軟岩河床における魚類生息場 に関する調査と分析 A CASE STUDY OF THE FISH HABITAT CONDITIONS IN A BEDROCK CHANNEL

井上 卓也¹・矢野 雅昭²・濱木 道大³・高橋 直志⁴ ・米元 光明⁵・旭 一岳⁶・伊藤 丹⁷ Takuya INOUE, Masaaki YANO, Michihiro HAMAKI, Naoshi TAKAHASHI, Mitsuaki YONEMOTO, Kazutake ASAHI and Akashi ITO

¹正会員 工博 (独) 寒地土木研究所 寒地河川チーム (〒062-8602 札幌市豊平区平岸1条3丁目1-34)
²正会員 (独) 寒地土木研究所 水環境保全チーム (〒062-8602 札幌市豊平区平岸1条3丁目1-34)
³正会員 (株) 開発工営社 水工1部 (〒060-0004 札幌市中央区北4条西5丁目)
⁴ (株) 開発工営社 環境部 (〒060-0004 札幌市中央区北4条西5丁目)
⁵正会員 国土交通省北海道開発局旭川開発建設部 (〒078-8513 旭川市宮前通東4155番31)
⁶正会員 工修 一般財団法人 北海道河川財団 企画部 (〒060-0807 札幌市北区北7条西4丁目)
⁷正会員 (独) 寒地土木研究所 寒地河川チーム (〒062-8602 札幌市豊平区平岸1条3丁目1-34)

In the vicinity of Asahikawa City of the Ishikari River, the zone of exposed bedrock has been increased due to the degradation of alluvium. We surveyed the fall habitat of tribolodon sachalinensis and stone loach (Barbatula barbatula) in both bedrock and alluvial beds. Based on survey results, we made the SI(Suitability Index) concerning with flow depth, velocity and substrate, and compared the WUA(Weighted Usable Area) before and after the bedrock is exposed. The planar distribution of water depth and flow velocity required for the evaluation of the WUA was calculated by 2D numerical simulations. The analysis results showed that the WUA of tribolodon sachalinensis has been reduced 66%, and the WUA of stone loach has been reduced 81% by bedrock exposing. The analysis results also suggested that the change in water depth and flow velocity due to the narrow inner channel formed by bedrock incision has a great influence on the WUA.

Key Words : bedrock river, PHABSIM, 2D numerical simulation, tribolodon sachalinensis, stone loach

1. はじめに

近年,砂礫の流出によって,基盤岩が露出する河川が 増加している.礫床から岩床への遷移は魚類の産卵環境 と生息環境に影響を及ぼすことが明らかにされている. 中村ら¹⁾は,鬼怒川上流のヤマメ産卵床を調査し,1991 年から2002年の間に減少した産卵床の約半数が,露岩化 の影響を受けていることを報告している.石山ら²⁾は, 真駒内川の露岩区間で実施された礫床復元実験に際し調 査を行い,岩床部におけるハナカジカ(底生魚)の生息密 度とサクラマスの産卵床数が,礫床部に比べて少ないこ とを報告している.これらの研究から,礫の存在有無に 大きく依存する底生魚や産卵床は,露岩化の影響を受け やすいことが伺える. 上述のように、河川生態系に対する露岩化の影響を定 量的に調査した事例はあるものの、その数は未だ少ない、 特に、露岩化後の水深・流速の変化が遊泳魚に及ぼす影 響については不明な部分が多い.この要因として、露岩 化した河川の礫床時代の物理環境と魚類種個体数が不明 なため、礫床と岩床の比較が難しいことが挙げられる.

本研究が対象とする石狩川では、図-1に示した露岩区 間周辺で基盤岩層が隆起していため、礫層が流出し河床 高が低下した際に、隆起していた岩盤層が、周辺の岩盤 層よりも先に露出した.この結果、露岩区間の上下流に は、同じ流量、同じ河床勾配、同じ川幅の礫床区間が現 在も残っており、礫床と岩床の比較を行うのに適してい る.

また、石狩川の岩盤層は非常に軟質なため、流砂に よって侵食しやすい特徴を持つ、井上ら³⁾によると、石

図-1 研究対象区間(石狩川)

図-2 石狩川および真駒内川の写真

狩川の岩床侵食速度は、真駒内川に比べ2オーダー大きい.この結果、流砂の集中とそれに伴う岩盤侵食によって、澪筋化が進行している⁴.

