改良された袋詰玉石工の洪水時の 安定性評価技術の開発とこれを活用した 袋詰玉石工の構造・配置の技術的検討 TECHNICAL DEVELOPMENT ASSESSING THE STABILITY OF IMPROVED

GRAVEL BAGS DURING FLOODS AND NEW TECHNIQUES ON STRUCTURE AND ARRANGEMENT OF GRAVEL BAGS

> 福田朝生¹・澁谷慎一²・福岡捷二³ Tomoo FUKUDA, Shinichi SHIBUYA and Shoji FUKUOKA

¹正会員 博(工) 中央大学研究開発機構(〒112-8551 東京都文京区春日 1-13-27)
²正会員 国土交通省 関東地方整備局 京浜河川事務所所長(〒230-0051 横浜市鶴見区中央2-18-1)
³フェロー 工博 Ph.D. 中央大学研究開発機構(〒112-8551 東京都文京区春日 1-13-27)

In the Tamagawa River, gravel bags were installed for the erosion protection of the river bank at the end of a groundsill where mudstone was exposed. However some gravel bags were flushed out by flood flows. In this study, a new numerical simulation method was developed which is capable of predicting motions of gravel bags using the Lagrangian approach and fluid motions using the Eulerian approach. Improvements of the structure and the arrangement of gravel bags were examined by a field survey and numerical investigations on stability of gravel bags in flows. From these investigations, it was shown that the structure in which a gravel bag divided into small bags was wrapped in a large bag was effective as the structure for enhancing the stability of the gravel bags. In addition, it is emphasized to install gravel bags integrally downstream from the groundsill to the region where the high flow velocity exerting on gravel bags decelerates.

Key Words : *Gravel bag, mudstone, erosion protection, structure, arrangement , solid-liquid multi-phase simulation.*

1. 序論

沖積地河川では、石礫の消失により河床や河岸に土丹 が露出したが河川多い.このような河川では、洪水や通 過する土砂により土丹が削れ、地形の変化を抑制するこ とは容易ではない.土丹侵食対策として河岸の侵食対策 には一般的にコンクリート護岸を用いられることが多い が、コンクリートと土丹の間に空隙が生じた場合に、コ ンクリートは空隙地形になじんで変形することができな い.このため、空隙部の更なる拡大と共に水流を誘導し、 コンクリート護岸は破壊されてしまう.これに対し、袋 詰玉石工は屈撓性を有するため、河岸との間に多少侵食 が生じても、侵食地形になじんで変形することができ、 コンクリート護岸と比較してより効果的に土丹を保護す ることが期待できる.しかし、袋詰玉石工は、設計法が なく、主に応急復旧工法として使われているのが実情で ある.このため、袋詰玉石工の構造や配置は必ずしも適 切に行われていず、洪水時に流出してしまう事例も多く 見られる.

本研究で対象とする多摩川 44.7k 付近は,河岸に土丹 が露出する区間である.また,河床低下により流失して しまった石礫を回復し,流出しないように帯工が複数設 置されている.しかし,図-1に示すように帯工の袖部の 土丹が特に侵食を受ける傾向にあり,この部分の侵食対 策が課題となっている.この課題に対し多摩川では,袋 詰玉石工を用いた帯工袖部の土丹の侵食対策が実施され ている.しかし,これらの袋詰玉石工も洪水により流出 してしまう事例が生じており,帯工袖部の土丹を保護す るために設置する袋詰玉石工の構造と配置の改良が必要 となっている.

本研究では、袋詰玉石工のこれらの課題に対し、まず、

図-1 帯工袖部の侵食状況

洪水時に多摩川帯工袖部から流出した袋詰玉石工の状況 を分析し、袋詰玉石工の構造上の課題を明らかにしその 改善策を提案する.

さらに、適切な袋詰玉石工の設計のためには、複雑な 形状の河岸に設置される袋詰玉石工の水流に対する安定 性を正しく評価できる数値解析技術の開発が不可欠であ る.袋詰玉石工のような屈撓性材料を取り扱う数値解析 研究として、個別要素法によるソイルバッグの解析¹⁾な どはあるが、水流と袋詰玉石工の相互作用を考慮した適 切な連成解析技術は著者らの知る限り構築されていない.

