多粒子限界流速を用いた堤防の 耐侵食性能の評価

EVALUATION OF EROSION RESISTANCE PERFORMANCE OF RIVER LEVEE USING MULTI PARTICULATE CRITICAL VELOCITY

杉井俊夫¹・余川弘至²・寺西剣悟³・朱発瑜⁴ Toshio SUGII, Kengo TERANISHI and Htzu Zju

1正会員 博士(工学) 中部大学教授 工学部都市建設工学科 (〒487-8501 愛知県春日井市松本町1200)
 2正会員 博士(工学) 中部大学講師 工学部都市建設工学科 (同上)
 3学生会員 中部大学大学院工学研究科博士前期課程 (同上)
 4正会員 大日コンサルタント㈱ (〒500-8384 岐阜県岐阜市薮田南3-1-21)

In this paper, we performed the investigation on application of multi particulate critical velocity with laboratory test and numerical analysis. From the experimental results of Kutara and Yoshioka, the maximum vertical velocity was calculated using numerical analysis. As a result, it was clarified that even when the horizontal flow is dominant, it is made clear that the conditions of seepage failure caused by multiparticulate critical velocity can be applied. Furthermore, instead of the effective stress, the "particle effective force" was proposed by multiparticulate critical velocity in order to simulate the particle effective force at the time of seepage failure.

Key Words : Internal erosion, multiparticulate critical velocity, simulation, DEM

1. はじめに

堤防の侵食現象は、土中の浸透水による内部浸食 (Internal Erosion)、越水を含めた表面流による表面侵 食(Surface erosion)があり、これまで前者は、地盤工学、 後者は水工学の分野で取り挙げられてきた.内部浸食、 表面侵食は刻々と土塊内部の構造および境界条件が変わ る進行性破壊のために、現象を連続体として取り扱うこ とが難しかった. これまでに著者の杉井は、鉛直流れに おいて多粒子限界流速式1)を提案してきたが、水平流れ の適用まで至っていなかった. そこで、本研究では堤体 基礎のような水平流れが卓越する場合においても多粒子 限界流速が適用できるかどうかを他の研究者らおよび著 者らの実験結果から数値解析を用いて再検討を行った. また、粒状体として水が流れない2次元個別要素法(2D-DEM)の解析に、多粒子限界流速の考え方を用い、浸透 力と個々の土粒子の水中重量がバランスすることを考慮 した「粒子有効力」という考え方を導入することで浸透 破壊現象のシミュレーションを実施した.

2. 多粒子限界流速の概要

(1) Richardsの干渉沈降速度

粒子群が沈降する場合は粒子同士の影響により,沈降 速度は単一の粒子の沈降速度よりも減少する. 粒子と流 体との接触,粒子群が限られた場所において相対運動を するため,運動は単一粒子の沈降速度に対して補正を必 要とすることが知られている^{2,3}. 均一な球粒子群を考 え,また粒径に比べて容器の寸法が十分に大きい場合, 補正係数 α は空隙率 ε あるいは体積濃度 $a=1-\varepsilon$ の関数 と考えられている. 粒子同士の影響としては,(I)粒 子の運動,(II)粒子の存在,があるとされている.

(I)着目粒子と流体との密度とが等しければ粒子が沈降することはないが、周囲の粒子が沈降する場合、流体にも速度が生じ着目粒子にも下向きの速度が生ずる(粒子の運動).

(II) 粒子間の引力が存在することや、粒子群が流体と 同密度であっても粒子の剛性ゆえに、着目粒子周囲の流 体の変形に対して抵抗を示すことによって、懸濁液の粘 度の増加につながる(粒子の存在).

