実堤防の調査結果に基づいた河川堤防の パイピング危険度の力学的点検フローの提案 PROPOSAL FOR INSPECTION FLOW OF PIPING RISK IN RIVER LEVEES BASED ON THE RESULTS OF ACTURAL LEVEES SURVEY

西村柾哉¹・前田健一²・高辻理人¹・牧洋平¹・泉典洋³ Masaya NISHIMURA, Kenichi MAEDA, Masato TAKATSUJI, Yohe MAKI and Norihiro IZUMI.

1学生会員 名古屋工業大学大学院 社会工学専攻(〒466-8555 名古屋市昭和区御器所町)
2正会員 工博 名古屋工業大学教授 高度防災工学センター(〒466-8555 名古屋市昭和区御器所町)
3正会員 工博 北海道大学教授 環境フィールド工学専攻(〒060-8628 札幌市北区北十三条西8丁目)

Sand boiling dynamics, looseness and liquefaction of soils due piping growth and pore water pressure distributions in the combinations of the properties of river levee body and base ground, and river water level were discussed by performing site investigation and three-dimensional seepage analysis. The key parameters for occurrence and consequence conditions of piping were revealed: layer structures properties in permeable base layer, existence and location in dead-end and the unevenness of inside-land. Based on the survey results for levees damaged and mechanical mechanism of sand boiling holes in which sand particles were erupted due to the localization of pore water flow, an inspection flow of piping risk in river levees was proposed.

Key Words : river levee, sand boil, cone penetration test, pore water pressure, flow localization,

1. はじめに

近年,河川水が透水性基礎地盤に浸透することで,堤 内において漏水や噴砂が発生する被災事例が増加してい る.また,平成24年に矢部川堤防が決壊した事例のよう に,高水位の外力が長時間作用することで堤内側の漏水 や噴砂の発生・継続を助長し,パイピング破壊に至る危 険性がある.そこで,パイピングの進展によって河川堤 防が損傷・決壊する危険性の高い水理一地盤の総合的な 条件を力学的に把握する必要があり,それに基づく重点 監視箇所を抽出するための重要指標を見出すことは今後 の河川管理には不可欠な課題である.

既往の模型実験から河川堤防のパイピングメカニズム は堤体—基礎地盤の地盤特性により大きく異なり特に堤 体の強度が高く,透水層の上に低透水層が被覆している 複層構造基礎地盤を有する場合,パイピング破壊の危険 度が高いことが明らかになった¹⁾. 今後はこれらの情報 をもとにパイピングに対する危険な基礎地盤構造をさら に細かく検討し,実際の現場に適用可能な評価指標を作 成する必要がある.

そこで本論文では、透水性基盤地盤に起因する特徴的

な浸透被害が発生した北海道常呂川において現地で簡易 動的コーン貫入試験を実施し、緩み領域の分布から実堤 防におけるパイピング進展メカニズムを推定した.また、 調査で地盤の緩みが著しかった地点は、透水層が堤内で 途切れたいわゆる「行き止まり」構造になっており、さ らに堤内側の地表面の標高が低くなっている「不陸」も 確認された.そこで、三次元浸透流解析により、行き止 まり地盤の位置や透水係数、堤内地の不陸の大きさや形 状について、圧力伝播や浸透流速に着目しながら詳細に 検討した.

さらに、これらの考察結果を踏まえたパイピング破壊 の危険度を判定する力学的点検フローを作成した.これ は、昨年提案したパイピング破壊に対する簡易点検フ ロー²⁾について、「行き止まり地盤」や「堤内地の不陸」 といった新たな評価項目の具体的な数値指標を示し、そ の定義や効果を明らかにすることで、点検フローの実堤 防への適用性をより高めたものとなっている.また、新 たに提案した点検フローの各項目について、現時点で既 知の範囲で子吉川、常呂川、矢部川、鬼怒川、北川、長 良川の6河川の被災箇所のデータをまとめ、点検フロー に従い各箇所ごとにパイピング危険度を分類し、実堤防 の被災事例から点検ポイントの妥当性を評価した.