著者らは種々の形状の石礫と水流から成る流れ場の三 次元運動を解析することができる固液混相流解析手法を 構築してきた². この手法では,石礫よりも小さな計算 格子を用いて石礫周りの流れを Euler 的に詳細に解析す る.また種々の形状の石礫は,小球を隙間がないように 重ね合わせた物体でモデル化し,これらの運動を剛体と して Lagrange 的に解析する.このような固液混相流解 析法は,袋詰玉石工の中の石礫群と水流の連成解析に極 めて適した解析法である.

本研究では、さらに袋詰玉石の網袋を小球の連結とし てモデル化し、その中に石礫群を入れることで、袋詰玉 石工の解析モデルを作成する.これにより、高精度の固 液混相流解析法の枠組みで、屈撓性をもつ袋詰玉石工の 洪水流中の安定性を適切に評価できる新しい数値解析法 を構築する.

この解析法を用いて,最初に多摩川の袋詰玉石工が流 出した事例を解析し,袋詰玉石工の流出に対する解析結 果の再現性を確認する.次に,現地の袋詰玉石工の流出 状況調査と数値解析による分析を踏まえて,改良した新 しい構造と配置の袋詰玉石工を提案し,この安定性解析 から改良型袋詰玉石工の有効性を明らかにする.さらに, これらの検討結果に基づき,新たに施工する改良型袋詰 玉石工の適用範囲拡張を図る.

2. 帯工袖部の袋詰玉石工の流出状況

図-2には多摩川 44.7k の帯工袖部に侵食対策として設置 された袋詰玉石工(上段)と、平成29年10月洪水によって流

平成27年8月27日撮影

平成29年11月22日撮影 図-2 袋詰玉石工の流出前後の状況 (上段:流出前,下段:流出後)

図-3 移動した袋詰玉石工の近景

流出時の変形を抑制するため、小さな袋で小分けし、こ の袋数個分を大きな袋で包む構造とした袋詰玉石工

図-4 小袋で小分けした袋詰玉石工

出した後の袋詰玉石工の状況(下段)を示している.平成 29年10月洪水で,特に帯工下流部の袋詰玉石工の多くは 20 m 近く移動してしまっている.図-3には,移動した袋 詰玉石工の近景を示す.袋詰玉石工は設置時には平面的に 丸い形状をしているが,流出後には,内部の石が動き,そ の結果,流れの抵抗をより受けやすい形に大きく変形して いる.一般に,袋詰玉石工内部の石礫は密に詰めることが 難しく,施工上釣り上げて所定の場所に置くことにより, 洪水中に袋内で石が大きく動き大変形することになる.こ のような袋詰玉石工の構造上の課題に対して,本研究では, 図-4に示すように小袋で一度小分けすることで,内部の石 礫の大きな移動を抑制し,袋詰玉石工の大変形を抑制する 新しい構造を提案した.そしてこの袋詰玉石工を現地に施 工した際の安定性について5章で検討を行った.

3. 数值解析法

(1) 流体運動の解析法

袋詰玉石工の水流に対する安定性を調べるために本研 究で構築した固液混相流解析法について説明する.液相 の運動解析では、牛島ら³⁾の手法を参考に固相を密度の 異なる流体として全体を非圧縮性流れとして解いている. SGSの乱流モデルとして Smagorinsky モデルを用いLES として解いている.以下に液相の解析の基礎式を示す.

$$\frac{\partial u_i}{\partial x_i} = 0 \tag{1}$$

$$\frac{\partial u_i}{\partial t} + u_j \frac{\partial u_i}{\partial x_j} = g_i - \frac{1}{\rho} \frac{\partial P}{\partial x_i} + \frac{\partial}{\partial x_j} \{ 2(\nu + \nu_t) S_{ij} \}$$
(2)

$$S_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right)$$
(3)

$$\nu = \mu / \rho \tag{4}$$

$$\nu_t = (C_s \Delta)^2 \sqrt{2S_{ij}S_{ij}} \tag{5}$$

ここに u_i は固相部分も考慮した計算格子内の質量平均 の i 方向速度. ρ および μ は計算格子内の体積平均密 度および粘性係数である. g_i は重力加速度, P は圧力 と SGS 応力の等方成分の和, C_s はスマゴリンスキー 定数, Δ は計算格子サイズである. これらを直交格子差 分法で離散化し, SMAC 法を用いて時間積分を行って いる. なお, 自由水面の変化は VOF 法⁴⁰で解析してい る. 解析法の詳細は文献²⁰を参照されたい.