粒子濁液の濃度が小さければ、隣り合った粒子間の距離は粒子径に比して十分大きく、粒子相互間の干渉は無視でき、粒度試験の沈降法による粒度測定はこの条件で行われている.しかし、沈降する濃度が高くなると懸濁液内の条件は変わってきて、特に沈降する粒子によって置換される流体の上向きの速度が大きくなり異なってくる.Steinour²は、縣濁液の密度 ρ_c ($\rho_c = \rho_s(1-\varepsilon) + \rho_w \cdot \varepsilon$

ここに ρ_s : 土粒子密度 [g/cm³], ρ_w : 液体の密度 [g/cm³])を用い,粘性係数µは液体についての値をとっ て,さらに縣濁液の空隙率 ϵ の関数 $f(\epsilon)$ を導入して,液体 に対して相対的な終末速度 V_m 'をStokesの式を用いて次式 のように示した.

$$V_m' = \frac{(\rho_s - \rho_c)gd^2}{18\mu} \cdot f_{(\varepsilon)}$$
(1)

ここに、液体に対して相対的な速度を V_m としたのは、 干渉沈降では上述したように粒子の置換による上向き流 れが生じることによる.容器に対する粒子の絶対速度を V_{mc} とすると沈降する粒子の全体積 $(1-\varepsilon)V_{mc}$ と、粒子に よって置換される液体の体積 $\varepsilon(V_m'-V_{mc})$ を等しいとおき、

$$V_{mc} = \varepsilon V_m$$
' (2)

の関係が得られる.

また,
$$\rho_c = \rho_s (1-\varepsilon) + \rho_w \cdot \varepsilon \downarrow \psi$$

$$V_{mc} = \frac{(\rho_s - \rho_w)gd^2}{18\mu} \cdot \varepsilon^2 \cdot f_{(\varepsilon)}$$
(3)

となる. Richardoson³は, Steniourの考え方と同様に式(3) の $\epsilon^2 \cdot f(\epsilon)$ を実験を用いて容器と試料粒径の壁効果も考慮 した補正係数を求めている. このため, Richardsonの補 正係数は V_{mc} に対するものであり,式(3)の $\epsilon^2 \cdot f(\epsilon)$ を Richardsonの補正係数 α [-]として,空隙率 ϵ [-]と粒子 Reynolds数の関数で表せるとしている.なお, RichardosonはRe ≤ 1 までStokesの式を用いており, Re> 1 は抵抗係数 C_D により単粒子の沈降速度を求める必要が あった.

$$\alpha = \varepsilon^{1/m} \tag{4}$$

$$Re < 0.2$$
 のとき
 $1/m' = 4.65 + 19.5 \cdot d/D$
 $0.2 < Re < 1.0$
 のとき
 $1/m' = (4.46 + 17.6 \cdot d/D)Re^{0.03}$
 $1.0 < Re < 500$
 のとき
 $1/m' = 4.45Re^{0.1}$
 $500 < Re < 7000$ のとき
 $1/m' = 2.39$
 (5)

 ここに、d: 粒子径[cm], D: 円筒管直径[cm],
 $Re: 粒子Reynolds \%$
 $\left(Re = \frac{V_c d\rho_w}{\mu}\right)$
 である.

(2) 多粒子限界流速式

干渉沈降速度の式を用いて,浸透破壊時の多粒子限界 流速式を導く.まず,単粒子の限界流速としてレイノル ズ数によらず,広く適用可能な Rubey⁴の式を用いる. 原著の Rubey の式を変形すると式(5)となる.

$$V_{c} = \frac{6\mu}{\rho_{w}d} \left\{ \sqrt{\frac{\rho_{w}(\rho_{s} - \rho_{w})gd^{3}}{54\mu^{2}} + 1} - 1 \right\}$$
(6)

ここに, μ :液体の粘性係数[g/(cm·s)],d:粒子径[cm],g:重力加速度 [cm/s²],である.

Richardoson の補正係数を使用するために、Steinour と同様に液体の粘性係数はそのまま、密度を懸濁液の密度 ρ_c にして、さらに空隙率 ϵ の関数 $f(\epsilon)$ を間隙率 nの関数 f(n) に置き換え、式(1)と同様に液体に対して相対的な速度 V_c を次式のように表す.

$$V_{c}' = \frac{6\mu}{\rho_{c}d} \left\{ \sqrt{\frac{\rho_{c}(\rho_{s} - \rho_{c})gd^{3}}{54\mu^{2}} + 1} - 1 \right\} \cdot f(n)$$
(7)