2. 簡易動的コーン貫入試験

(1) 試験実施地点と試験方法

2016年8月に発生した台風11号により被災した北海道 常呂川において現地調査を実施した.調査では簡易動的 コーン貫入試験機を用いて堤体及び基礎地盤の緩みを測 定し,噴砂が発生した地点の水道の特定と水道形成メカ ニズムの解明を試みた.調査の実施は2017年7月及び10 月であり被災から約1年経過しているが,噴砂等により 形成された地盤の緩みは水位低下後も残り続けることが 実験で確認されている³.よって出水によって形成され た地盤の緩みは出水後であっても観測可能と判断し,本 試験を実施した.

図-1に貫入試験の実施箇所を示す.調査箇所は常呂川 左岸KP26.7~27.1のポン隈川合流部付近で,堤体のNd値 は平均5程度,法勾配は約2.5である.同地点には噴砂が 多数発生しており,複数の釜段・月の輪工が施されてい た.試験は法尻で多数の噴砂が発生した箇所(A地点), 噴砂が発生しなかった箇所(B地点),法尻から離れた 堤内側で噴砂が発生した箇所(C地点)の被災形態の異 なる3箇所で,法尻と堤内側を中心に実施した.また, 簡易動的コーン貫入試験機は質量5kgのハンマーを50cm の高さから自由落下させ原位置における土の貫入抵抗を 換算N値Ndとして求める装置である.NdはNd=10×(打 撃回数)/(貫入量)で算定する.先端コーンの直径は 25mmである.

(2) 試験結果および考察

a)法尻で多数の噴砂が発生した箇所(A地点)

A地点では月の輪工設置区間の中心(①)と裏法尻3 箇所(②~④)の計4箇所で貫入試験を実施した. 図-2 にA地点における貫入試験結果及び断面の概要図を示す. なおグラフの縦軸は裏法尻先端(②)の基礎地盤地表面 を原点とした深度である.また,相対的に N_d 値が小さい 領域($N_d \leq 5$)を緩み領域と定義し整理を行った.図よ り①で深度3.0~4.0m,②で深度1.0mと1.75mに緩み領域 が確認された.地表面から深い位置に局所的な緩みが生 じており,噴砂に伴う土粒子の流出によって形成された 緩み領域だと考えられる.また,いずれの地点でも基礎 地盤の表層は柔らかく,さらに緩みは堤体直下の基礎地 盤でも確認された.模型実験においても,裏法尻の基礎 地盤から堤外側へ緩みが進展することでパイピングに至 ることが明らかになっており¹⁾,現地においても同様の 現象が発生していた可能性がある.

また,A地点では貫入試験と同じ測線で応用地質の倉田らが電気探査を行っている.電気探査の比抵抗分布を 図-3に示す⁴.なお各比抵抗値における土質凡例は, オーガーボーリングにより現地で採取した試料から推定 したものである.図より,透水性の高い礫混じり砂層は

図-2 法尻で多数の噴砂が発生した箇所(A地点)の貫入試験 結果と断面の概要図(堤防横断方向断面)

図-3 法尻で多数の噴砂が発生した箇所(A地点)の電気探査 の結果(堤防横断方向断面)

堤体から堤内方向へ25m程離れた地点で途切れており, いわゆる行き止まり構造になっていることが分かる.こ の行き止まり構造によりA地点周辺の基礎地盤内の圧力 が上昇したため,多数の噴砂が発生した可能性がある.

b) 噴砂が発生しなかった箇所(B地点)

B地点では堤内側の3箇所(①~③)で貫入試験を実施した.図-4にB地点における貫入試験結果及び断面の概要図を示す.深度の原点は裏法尻先端(③)の基礎地盤地表面である.図よりいずれの測定箇所でも地表面から0.7m程度の表層のNd値が高く,締め固まっていることが確認できる.表層に締め固まった地盤があることで,噴砂の発生を防いでいたと考えられる.しかし,表層の下は非常に緩い層が続いており,周辺で発生した噴砂等によって地盤内部が流動していた可能性がある.