(2) 袋詰玉石工のモデル

本研究で構築した袋詰玉石工のモデルを数値的な水路 に設置して安定性を解析した例を図-5に示す.図-5に示 すように本研究では小球を連結させて紐状とし、これら を網の様に連結させることで網袋のモデルを構築してい る.石礫は9つの小球を隙間が無いように連結して作成 し、複数の石礫を網モデルの中にいれ、屈撓性のある袋 詰玉石の運動を解析できるようにしている.

(3) 石礫と袋の小球の運動解析法

袋の中に入れる石礫と,袋を構成するそれぞれ小球の 運動は,剛体として以下の並進と回転の運動方程式を用 いて解析している.

$$M\ddot{r}_i^g = Mg_i + F_i^f + F_i^c \tag{6}$$

$$\dot{\omega}_{i'} = I_{i'j'}^{-1} \{ R_{j'i} (T_i^f + T_i^c) - \varepsilon_{j'k'l'} \omega_{k'} I_{l'm'} \omega_{m'} \}$$
(7)

ここに指標 i は、空間に固定された座標系の成分を示 し、指標 $i' \sim m'$ は剛体に固定された座標系の成分を示 す. M は粒子の質量、 r_i^g は剛体の重心位置、 ω_i は角 速度ベクトル、 F_i は粒子表面に作用する力で T_i はそ れらの力によって生じる粒子重心に作用するトルクであ る. 上付き添え字 f, c は流体力および接触力の成分 を示す. g_i は重力加速度、 I_i^{-1} は粒子に固定された座

袋の中の石礫と流れの様子

図-5 水路上の袋詰玉石工の安定解析例

表-1 袋詰玉石工のモデルの諸元

	単位	大袋 モデル	小分け袋 モデル
石礫径	m	0.2	0.2
石礫密度	kg/m ³	2,650	2,650
袋の小球径	m	0.1	0.1
袋の小球密度	kg/m ³	1,000	1,000
小袋内石礫数	_	—	84
小袋内石礫質量合計	kg	—	931
大袋内石礫数	_	334	336
大袋内石礫質量合計	kg	3,700	3,720

図-6 小分け袋詰玉石エモデル

標系の慣性テンソル成分の逆行列, $R_{j'i}$ は $e_{j'} \cdot e_i$ ·である ($e_{j'}$, e_i は単位基底ベクトル). $\varepsilon_{j'k'l'}$ はレヴィチ ビタ記号である. 粒子に作用する流体力 F_i^f は, 液相の 運動解析で解かれた混相流体の粒子部分に作用する力を 体積積分することで求めている².

(4) 接触力の算定法

本解析における接触力の算定法は2パターンに分類され る.1パターン目は、網袋の紐を構成する小球が結合相手 の紐の小球と接触する場合であり(結合接触と呼ぶ),2 パターン目はそれ以外(通常接触)である.この通常接 触には、石礫同士の接触,石礫と紐の小球との接触,結 合されていない紐の小球同士の接触が含まれる.これら の2パターンの接触力は、バネ、ダッシュポット、摩擦ス ライダーを用いて解析している².

通常接触は、結合されていない小球間の接触であるため、 引張力を作用させない、一方、結合接触では引張力も考 慮する、結合接触となる初期の小球は、図-6に示すよう に互いに1点で接するように配置する、このため法線方

向のバネの力は、重なる際は圧縮力、離れる場合には引 張力が算定される.また、結合接触で、通常接触と同様 に接平面上の方向のバネを考慮して接触力を求めてしま うと、バネによるエネルギーが蓄積され、剛性をもつ材 料のような挙動となってしまう.一方、袋の紐はしなや かに変形させる必要がある.このため、結合接触では法 線方向のバネについては考慮するが、接平面上の方向の バネは考慮していない.