ここに,
$$\rho_c$$
: 縣濁液の密度($\rho_c = \rho_s(1-n) + \rho_w \cdot n$)

$$V_{c}'の縣濁液の密度 \rho_{c} = \rho_{s}(1-n) + \rho_{w} \cdot n \, \varepsilon \text{代入する} \varepsilon,$$

$$V_{c}' = \frac{6\mu}{(\rho_{s}(1-n) + \rho_{w}n)d} \left\{ \sqrt{\frac{(\rho_{s}(1-n) + \rho_{w}n)(\rho_{s} - \rho_{w})gd^{3}}{54\mu^{2}} + 1} - 1 \right\} \cdot f(n)$$
(8)

となるが、Stokes式を用いた式(3)のように間隙率nで簡 単に整理できない. そこで、式(6)と式(8)の比 V_c'/V_c を 求めてみたところ、図-1に示すように、Re<1まででは $V_c'/V_c \Rightarrow n$ の関係があることがわかる.また、間隙率 25%以上においてRe<10までは大きな差は少なく、間隙 率が大きくなるほどRe数に関係なくなっていく傾向にあ る.また、砂などの一般の間隙率30%以上の状態でも $V_c'/V_c \Rightarrow n$ の関係は許容できる.これより干渉沈降速度 (V_{cm})に対応する速度 V_{cm} 'は液体に対して相対的な速度 V_{cm} (多粒子限界流速)の関係は式(2),(7)および $V_c'/V_c \Rightarrow n$ の関係から次式となる.

$$V_{cm}' = V_{cm} \cdot n = V_c' \cdot f_{(n)} \cdot n = V_c \cdot n^2 \cdot f_{(n)}$$
(9)

ここに、 $n^2 \cdot f_{(n)}$:式(3)の $\varepsilon^2 \cdot f(\varepsilon)$ 、Richardoson の補正係数 α に相当.

式(9)に式(4)、式(6)を代入し、次式を得る.

図-1 Reynolds数とVc'/Vcの関係

$$V_{c_m} = n^{1/m} \frac{6\mu}{\rho_w d} \left\{ \sqrt{\frac{\rho_w (\rho_s - \rho_w) g d^3}{54\mu^2} + 1} - 1 \right\}$$
(10)

多粒子限界流速式は、式(5)、(10)から間隙率 n が大き くなると 1/m>1 より流速が大きくなることがわかる. 検 証のために粒子 Reynolds 数<1 において多粒子限界流速 と Terzaghi の限界動水勾配 i_{α} =(Gs-1)(1-n)と式(11)に示す 透水係数を表す Kozeny の式 5を用いて算出された浸透 破壊時の実流速 ($V = k_K \times i_{\alpha}$ /n) と比較を行った.

$$k_{K} = \frac{\gamma_{w}}{\eta} C_{k} \frac{e^{3}}{1+e} D_{s} \times \frac{1}{10^{4}}$$
(11)

ここに, γw:水の単位体積重量,

 η :水の粘性係数($Pa \cdot s$), C_k :形状係数 (Kozeny の半理論式 8.2=0.0084×g), D_s :粒 径(cm), e:間隙比

図-2 乾燥密度の違いと多粒子限界流速とKezeny&Terzaghi の限界動水勾配による流速の比較

乾燥密度 ρ_d =2.0, 1.5, 1.0, 0.5g/cm³ について算出し た結果を図-2 に示す.これより、ダルシー則が成り立 つ層流域 (ハッチ左下) では多粒子限界流速のように乾 燥密度が小さくなるほど流速は大きく (左へと移動), 両者の速度は一致することが確認できる.