c) 法尻から離れた堤内側で噴砂が発生した箇所(C地点) C地点では堤内側の4箇所(①~④)で貫入試験を実 施した.図-5にC地点における貫入試験結果及び断面の 概要図を示す.図より裏法尻の④は表層が締め固まって おり,噴砂が発生しにくい地盤条件である.一方,堤内 側の①~③では表層が軟らかく,深い深度まで緩み領域 が連続して分布していた.また①~③の貫入試験は砂礫 層と考えられる層によって貫入が継続不可能となり試験 を終了した.釜段設置箇所の直上である②で最も浅い位 置に砂礫層が分布しており,いわゆる被覆土層が薄く なっていたため②で選択的に噴砂が発生したと予想され る.また④では深度3mまで砂礫層は確認できず,C地点 断面においてはA地点,B地点と比較して砂礫層が堤外 まで連通していない可能性がある.よって,C地点に関 しては,浸透流は縦断方向に続く砂礫層によって釜段設 置箇所に供給されていたのではないかと考えられる.

3. 行き止まり地盤の位置と透水係数

実堤防においても、基礎地盤の行き止まり構造が噴砂 発生を助長していたことが示唆された.しかし、行き止 まり地盤の明確な条件や定義、影響の大きさについては、 これまで十分な検討がなされていない.そこで、第3章 では行き止まり地盤の位置及び透水係数に着目しこれら の要素がパイピング発生に及ぼす影響を現地の再現モデ ルを用いて二次元浸透FEM解析により定量的に検討した. 解析計算にはVGモデルを搭載した不飽和浸透流計算が 可能である地層科学研究所GEOSCIENCEの3D-Flow三次 元飽和・不飽和浸透流解析ソフトを使用した.

(1) 解析概要

図-6に解析モデルの概要図を示す.解析モデルは常呂 川左岸KP26.8地点を参考に作成した⁵.設定した各材料 の透水係数は図-6に示す.透水係数は常呂川堤防調査委 員会報告書及び各土質分類から推定した代表値⁶を設定 した.検討ケースの一覧は表-1に示す.解析モデルの堤 内側の端部に行き止まり地盤を設置し,裏法尻から行き 止まり地盤までの距離(以下,行き止まり距離d)と,

図-4 噴砂が発生しなかった箇所(B地点)の貫入試験結果と 断面の概要図(堤防横断方向断面)

の貫入試験結果と断面の概要図(堤防横断方向断面)

行き止まり地盤の透水係数をそれぞれ変化させた.

境界条件は堤外側にHWL時の外水位2.75mを一様に作 用させ、堤内側の地表面と裏側法面は排水境界に設定し、 定常解析を行った.また、モデル化した現地は両側を山 に囲まれた谷部に位置し、大雨の際には地下水位が急激 に上昇し、短時間で飽和・被圧状態になる可能性がある. よって、飽和・浸透にかかる時間を無視し、最も危険な 条件を想定した定常状態で検討を行った.

(2) 解析結果と考察

図-7に各ケースの行き止まり距離と堤内に伝播した過 剰間隙水圧の圧力水頭の関係を示す. 横軸は行き止まり

図-6 解析モデル概要図(常呂川左岸KP26.8地点)

距離dを堤体幅B=27mで除し,無次元化した値である. 縦軸は堤防裏法尻直下のAs層底面(位置は図-7参照)の 過剰間隙水圧の圧力水頭を被覆土層厚の1.7mで除した値 であり,堤防裏法尻における局所動水勾配とほぼ同義で ある.図-7より,行き止まり地盤の透水性が低く,d/B が小さいケースほど圧力水頭が大きくなっていることが 分かる.行き止まり地盤の条件によっては圧力が5倍以 上変化し,最大で局所動水勾配が1.0を超えるような非 常に大きな圧力が法尻に作用することが分かった.透水 性の低い行き止まり地盤が法尻付近にあることで,浸透 流の逃げ場がなくなり基礎地盤内に圧力が蓄積され,パ イピングの危険度が高まると考えられる.逆に,透水性 の高いk=1.0×10⁴(m/s)のケースでは圧力水頭が小さく なっているが,これは行き止まり地盤によって浸透流が 排水され,過剰間隙水圧が消散したためだと考えられる.

