2013.

(2020.4.2受付)

図-15 大規模出水時の河床変動状況