3. 水平流れ場での多粒子限界流速の適用

(1) 久楽・吉岡らの実験への適用

多粒子限界流速は、鉛直流れにおけるつり合いから算 出されているために、水平流れが卓越する場合について は適用できないものと考えられてきた. 図-3の中の久楽 らの実験は水平方向が卓越する流れを対象、岩垣の式の 限界摩擦速度も水平方向のながれであり、それ以外の実 験値は鉛直方向の一次元流れである. 久楽らの実験結果 は水平方向が卓越する流れを対象としており、鉛直方向 の流れに対する多粒子限界流速が適用できないと判断で きる.同じく水平方向流れの岩垣の限界摩擦速度と実験 結果をみると、実験値と大きく乖離しており、現象が異 なることが推察される.しかし, ρ_d=1.10g/cm³の多粒子 限界流速式と岩垣の限界摩擦速度式がReynolds数>1の 乱流域以降で一致しており、Reynolds数>1の場合の水 平流れについて今後検討していくことにヒントがあるも のと考えている.参考までに岩垣論文のによると、30秒 間に砂粒が移動する何個から計測しており、0.1mm以下 の信頼性についてかけることが記されている.

久楽・吉岡ら^{7,80}の実験は水平流れが卓越する場合を対象としており、図-3からは多粒子限界流速式と離れていることがわかる.そこで、論文の実験データから(実験装置 図-4及び図-5について飽和浸透流解析を実施した。 図-5には解析メッシュ(最小メッシュ5mm幅)と流速ベクトルを示している.各々、飽和浸透流解析により

図-4 久楽らの実験6)

図-5 (上) 吉岡ら⁷の実験装置と (下)解析メッシュと流速ベクトル

破壊時の流速の鉛直成分の最大値を求め、多粒子限界流 速と比較を行った結果が、図-6、図-7である.黒の実線 が実験値の間隙率の最も大きいもの、破線が間隙率の小 さいものの多粒子限界流速を示している. どちらの図も 実験値の排水流量から得られた流速(緑実線)では、平 均流速を表しているため、小さめに出ているが、解析で 算出した流速の鉛直成分(青破線)は大きく、間隙率で 除して実流速に算出した(赤実線)は黒の実線、破線に 掛かってくることがわかる.また、いずれも各粒径範囲 の小さい径(縦線の下方)の多粒子限界流速で破壊して いることが分かり、徐々に拡大進行していくと考えられ、 現象を説明することが可能である.なお図-8の久楽らの 実験値でReynolds数>1を超える領域では、ダルシー則か ら乖離するため、層流から乖離した実験データと層流域 でダルシーの法則に則った数値解析において差が現れて いるものと推察できる.

(2) 本研究室での実験検証

実際に久楽らの実験を模擬した実験を行った. 図-8に 実験装置を示す.砂層の上に浮力を考慮して錘を入れた 発泡スチロールを不透水層とし、砂層には豊浦砂を用い ていた.不透水層の位置を移動させることで、流出幅を変え た実験を表-1のようなケースで実施した.

検証には、次のように実施した.実験値の乾燥密度(間隙 率)、粒径から透水係数を推定したが、水位と流量の関係から 再現を行ったが流量との誤差を粒径・乾燥密度のばらつきによ るものと考えられたため、噴砂発生前の安定状態での流量と水 位差から逆解析的に透水係数及びKozeny式(式(11))によって間

図-8 実験装置

表-1 実験ケース

	流出幅 (cm)	乾燥密度 (g/cm ³)	間隙率(-)	透水係数 (cm/s)
caseA	20	1.657	0.375	6.53×10 ⁻³
caseB	15	1.413	0.467	1.73×10 ⁻²
caseC	10	1.451	0.453	1.50×10 ⁻²
caseD	5	1.502	0.433	1.23×10 ⁻²

隙率を決定、噴砂発生時の水位と流量を確認し、局所的な流速 ベクトルから鉛直方向の最大流速を求めた.

多粒子限界流速と噴砂発生時の鉛直方向の最大流速を図-9に 示す. 黒実線と黒破線は前述同様、最大乾燥密度の場合と最 小乾燥密度の場合の多粒子限界流速である. ①4つのケースは いずれも豊浦砂の粒径範囲の細かい粒径で一致していることが わかる. 細かい粒子から噴き上げ、周辺に拡大進行していくこ とが推察される. また、②一部を除いて概ね乾燥密度が小さく なると限界実流速は大きくなる結果となり、多粒子限界流速に 一致する. さらに、③流出幅が広がるにつれて水平流れの流速 ベクトルが卓越してくるがいずれも鉛直方向の最大流速で多粒 子限界流速に一致することがわかった.