また, k=1.0×10⁶(m/s)と不透水のケースを比較すると, 圧力水頭がほぼ同程度であることが分かる.よって,透 水性下層と行き止まり地盤に100倍程度の透水係数の差 があることで,不透水層とほぼ同等の行き止まり地盤と みなすことができるといえる.

さらに、いずれのケースもd/Bが大きくなるほど圧力 水頭の変化は小さくなっており、行き止まり地盤には効 果を発揮する影響範囲が存在すると推定できる. 模型実 験の再現解析から行き止まりの影響範囲はd/B =1.5程度 であるという結果が得られていた¹⁾が、現地の再現モデ ルでも概ね同様の結果が得られた.

4. 堤内地の不陸(高低差)

図-8にLPデータから作成した常呂川左岸KP26.8付近の標高コンターを示す.図より噴砂密集地帯は、周囲よりも標高が60cm程度低くなっていることが分かる.標高が低い地点は、浸透流が地表面に吹き出しやすく周囲から水を引き寄せる性質があるため、被害が集中した可能性がある.そこで、第4章では堤内地の不陸(高低差)が河川堤防の安定性にどのような影響を及ぼしていたのか、三次元浸透FEM解析により検討した.解析ソフトは3章で説明したものと同一である.

(1) 解析概要

図-9に解析モデルの概要図を示す.設定した各材料の 透水係数は第2章で用いたモデルと同じである.ただし, 行き止まり地盤の条件は現地に合わせて,行き止まり距 離d=25,透水係数k=1.0×10⁶(m/s)に固定した.検討ケー スの一覧は表-2に示す.解析モデルの堤内中央の法尻に 不陸を設置し,不陸の横断方向の長さl_x,縦断方向の長 さl_y,不陸の深さLをそれぞれ変化させた.

境界条件は堤外側にHWLの外水位2.75mを一様に作用 させ、堤内側の地表面と裏法面は排水境界に設定し、定 常解析を行った.なお不陸部分には不陸の深さ分の静水 圧を作用させ、低地に水が溜まった状況を再現している.

図-7 行き止まり距離と裏法尻直下の圧力の関係

図-8 常呂川左岸KP26.8付近の標高コンター (国土交通省・北海道開発局提供)

(2) 解析結果と考察

図-10に各ケースの不陸箇所における浸透流速を,不 陸を設置していないケースの同地点での浸透流速で除し た値を示す. (流速計測地点は図-9を参照). 分かりや すく言いかえると、図-10は不陸の条件(形状、大きさ、 深さ)によって、不陸がない場合に対して流速が何倍に 増加したかを示した図である.まず、いずれのグラフに おいても、不陸の深さLが大きく、不陸の横断方向の長 さkがより小さいケースほど、流速の増加倍率は大きく なっていることが分かる.また、4つのグラフを比較す ると、不陸の縦断方向の長さんが小さいケースの方が流 速の増加倍率は大きくなっている. つまり, 不陸の面積 (l_x×l_y) は小さく, 深さはより深いほど流速の増加倍 率は大きくなると言える.不陸による浸透流速の増加は, 周囲との水の流れやすさの対比によって生じるものであ り、不陸が鉛直方向に長いパイプ状の形状で最も効果を 発揮する結果は妥当であると考える.