図-2は石狩川と真駒内川の現地写真である.石狩川の 岩床は、矢印で示した付近に澪筋が形成されており、流 水は澪筋に集中している.一方、真駒内川の岩床は石狩 川に比べ平滑であり、流水は浅く広く流れている.岩床 河川の侵食地形の違いは、流速や水深に影響を与え、結 果的に魚類の生息環境にも影響を及ぼす可能性がある.

本研究の目的は,(1)石狩川を対象に,岩床部と礫床部 の物理環境と魚類生息環境を調査し比較すること;(2)露 岩前後の平面2次元流況計算によって,岩床の露出と澪 筋化が物理環境と魚類生息環境に与えた影響を分析する ことである.

2. 調査·分析方法

(1) 現地調査方法

魚類の調査地点は,露岩区間(河口から160km~ 163km)において4地点,上下流の砂礫床区間(河口から 157km~160kmおよび163km~166km)においての10地点 の合計14地点である.魚類は,投網,タモ網,サデ網に よって採補され,1地点あたりの調査面積は30m²一定で ある.

調査期間は平成20年10月18日~21日の4日間である. 調査日の日流量は、33.80m³/s(18日)、33.25m³/s(19日)、 31.81m³/s(20日)、29.92m³/s(21日)と概ね一定である. な お、昭和50年~平成21年の平水流量の平均値35m³/sであ り、調査日の日流量と同規模である.

物理環境の計測項目は、水深、流速および河床材料で ある.水深は計測スタッフ、流速は電磁流速計、河床材 料は面格子法により計測され、計測箇所は魚類調査地点 内の代表的な3箇所である.

(2) 選好性の分析方法

調査結果を基に、PHABSIM⁵⁾を用いて、魚類の選好性 を分析する.本研究では、捕獲数の多かったエゾウグイ (遊泳魚)とフクドジョウ(底生魚)に着目する.

はじめに、計測された物理量(水深,流速,河床材料) の数値帯幅を5~7分割し(図-3参照),各領域における平 均捕獲個体数を算出する.なお,本調査において,各地 点の調査面積は一定のため,平均捕獲個体数(捕獲個体 数/調査地点数)と生息密度(捕獲数/調査面積)は同じであ る.次に,平均捕獲個体数の最大値が1となるように, 最大値で全ての値を除して正規化し,これをSI値とする. 最後に,SI値を包括するように適正曲線を設定する.

(3) 平面2次元流況計算の検証方法

PHABSIMを行うためには、河川全体の平面的な物理 量が必要であるが、現地調査は河川全体を面的に網羅し ていない.そこで、本研究では、平面2次元流況計算を 用いて、現地調査地点以外の物理環境を補完する.

平面2次元流況計算の精度を検証するために、物理量の現地調査結果と計算結果を比較する(以降,この再現計算をRun1と呼ぶ).平面2次元流況計算モデルは、iRICのNays2D⁶ソルバーである.

計算流量は、対象区間内にある永山水位流量観測所で 観測された調査日(平成20年10月20日)の日流量 (31.81m³/s)とする.河床形状は、平成21年の河床横断測 量結果より作成する.計算格子サイズは流下方向に10m 程度、横断方向に5m程度である.計算範囲は、河口か ら157km~166kmまでの9km区間である.露岩範囲は、 平成20年21年に行われた岩盤層高さのボーリング調査結 果を用いて設定する.

Run1において, Manningの粗度係数は, 以下に示す Manning-Stricklerの式から求める.

$$a_m = \frac{1}{7.66} \frac{k_s^{1/6}}{g^{1/2}} \tag{1}$$

ここで、 n_m はManningの粗度係数、 k_s は等価粗度高さ、g は重力加速度である.デューンなどが発達していない砂 礫床の場合、等価粗度高さは一般的に粒径の1~4倍程度 である.計算区間の代表粒径55mmの3倍を(1)式に代入 すると、礫床のManningの粗度係数は0.031である.

岩床の粗度は、礫床の粗度に比べ低い場合がある.計 算区間内で行われた井上ら⁷の実験結果を基に、岩床の 等価砂度高さを求めると15mm~45mm程度である.こ こでは、岩床の等価粗度高さを45mmと仮定して、(1)式 より求めた0.025を岩床のManningの粗度係数とする.