4. 現地河岸に設置した袋詰玉石工の洪水流中の 安定性解析

(1) 解析ケース

本研究では、図-2に示すIR八高線多摩川鉄橋直下流の 帯工袖部の袋詰玉石工を対象とし袋詰玉石工が流出した 平成29年10洪水相当の外力を与え、袋詰玉石工の安定性 解析を2ケース実施する.ケース1(再現計算と呼ぶ)は、 流出する前の袋詰玉石の大きさ、配置で安定性解析を実 施する.再現計算では、現地に施工された袋詰玉石と同 様に、図-5に示すように1つの大きな袋で石礫を包んだ 袋詰玉石のモデルを用いる(大袋モデルと呼ぶ).大袋モ デルの諸元を表-1に示す.大袋モデルに詰めた石礫は 3,700kg である.この解析から袋詰玉石工の流出に対す るモデルの再現性を確認し、また、実際に流出した袋詰 玉石の配置の課題を明らかにする.

ケース2(新規案と呼ぶ)は、再現計算の結果を踏ま えて、流出しにくいように工夫した新しい袋詰玉石の施 工案で安定性解析を行い,施工案の効果を評価する.図 -6には、新規案で用いた袋詰玉石工のモデル(小分け袋 モデルと呼ぶ)を示す.小分け袋モデルの諸元は表-1に 示している.小分け袋モデルは、袋の中の石礫の空隙を 減じ、動き(変位)を抑制するため、まず、約1 tの石礫を 含む小袋を作成し、この小袋4つ分を1つの大きな袋で包 む新しい袋詰玉石工である.

(2) 解析領域および並列計算法

図-7には三次元固液混相流の解析領域および本解析の 座標系の定義を示す.解析領域は縦断方向に 130 m 横 断方向には 60 m である.解析領域は,計算負荷を考慮 し,また,帯工地点の高速流が及ばない帯工から離れた 場所が境界となるように設定した.

2m 立法の計算領域ブロック6,082個を複雑な河床地形に 応じて組み合わせて計算領域を設定した.流体計算格子 サイズは,計算負荷を考慮し,石礫径よりはやや大きい ものの,高さ約1m程度の袋詰玉石工の周囲の流れを説 明できるサイズとして 0.25mとした.これらの比較的大 規模な計算は,九州大学のスパコンを利用し,MPIと OpenMPのハイブリッド並列計算で実施した.なお,1プ ロセスに複数の計算領域ブロックを割り当てることで, プロセス間の計算負荷をバランスさせることができる並 列計算法 (PB法(Prural Blocks法))を用いた⁵.

(3) 境界条件

三次元の固液混相流の解析では、境界条件として上下

流端に水位を与えた.また、横断方向は不透過とした. 本解析は,詳細な三次元計算であり計算負荷が大きく, 平成29年洪水のハイドロ全体を対象に解析することが難 しい、そのため、当該洪水のピーク時の流況を定常で与 えて袋詰玉石工の安定性を検討した. 上流端水位には, 近傍の 45k 地点で観測されたピーク水位 A.P.84.6m を 与えた、下流端は、まず平成29年洪水の当該地点のピー ク流量相当の 2,000 m³/s を外力として固液混相流解析区 間を含む広域を準三次元解析で解析し、その結果である A.P.83.4 m を下流端の境界条件として与えた.

(4) 解析地形

袋詰玉石の安定性を評価するためには、現地の詳細な 地形を境界条件として与える必要がある、本研究では、 図-8に示すALB測量により得られた1m メッシュの地 盤高データを解析地形データとして与えている.具体的 には、河床と河岸の地形に合わせて0.2 m の小球を並べ 地形を表現している. このようにすることで、袋詰玉石 ※ 袋詰玉石工の個体の別を示すため、袋詰玉石工の袋の色を、 工が河床や河岸との接触を保ち安定性の解析を可能とし ※ 白色の丸 ベクトルは、時間当たりの推定移動距離を示す. ている.