図-10の検討から、不陸の影響は面積($l_x \times l_y$)と深さ l_x によって整理できることが推察された.そこで、各 ケースの流速の増加倍率を面積ごとに整理した三次元グ ラフを図-11に示す.なお、不陸の面積が等しいケース が複数ある場合については、その平均値を用いている. 例えば不陸の面積が250m²のプロットは、 $l_x \times l_y = 5m \times$ 50m、10m×25m、25m×10mの3ケースの結果の平均を とっている.平均をとった中で、最も誤差が大きかった ケースは $l_x=5m$ 、 $l_y=10m \ge l_x=1m$ 、 $l_y=50m$ の深さ1.5mの ケースで、誤差は5.8%であった.この誤差は、不陸の大 きさ(面積)や深さによる流速の増加倍率に比べて非常 に小さく、不陸が縦断方向に長いか横断方向に長いかと いった不陸の形状は、流速増加にあまり影響していない ことが分かった.

図-11より,不陸の深さが0m~0.9mまでは不陸の面積 にかかわらず流速は1~2倍程度しか増加していないが, 不陸の深さが0.9mを超えると流速が急激に増加し始め, 最大で約8倍になっている.また,面積の大きさによる 違いもより顕著になっていることが分かる.不陸箇所の 凹みが深くなるほど,より広範囲から浸透流を集水し, それを排水する不陸の面積が小さいほど流速は増加する ためだと考えられる.また,参考として本解析モデルで 流速が2倍となる条件は,不陸の面積が625m²,深さが 0.9m(被覆土層厚の半分以上の厚さ)となっている.

5. パイピング危険度の力学的点検フロー

第5章では、これらの考察結果を踏まえたパイピング 破壊の危険度を判定する力学的点検フローを作成した. 図-12に点検フローを示し、図-13に着目すべき堤体-基 礎地盤条件を示す.この点検フローは昨年提案したパイ ピング破壊に対する簡易点検フロー²について、「行き

図-11 不陸の面積(lx×ly)と深さによる浸透流速の増加倍率

止まり地盤」や「堤内地の不陸」といった新たな評価項 目の具体的な数値指標を示し、その定義や効果を明らか にしたものとなっている. また,新たに提案した点検フ ローの各項目について, 現時点で既知の範囲で子吉川, 常呂川, 矢部川, 鬼怒川, 北川, 長良川の6河川の被災 箇所のデータを表-3のようにまとめ、 点検フローに従い 各箇所のパイピング危険度を分類した. 図-14に各被災 箇所の点検フローによる危険度評価と実際の被災レベル を比較した図を示す.図より、点検フローにおける危険 度レベルが上昇するにしたがって実際の被災レベルも大 きくなっており,実際の被害の大きさは点検フローの結 果と概ね一致していることが分かる.よって実堤防にお いても点検フローの有効性が示されたと言える.また, 従来の評価基準である局所動水勾配やG/Wでは、セーフ かアウトの2択でしか判定できなかったが、本点検フ ローでは被害の大きさまで判別することができるため,

表3	実堤防の堤体-	基礎地盤構造の比較	(国土交通省報告書を参考にした.	例えば参考文献5))
----	---------	-----------	------------------	------------