(4) 露岩前後の環境影響評価方法

ŀ

岩床露出前後の物理環境の変化を把握するために、露

岩前後の河床形状を用いて平面2次元流況計算を行う. Run1(再現計算)では露岩後の平成21年測量横断を用い, Run2では岩床が殆ど露出していなかった昭和53年測量 横断を用いる. Run2のManningの粗度係数は, Run1と同 じく礫床部において0.031,岩床部において0.025とする が,河床形状の違いによって, Run1とRun2では岩床露 出箇所と面積が異なる(縦断的なボーリング調査より判 明した岩盤層高と,河床標高を比較し,河床標高が岩盤 層高より低い範囲を露岩箇所と設定).

昭和50年~平成21年の平水流量は、年々の変動がある ものの、著しい増加傾向や減少傾向はないため、計算流 量はRun1とRun2で同じ値を用いる.その他の起算水位、 格子数などの条件は2ケースとも同じである.

魚類の適正曲線と平面2次元流況計算結果を組み合わ せ,露岩前後における重み付き利用可能生息場面積 WUAを算出する.WUAは,水深・流速のみを用いた WUA(v, d)と,水深・流速・河床材料を用いたWUA(v, d, s)の2つを求める.

$$WUA(v,d) = \sum_{i,j} A_{i,j} SI(v)_{i,j} SI(d)_{i,j}$$
(2)

$$WUA(v,d,s) = \sum_{i,j} A_{i,j} SI(v)_{i,j} SI(d)_{i,j} SI(s)_{i,j}$$
(3)

ここで,i, jは流下方向および横断方向の計算格子番号, $A_{i,j}$ はi, j番目の格子面積, $SI(v)_{i,j}, SI(h)_{i,j}, SI(s)_{i,j}$ はi, j番目の流速,水深,河床材料に対する適正曲線の値である.

3. 調查·分析結果

(1) 現地調査結果

魚類調査では、全地点合計でハナカジカ、イバラトミ ヨ、ニジマスなどを含む10種類の魚が確認された.ここ では、捕獲数の多かったエゾウグイ(遊泳魚)とフクド ジョウ(底生魚)について整理する.なお、捕獲されたエ ゾウグイの多くは体長10cm以下の幼魚であり、フクド ジョウは5cm~15cm程度であった.

調査結果を表-1に示す. 流速および水深は, 観測され た最小値, 最大値, 平均値(最小と最大の平均)を示して いる. 河床材料は, 河床表層における面積割合を示して おり, 泥は0.1mm以下, 細礫・砂は0.1-20mm, 中礫は 20-50mm, 粗礫は50-100mm, 小石は100-200mm, 中石 は200-300mmの河床材料を表している. 平均粒径は, 上 述の粒径区分の中間値と面積割合を用いた重み付き平均 値である.

図-3に流速別平均捕獲個体数,水深別平均捕獲個体数, 河床材料別平均捕獲個体数をそれぞれ示す.エゾウグイ は,流速の上昇に伴い平均捕獲個体数が減少した.また, 平均水深0.75m以下と平均粒径が30-90mmの領域で多く 捕獲された.フクドジョウは,平均流速0.9-1.2m/sの領 域および平均水深0.25-0.50mの領域で数多く捕獲された. また、河床材料が粗いほど、平均捕獲数が増加した.

(2) 選好性の分析結果

図-4に流速・水深・河床材料別のSI値と適正曲線を示 す.ここで、点線がエゾウグイ幼魚の適正曲線であり、 実線がフクドジョウの適正曲線である.

流速0.9-1.2m/sの領域および水深0.25-0.5mの領域において、エゾウグイ幼魚のSI値は、隣り合う領域のSI値に比べ低い.しかし、この領域だけエゾウグイが選好しない理由は特に無いため、適正曲線は隣り合うSI値を用いて補完した.なお、フクドジョウの流速0.3-0.6m/sの領域も同様に補完している.

河床材料に対する選好性は、岩床と礫床の2つに分類 した.これは、1kmピッチで行われる河床材料調査から、 粒度の平面分布を把握することが困難なため、細かい粒 径区分別のSI値を作成しても、次章の分析に活かせない ためである.なお、エゾウグイ幼魚とフクドジョウの両 方とも礫床を好んでいるが、底生魚であるフクドジョウ の方がより礫床に対する選好性が若干高い.

(3) 平面2次元流況計算の検証結果

図-5aはRun1(H21)の計算流速のコンター図である. 図-6は、実測流速と観測地点近傍の計算格子点における 計算流速の比較図である.これによると、計算流速は、 観測流速の最小値と最大値の間に入っており、現地調査 時の平面2次元流況を十分に再現できている.