図-9 多粒子限界流速と限界実流速

4. 多粒子限界流速を使った噴砂解析

(1) 多粒子限界流と個別要素法(2D-DEM)

多粒子限界流速は粒子群のなかで個々の粒径に対応す る流速(実流速)に達すると粒子の水中単位体積重量が ゼロとなる状態を示している.この考え方を利用するこ とで水中単位体積重量を減少させていく過程を表現する ことができる.そこで、これまで考えられてきた有効応 カの考え方にかわって新たな粒子単位の「粒子有効力」 として考えていくことを提案していく.

多粒子限界流速に達した粒子は、慣性力の重量がゼロ となることを考慮することで2次元の個別要素法 (DEM)⁹でシミュレーションすることができる.今回 は、4種類の粒径について構成される土試料を想定した. 解析粒子の条件を表-2、粒径を表-3に示す.2次元のDEM では、浸透流を直接発生させることはできないため、次 のようなアルゴリズムで計算することとした.各々の粒 子径に対する多粒子限界流速に達するとそれぞれ水中単 位体積重量がゼロとなるように、重力加速度を減少させ ていく(図-10).ここで、次の3つの条件を仮定して いる.一つには、個々の粒子の重力加速度が一定の割合 で減少していく(減少率).こつには、多粒子限界流速 に達した後は、鉛直上向きに重力加速度が同様に増加し ていく.三つ目には、粒子が移動しても間隙率は変わら ない、という仮定である.

図-10 多粒子限界流速と見かけの重力加速度

多粒子限界流速

図-11 見かけの重力加速度の減少

表-2 解析データ

物理諸量				
土粒子の密度 $ ho_{ m s}$ (g/cm 3)	2.65			
水中密度 <i>ρ</i> 's (g/cm ³)	1.65			
間隙率n	0.377			
粘性係数	0.011			
粒子数 (個)	1000			
バネ定数kn	1.00E+08			
バネ定数ks	2.50E+07			
粘性係数cn	1.00E+02			
粘性係数cs	5.00E+01			
粒子間摩擦角(deg)	2.70E+01			
粒子数(個)	1000			

表-3 粒径情報と多粒子限界流速(間隙率n=0.377)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	粒径(個数)	多粒子限界流速	係数αi
杠子裡類	(mm)	(cm/s)	(s ⁻¹ )
粒子1	0.065(250個)	0.0035	276343
粒子2	0.565(250個)	0.32	3057
粒子3	1.18(250個)	0.72	1356
34L 7 4	a aa ( a=a/m )	· -	

多粒子限界流速は、粒子群を形成する土粒子の水中重量 とつりあう際の流速を示しているが、このことを利用し た新たな「粒子有効力」を提案した.この考え方は、こ れまでの土塊(連続体)としての有効応力ではなく、粒 状体として考えた場合に透水力を受ける粒子の水中重量 を「粒子有効力」として考えるものである.

今回、表-2、表-3に鉛直方向流れの噴砂の現象のシ ミュレーションを行った.図-10のように鉛直上昇流の 速度を増加させていき、多粒子限界流速式に達した段階 で見かけの重力加速度をゼロと見做し(図-11)、粒子 有効力が減少していくことをもとに、松島⁶が作成した 個別要素法プログラムを用いてシミュレーションを行っ た. 解析結果である4種類の粒径の粒子移動と粒子有効 力による粒子間に働く応力の分布を図-12に示す.ここ では示していないが流速ゼロにおいては、粒子による アーチ効果などから必ずしも下層に行くほど粒子間力が 大きくはならなお。流速が上昇するにつれ、細かい粒子 から流出する現象、粒子間力は流速が0.1から0.5 cm/sの 増加とともに中層部の粒子間力が減少する。1.0cm/sにな ると粒子間力は小さくなるところと大きくなる部分が現 れる. これは上昇粒子が上部の粒子を押し上げようとす るために増加するものと推察される. また、紙面の都合 上示していないが、粒径が等しい場合には、すべての粒 子が同じだけ見かけ上の重力加速度が減少することから、 同じに浮上する結果を得ており、Terzaghiの限界動水勾 配のように土塊・連続体として破壊することを得ている.