実堤防の被災事例	パイピング 進展 危険度	堤体	層構造	被覆土層の 土質と層厚	Lu/Luc	透水係数比 k:/ku	行き止まり境界 の有無と法尻か らの距離 d	d / B	行き止まり地盤 との透水係数比 k _l /k _e	河床への透 水層の露出	集水効果のあ る地形
①子吉川右岸 10.8k付近、(噴砂・すべり), 2013	危険度1	砂質土	複層	粘性土+砂質土1m	0.20	100程度	○9.6m	0.44	2.6	×	湾曲
②常呂川左岸 26.8k付近,(噴砂), 2016	危険度3	粘性土	複層	砂質土2m	0.43	100程度	025m	0.93	100程度	0	不陸・支川
③矢部川左岸 6.2k付近,(無被災), 2012	危険度1	粘性土	複層	シルト層2m	0.31	100程度		-	-	×	不陸
④矢部川右岸 7.3k付近,(決壞箇所), 2012	危険度3	粘性土	複層	粘性土1m	0.10	100程度	⊖13m	0.77	100程度	0	不陸・湾曲
⑤矢部川右岸 11.8k付近, (噴砂) ,2012	危険度1	砂質土	複層	砂質土2.5m	0.60	1000程度		-	-	0	×
⑥矢部川左岸 16.0k付近,(噴砂), 2012	危険度1	砂質土	複層	砂質土2.5m	0.57	100程度	-	-	-	0	×
⑦鬼怒川左岸 13.1k付近,(噴砂), 2015	危険度1	砂質土	複層	粘性土0.4m	0.07	100程度	O4.1m	0.25	100程度	×	×
⑧北川左岸 13.1k付近,(噴砂・陥没), 2018	危険度2	砂質土	複層	シルト層1.6m	0.39	1000程度	-	-	-	0	不陸
⑨長良川右岸 49.0k付近,(噴砂. 陥没), 2018	危険度2	砂礫	複層	砂質土1.7m	0.37	200程度	-	-	-	0	不陸・湾曲

図-12 河川堤防のパイピング危険度の力学的点検フロー

より詳細な危険箇所の抽出に繋がり、河川堤防の効率的 な維持管理に貢献できると考える.

6. まとめ

本研究から以下のような知見が得られた.

- 簡易貫入試験から大まかな地盤条件を把握し、被災 状況と相関のある結果が得られた。特に噴砂が発生 した箇所の周辺地盤には局所的な緩み領域が形成さ れており、堤体直下の基礎地盤まで緩みが進展して いる地点も確認できた。
- 2) 浸透流解析から、行き止まり地盤は裏法尻直下の圧 力を最大で5倍以上変化させることが分かった.また、 透水性下層と行き止まり地盤の間に100倍程度の透水 係数の差があること、裏法尻から堤体幅の約1.5倍の 範囲内に存在することが、行き止まりの効果発揮の 閾値になる.
- 3) 堤内地の不陸の集水効果は、不陸の面積と高低差に よって整理することができ、面積が小さく、高低差 が大きいほど集水効果は強くなる.(最大8倍)
- パイピング破壊に対して着目すべき地盤条件の定義 や閾値を示した新たな点検フローを提案した.また, 実際の被災事例と比較することで,点検フローの実 堤防における有効性が確認できた.

図-14 実際の被災事例と点検フローによる評価の比較

謝辞:本研究の成果は、国土交通省・河川砂防技術研究 開発制度平成29年度国総研からの委託研究、科学技術研 究費(研究課題17H03305)の援助を受けたものである. 末筆ながら深謝の意を示します.

参考文献

- 西村柾哉,前田健一,櫛山総平,泉典洋,齊藤啓:異なる 基礎地盤特性の堤防の噴砂動態・パイピング挙動と漏水対 策型水防工法の効果,河川技術論文集23巻,pp.381-386,2017.
- 2) 西村柾哉,前田健一,櫛山総平,高辻理人,泉典洋:河川 堤防のパイピング危険度の力学的簡易点検フローと漏水対 策型水防工法の効果発揮条件,河川技術論文集 24 巻, pp.381-386, 2018.
- 3)新清晃,倉田大輔,川原孝洋,京野修,小西千里:X線を 用いたパイピング破壊に伴う緩み領域の進行と水位履歴の 影響,第5回河川堤防技術シンポジウム論文集,pp.5-8,2017.
- 4) 倉田大輔,新清晃,小西千里,山下善弘:電気探査を用いた堤内地における行き止まり構造の把握手法,第6回河川堤防技術シンポジウム論文集, pp.5-8, 2018.
- 5) 常呂川堤防調査委員会, 常呂川堤防調査委員会報告書, 2017.
- 6) 地盤工学会, 土質試験-基本と手引き-, pp91, 2014.

(2019.4.2受付)