(4) 露岩前後の環境影響評価結果

図-5bはRun2(S53)の計算流速のコンター図である. これによると、岩床露出前の昭和56年(Run2)では、広 くゆったりと流れていた水が、岩床露出後の平成21年 (Run1)では、狭く速く流れていることが分かる.

図-7は露岩前後における水深毎,流速毎,河床材料毎の面積である.昭和56年と平成21年を比較すると,水深0.05m以上0.75m未満の領域が減少し,水深0.05m未満の領域と水深0.75m以上の領域が増加した.これは,流れが零筋部に集中したため,水の無い範囲と水深の深い領域に増加しためである.流速も水深と同じ理由により,流速0.3m/s以上1.5m未満の領域が減少し,流速0.3m/s未満と1.5m/s以上の領域が増加した.魚が生息できる水深を0.05m以上とした場合,その範囲における岩床面積は増加し,礫床面積が減少した.

なお、流速と水深の面積分布は平面2次元の計算結果 であり、礫床面積および岩床面積は、平成21年の河床形 状および昭和53年の河床形状とボーリング調査による岩 盤層高さの比較により算出された値である.

表-2は、露岩前(昭和53年)および露岩後(平成21年)の エゾウグイ幼魚に対するWUAであり、表-3はフクド ジョウに対するWUAである.水深・流速のみを用いた WUA(v, d)をみると、露岩前(昭和53年)に比べ露岩後(平 表-1 観測結果一覧表

내는 눈 성	流速(cm/s)		水深(cm)			調査地点における河床材料の面積割合					平均	個体数				
地点名	最小	最大	平均值	最小	最大	平均值	岩盤	中石	小石	粗礫	中礫	細礫・砂	泥	粒径(mm)	エゾウグイ	フクドジョウ
下流礫床1	6.4	48.9	27.7	10.0	25.5	17.8	0.00	0.00	0.05	0.50	0.40	0.05	0.00	59.5	60	3
下流礫床2	6.0	64.9	35.5	10.5	23.0	16.8	0.00	0.00	0.20	0.40	0.30	0.10	0.00	71.5	56	2
下流礫床3	29.4	63.6	46.5	45.0	93.5	69.3	0.00	0.00	0.10	0.30	0.30	0.25	0.05	50.5	19	0
下流礫床4	33.3	228.3	130.8	12.0	50.0	31.0	0.00	0.20	0.20	0.40	0.15	0.05	0.00	115.8	12	34
岩床1	1.0	44.0	22.5	57.0	180.0	118.5	0.40	0.00	0.10	0.20	0.10	0.20	0.00	-	8	0
岩床2	6.6	67.4	37.0	24.0	140.0	82.0	0.60	0.05	0.05	0.05	0.05	0.20	0.00	-	8	7
岩床3	20.0	90.7	55.4	14.0	41.0	27.5	0.85	0.00	0.05	0.00	0.05	0.05	0.00	-	3	3
岩床4	0.0	157.8	78.9	10.0	35.0	22.5	0.95	0.00	0.02	0.01	0.01	0.01	0.00	-	1	2
上流礫床1	7.7	48.7	28.2	14.0	30.0	22.0	0.00	0.00	0.50	0.30	0.10	0.10	0.00	102.0	0	48
上流礫床2	67.4	153.4	110.4	21.0	55.0	38.0	0.00	0.10	0.40	0.30	0.20	0.00	0.00	114.5	0	123
上流礫床3	6.2	29.5	17.9	24.0	56.0	40.0	0.00	0.00	0.10	0.10	0.00	0.75	0.05	30.0	45	11
上流礫床4	30.8	152.3	91.6	15.0	44.0	29.5	0.00	0.20	0.40	0.20	0.15	0.05	0.00	130.8	0	130
上流礫床5	41.3	137.2	89.3	23.5	59.0	41.3	0.00	0.00	0.30	0.40	0.20	0.10	0.00	83.0	1	45
上流礫床6	6.9	132.2	69.6	16.0	93.0	54.5	0.00	0.00	0.20	0.20	0.20	0.30	0.10	55.0	48	22