(5) 再現計算

再現計では、袋詰玉石工の移動速度を算出した.一時 間当たりの移動距離として白色のベクトルで表示したも のを図-9に示す. 図-9は帯工袖部の近景であるため、河 道線形との位置関係については、図-9と図-2や図-7を合 わせて確認されたい. 図-9より,帯工の下流部では,1 時間当たり10m 近くも移動することが推定されており 解析結果は、平成29年洪水で袋詰玉石工が移動した状況 を概ね再現できていると考えられる.

図-10には、 y=40 m と y=45 m の鉛直平面内の x 方 向流速コンター図を示す.帯工を越流する付近では、6 m/s 近い高速流が発生している.一方で、帯工から大よ そ 20 m 程度下流の河岸では、帯工を越流する局所流の 影響は小さくなり、河床付近で流速が 3 m/s 程度まで落 ち込んでいることがわかる. 当該付近は, 図-2(下段) で流出した袋詰玉石工の多くが停止している領域であり, また、河床には石礫の堆積が見られる. 現地の状況から も、帯工から20m程度下流まで行くと流速が低くなって いることが示唆されている.

(6) 新規案の検討

再現計算結果を踏まえて流出しにくい袋詰玉石工(新 規設置案)の設置方針を図-11に示す。再現計算結果よ り、帯工から20mほど下流では、帯工付近と比較し、 流速は大きく減じられている. このため、新規設置案で は、帯工直下から約20mほど下流まで袋詰玉石を連続 的に配置した. そして, 最下流付近の比較的流速が減じ られた位置に設置された袋詰玉石工がアンカー的役割を 担い、上流の高流速部の袋詰玉石工を支えることを狙っ

黄色. 帯緑 ピンクの3色に 分けて表示している.

図-12 時間当たりの推定移動距離(新規案)

図-14 洗掘部へのずり落ちに対応した配置案(x=86m)

ている. なお, 新規案では, 49 基の袋詰玉石を用いた. 図-12には、再現計算の図-9と同様に、時間当たりの移 動距離を示している.この図より,再現計算(図-9参照) の帯工直下(x=85m付近)で見られた,袋詰玉石の10m ほどもの大きな移動は、ほぼ抑制できていることがわか る. 一方, 新規案では, 河岸の斜面部を守るため, 斜面 部にも袋詰玉石を配置したが、配置方法が必ずしも十分 ではなく、図-12では斜面部の袋詰玉石は河道中央方向 に移動している.

当該部分の移動状況の詳細を示すため、図-13に x= 86 m 断面の初期と計算終了時の袋詰玉石の頂部の高さ 分布を示す. 図-10に示すように帯工を越流する流れは 6 m/s 近くになっており、このような高速流を受けて斜 面部の袋詰玉石は、洗掘の最深部へずり落ちている. ず り落ちの対策として、第1に図-14に示すように、洗掘の 最深部から密に、かつできるだけ鉛直方向に力を伝えや すいように、袋詰玉石を斜面でも水平になるように設置 していくことが重要である.また、第2には袋詰玉石そ れぞれを結び、引張力を発揮できるようにして平坦部の 袋詰玉石が斜面部の袋詰玉石のずり落ちを抑制すること

も効果的と考えられる.第3には、最深部に河床地形変 化になじむことのできる大型のサンドパック^の(幅5m程 度)などを配置し、上部の袋詰玉石工の基礎として用い ることも有効と考えられる.これらの第2,第3の工法に ついては、必ずしも礫河川の施工法として確立されてい ないため、今後これらの技術を確かなものとしていく必 要がある.

5. 改良した袋詰玉石工の施工

前章までの検討結果を踏まえて新たに施工された,改 良した袋詰玉石工について説明する.図-15には,新た に設置された袋詰玉石工の全景を示す.図-2に示す H29.10洪水で流出してしまった袋詰玉石工の配置と比較 すると,流出時には,帯工の下流には2基しか設置して いなかったのに対し,改良した配置では,帯工の下流に 15 m ほど連続的に設置しており,帯工を越流する高速 流が減速する領域まで袋詰玉石工を設置している.