最後に、見かけ上の重力加速度がゼロになるまでの過 程において有効応力が減少していくところに着目するた め、浸透破壊の実験で行われる地盤中に金属棒を突き刺 し、浸透破壊させることを試みた.その結果の一部を、 図-13に示す.流速の上昇とともに地盤の支持力が消散







していき金属棒は傾斜し、粒子が浮上していく傾向が内 部の粒子力の分布からよくわかる.

# 5. おわりに

本研究の結果、得られた知見を以下にまとめる.

- (1)鉛直一次元での浸透破壊現象への多粒子限界流速の 適用の検証に、Terzaghiの限界動水勾配とKozenyの 透水係数式を用いて比較した結果、間隙が大きくな るほど破壊時の流速(多粒子限界流速)は大きくな り、値の整合性を得ることができた.
- (2)水平流れが卓越する場合においても、局所的に鉛直 流れが発生するために、多粒子限界流速式による浸

透破壊の発生条件を適用できることが明らかとなった.これは、現在の水平方向の局所動水勾配での安 定条件を見なおしにもつながるものと考えられる

- (3)多粒子限界流速を個別要素法に導入することで細かい粒子から流出する現象をシミュレートできた.また、有効応力に代わり、浸透力を受ける粒子の「粒子有効力」の提案を行った.今後は、粒子レベルの有効力と有効応力との関係も明らかにしていく.
- (4) 多粒子限界流速を用いることで粒子レベルの有効力 を提案してきたが、別途、間隙径分布測定も行って おり、粒子移動抵抗(耐侵食性能)について空間的 アプローチをも進めている^{10,11}.

謝辞:本研究は、河川砂防技術研究開発制度(平成27~29年度)の補助及び中部大学特別研究費(A)の補助を 受けました.また、個別要素法は、筑波大学の松島亘志 教授が作られたソースコードを利用させていただいた. また、本実験実施にあたって本研究室当時4年の長瀬弘 己君(現中日本建設コンサルタント(株))に協力いただ いた.ここに、記して感謝いたします.

#### 参考文献

- 杉井俊夫・佐藤健・宇野尚雄・山田謹吾:浸透破壊の発生 プロスと土の非均質性、土と基礎、Vol.37、No.6、pp.17~22, 1989.
- Steinour, H. H. : Ind. Eng. Chem., Vol.36, [7] pp.618~624 ; [9] pp.840~847 ; [10] pp.901~907, 1944.
- Richardson, J. F. : Sedimentation and Fluidisation, Trans. Intin. Chem. Engrs., Vol.32, pp.35~53
- Rubey, W. W. : Settling Velocities of Gravel, Sand and Silt Particles, American journal of science, Vol.25, pp.325~338, 1933.
- 5) 久保田敬一・河野伊一郎・宇野尚雄:透水―設計へのアプ ローチ, 鹿島出版会, p. 75[~]79, 1976.
- 6) 岩垣雄一:限界掃流力に関する基礎的研究(I)限界掃流力の 流体力学的研究,土木学会論文集、第41号、pp.1-21,1956.
- 7) 久楽勝行・吉岡淳・佐藤正博:水平方向浸透流下における 砂地盤のパイピングについて、第20回土質工学研究発表会、 pp.1483~1484, 1985.
- 吉岡ら:水平方向の浸透流によるパイピング現象について、 土木学会年次学術講演概要集, 1984.
- 松島亘志:実際に個別要素法プログラムを動かしてみよう、 個別要素法セミナーテキスト,2010.
- 10) 杉井俊夫・長瀬弘己・末松知奈・小竹亮太:浸透破壊における内部浸食の発生メカニズムと評価法,第5回河川堤防技術シンポジウム,東京都新宿区,土木学会講堂,2017.
- 杉井俊夫,朱発瑜,末松知奈:有効応力から「粒子有効力」
   ヘ、間隙率から「間隙径分布」へ,地盤工学会誌,7月号,2018 (印刷中)

(2018.4.3受付)