図-3 流速別・水深別・河床材料別の平均捕獲個体数

図-5 計算流速コンター図

図-6 計算結果と観測結果の比較

図-7 露岩前後の水深別, 流速別, 河床材料別の面積

表-2 エゾウグイ幼魚の露岩前後のWUA

	露岩前	露岩後	変化率
WUA(v, d)	507,715m ²	$287,742 \text{ m}^2$	43%減
WUA(v, d, s)	505,433 m ²	172,716 m ²	66%減

表-3 フクドジョウの露岩前後のWUA

	露岩前	露岩後	変化率
WUA(v, d)	144,199m ²	57,453 m ²	60%減
WUA(v, d, s)	143,693m ²	27,851 m ²	81%減

成21年)は、エゾウグイ幼魚で43%、フクドジョウ幼魚 で60%減少した.次に、水深・流速・河床材料を用いた WUA(v, d, s)をみると、露岩前(昭和53年)に比べ露岩後 (平成21年)は、エゾウグイ幼魚で66%、フクドジョウ幼 魚で81%減少した.

4. 考察

(1) エゾウグイおよびフクドジョウの選好性

西内ら⁸の研究をみると、東北地方(秋)における体長 5cm~10cmのウグイは、流速0.5m付近の領域を選好して おり、流速0.5m以上になると徐々に捕獲数が減少し、流 速1.5m以上では殆ど捕獲されていない.また、須藤ら⁹ が千代川で行った調査分析によると、ウグイ稚魚は水深 1.2m以上の領域では捕獲されておらず、水深に対する明 確な選好性はない.このことから、本研究のウグイに対 する適正曲線(図-4)は概ね妥当と考えられる.

フクドジョウのSI値(図-4)をみると、高い流速域と低い水深域を選好している.これは、フクドジョウは石礫 底の瀬を好んで生息するためと考えられる¹⁰⁾.また、ウ グイに比べ、フクドジョウが高流速域に生息していた理 由は、河床材料の中に隠れることができるためと推測さ れる.

(2) 露岩化の影響

露岩化が魚類生息場に与える影響は、産卵床の減少, えさ場の変化、流速・水深の変化など多岐にわたる.本 研究は、岩床河川の地形変化に伴う流速・水深の変化が 生息場に与える影響に焦点を当てて分析を行った.これ は、岩質や上流からの土砂供給の有無などによって様々 な地形が形成されるためである¹¹⁾¹².

分析結果である表-2および表-3を見ると,露岩前(昭和53年)は殆ど露岩面積が無いため,WUA(v, d)とWUA(v, d, s)はほぼ等しい.このことから,エゾウグイ幼魚の生息可能面積は,岩床の澪筋化に起因する流速・水深の変化によって約43%減少し,河床材料の岩床化によってさらに約23%減少したと考えられる.同様に,フクドジョウの生息可能面積は,流速・水深の変化によって約60%減少し,岩床化によってさらに約21%減少したと考えられる.つまり,石狩川では,岩床露出による河床材料の変化よりも,露岩後の澪筋化による流速・水深変化の影響が大きい可能性がある.

一方,石山ら²⁰の真駒内川の露岩区間の調査によれば, 底生魚であるハナカジカの生息密度とサクラマス産卵床 の数は,礫床区間に比べ岩床区間において少なかった. しかし,遊泳魚であるサクラマス幼魚は,礫床区間と岩 床区間で有意な差が認められなかった.石山ら²はこの 要因を,真駒内川の岩床は,瀬のような水深の浅い箇所 と淵のような水深の深い箇所があり,このような岩床地 形が,礫床河川の淵のような役割をし,サクラマス幼魚 の好適な生息場になっている可能性を指摘している. 石狩川露岩区間も、瀬のような構造をした箇所が所々 に見られる.しかし、その間を繋ぐのはゆったりとした 淵ではなく、流れの速い澪筋である(図-5a).このため、 底生魚だけでは無く、遊泳魚も生息しにくい地形になっ ていると考えられる.また、澪筋部に水が集中すること によって、平水流量程度の流量時の浸水面積が礫床時代 に比べ減少したことも(図-7a、水深0.0-0.05mの領域が増 加)、魚類生息環境に大きな影響を及ぼしている.

ただし、本研究は遊泳力の弱いエゾウグイ幼魚を対象 としているため、より遊泳力の強いサケ科魚類になどつ いては、さらなる調査が必要である.

5. まとめ

本研究では、石狩川を対象に、岩床環境と礫床環境の 両方における魚類調査および物理環境調査を実施した. 以下に得られた知見を列挙する.