改良した袋詰玉石工は約1tの小規模な袋詰玉石工4つ を大袋で包む構造とし、図-3で示すように欠点となって いた石礫の移動を小袋で制限し、洪水外力による袋全体 の変形を抑制する構造とした.また、この図からわかる ように、袋詰玉石工の平らな面は、斜面に平行ではなく ほぼ水平になっており、重力や落ち込み流に対してより 安定し易い配置で積み上げている.

さらに流出時(図-2上段)では、袋詰玉石工同士は、 比較的間隔がある状態で配置されていたのに対し、改良 した袋詰玉石工では、袋詰玉石工同士は隙間が無いよう に密に配置しており、流出時と比較すると1基に作用す る流体力を著しく低減できる。大きな袋のみを用いた流 出時の袋詰玉石工は円形であるのに対し、小分けした袋 詰玉石工は正方形に近く、より密に配置しやすくなって おり、小分け構造は密に配置する上でも効果的な構造と いえる.また、新しい配置では、それぞれの袋詰玉石工 を紐で連結し流れに一体的に抵抗するようにしている.

6. 結論

本研究では、屈撓性をもつ河岸保護工である袋詰玉石 工について、洪水時の流出状況を分析し、袋詰玉石工の 水流中の安定性を評価できる数値解析技術を構築し、効 果的な袋詰玉石工の構造と配置を提案した.検討から得 られた主要な技術的知見を以下に示す.

第一は従来用いられてきた袋詰玉石工を小分けするこ とによって内部の石の動きを抑制し、安定性を向上させ ることができる構造上の知見である.第二は、袋詰玉石 工を連続的に配置する縦断方向の距離についての知見で ある.袋詰玉石工の安定のためには、高速流が減速する

図-15 新たに設置した帯工袖部の袋詰玉石工の全景

領域まで連続的に設置することが有効であることを示した.第三は、斜面部の袋詰玉石工の落ち込み流によるず れ落ち対策であり、この対策として、できるだけ平らな 面を水平にし、河道中央の洗掘の最深部から袋詰玉石を 十分に配置することを提案した.

さらに上記の点を改良した袋詰玉石工を多摩川で施工 しており、今後モニタリングを通して、より合理的な 構造と設計法の検討を進めていく予定である.開発し た屈撓性の高い河岸保護工は、治水面だけでなく環境 面でも優れた工法となるものであり、今後治水と環境 の調和した河川管理において重要な役割を担っていく ものと考える.

参考文献

- H. Cheng, H. Yamamoto, K. Thoeni, Y.Wu: An analytical solution for geotextile-wrapped soil based on insights from DEM analysis, Geotextiles and Geomembranes, *Geotext. Geomembr.*, 45:361-376, 2017.
- 2) Tomoo Fukuda, Shoji Fukuoka: Interface-resolved large eddy simulations of hyperconcentrated flows using spheres and gravel particles, *Advances in Water Resources*,

https://doi.org/10.1016/j.advwatres.2017.10.037

- 3) 牛島省,山田修三,藤岡奨,禰津家久:3次元自由水面流れに よる物体輸送の数値解法(3D MICS)の提案と適用性の検討, 土木学会論文集B, Vol.62, 1, pp.100-110, 2006.
- Hirt, C.W. and Nichols, B.D., 1981. Volume of fluid (VOF) method for the dynamics of free boundaries, *J. Comput. Phys.*, 39, pp.201-225, 1981.
- 5) 福田 朝生, 福岡 捷二: 複雑境界形状の大規模固液混相流解 析のための動的負荷分散を考慮した並列計算法, 土木学会論 文集B1(水工学), Vol.74, No.5, pp.I_703-I_708, 2018.
- 6) 諏訪義雄,野口賢二,渡邊国広,関口陽高,石川祐介,土橋 和敬,高垣勝彦,弘中淳市:浜崖後退抑止工の性能照査・施 工・管理マニュアル-共同研究「海岸保全における砂袋詰工 の性能評価技術に関する研究」報告書-,国土技術政策総合 研究所資料第745号2014年1月.

(2019.4.2受付)