- ① エゾウグイ幼魚(遊泳魚)の選好性:緩流部を好み、 流速が高いほど個体数は減少する.0.75m以下の 水深域に多く生息するが、水深に対する選好性は 流速ほど明確では無い.粒径90mm以下の礫床を 好むが、岩床でも流速の遅い地点にはわずかに生 息する.
- ② フクドジョウ(底生魚)の選好性:流速0.9~1.2 m/s, 水深の0.25~0.50mの領域に高い選好性を有する. 粒径が大きめの礫底や礫と礫の隙間を好むため, 岩床部には殆ど生息しない.
- ③ 露岩前(昭和53年)と露岩後(平成21年)における平水流量流下時の流況を比較すると,露岩後(平成21年)は、浸水面積が減少し、浸水部の流速と水深が増加した.これは、軟岩河川特有の侵食による深く細い澪筋地形によって、流水が澪筋部に集中したためである.
- ④ 露岩前後における重み付き利用可能生息場面積 WUAを比較すると、露岩後のWUAは、露岩前に 比べ、エゾウグイ幼魚で66%、フクドジョウで 81%減少した。
- ⑤ WUAの変化に対する物理環境項目ごとの重みを みると、露岩による河床材料の変化よりも、露岩 後の地形変化(澪筋化)による流速・水深の変化が 大きな影響を与えていることが確認された。
- ⑥ 露岩化が河川環境に与える影響を分析する場合, 河床材料の変化に着目しがちである.しかし,軟 岩が露出した場合,侵食による地形変化が驚くほ ど速い.そのような河川では,河床材料の変化だ けで無く,地形変化に伴う流速・水深等の変化に も十分に注意を払う必要があると考えられる.

石狩川上流域ではサケの稚魚が放流されており,数百 尾の遡上が確認されている. 今後は、サケの遡上産卵に 対する露岩化の影響を調査し、露岩区間内に緩流域を設 け砂礫堆積を促すような環境改善手法の検討が期待され る. 謝辞:本研究にあたって,北見工業大学の渡邉康玄教授, 北海道大学の泉典洋教授,清水康行教授,NPO法人環境 防災総合政策研究機構の黒木幹男先生をはじめ多くの方 にご助言を頂きました.ここに記して謝意を表します.

参考文献

- 1)中村智幸:河床の露盤化がヤマメの繁殖を阻害する,応用生 態工学会第8回発表講演集,101-104,2004.
- 2)石山信雄,渡辺恵三,永山滋也,中村太士,劒持浩高,高橋 浩揮,丸岡昇,岩瀬晴夫:河床の岩盤化が河川性魚類の生 息環境に及ぼす影響と礫河床の復元に向けた現地実験の評価, 応用生態工学, Vol. 12, No. 1,57-66,2009.
- 3)井上卓也,村上泰啓,伊藤丹,数馬田貢:流砂による軟岩侵 食と岩の物性値の関係,土木学会論文集B1(水工学), Vol.69, No.4, I 1039-I 1044, 2013.
- 4)井上卓也,渡邊康玄,齋藤大作,根本深,松本勝治,江崎國 夫,濱木道大:軟岩の洗掘を考慮した河床変動計算手法の開 発,河川技術論文集,第15巻,321-326,2009.
- 5)玉井伸行,奥田重俊,中村俊六:河川生態環境評価法,東京 大学出版会.
- 6)河川シミュレーションソフトiRIC, http://i-ric.org/ja/
- 7)井上卓也,泉典洋,米元光明,旭一岳:軟岩上の限界掃流力 と軟岩の洗掘速度に関する実験,河川技術論文集,第17巻, 77-82,2011.
- 8)西内教郎,小野篤志,竹内光,鬼束幸樹,秋山壽一郎:河川 に生息する数魚種に関する流速の選好曲線の提案,土木学会 西部支部研究発表会,VII-049, 2010.
- 9)須藤達美:山地・扇状地河川における魚類生息場の定量評価 に関する研究,環境水理部会研究集会, 2001.
- 9)独立行政法人国立環境研究所:侵入生物データベースより.
- 11)井上卓也,清水康行, Gary Parker,山口里実,伊藤丹:給砂 量と岩床侵食地形の関係,土木学会論文集B1(水工学), Vol.70, No.4, I 1039-I 1044, 2014.
- 12)Wohl, E.E., and Ikeda, H. : Experimental simulation of channel incision into a cohesive substrate at varying gradients, Geology 25, 295-298, 1994.

(2014.4.3受付)