三軸試験の試験条件が 河川堤防土の強度定数に及ぼす影響 EFFECTS OF TEST CONDITIONS OF TRIAXIAL TEST ON THE STRENGTH PARAMETERS OF RIVER LEVEE SOILS

小高猛司¹・崔瑛²・李圭太³・兼松祐志⁴・小林芳樹⁴ Takeshi KODAKA, Ying CUI, KyuTae LEE, Yuji KANEMATSU and Yoshiki KOBAYASHI

¹正会員 博(工) 名城大学教授 理工学部 (〒468-8502 名古屋市天白区塩釜口1-501)
²正会員 博(工) 名城大学准教授 理工学部 (〒468-8502 名古屋市天白区塩釜口1-501)
³正会員 博(工)株式会社建設技術研究所 大阪本社水工部 (〒541-0045 大阪市中央区道修町1-6-7)
⁴学生会員 名城大学大学院 理工学研究科修士課程 (〒468-8502 名古屋市天白区塩釜口1-501)

Soil parameters using for a stability inspection of river levee against seepage failure are very important. Recently, not only CU test for the triaxial test, but also CD and \overline{CU} tests are recommended for the determination of the strength parameters. However, in the case of low dry density of specimens, there is big difference among ϕ_{cu} obtained by CU test, ϕ' obtained by \overline{CU} test and ϕ_d obtained by CD test. A series of CU, \overline{CU} and CD tests for various soil materials sampled from real river levees are carried out, in order to conform the difference of the strength parameters obtained from different test conditions. Next, a numerical simulation by SYS Cam-clay model is conducted to discuss the mechanism of the difference of the test result.

Key Words : river levee, sand grave , sand, triaxial test, test condition, numerical simulation, soil structure

1. はじめに

従来の「河川堤防の構造検討の手引き」¹⁾では,浸透時のすべり破壊の照査においては,砂や砂礫であれば CU 試験で強度定数を求めることとされてきたが,平成 24 年2 月の改訂により,砂や砂礫についてCU 試験や CD 試験も推奨されるようになった²⁾.一方,小高らは 試験条件によって強度定数が大きく異なることを示した 上で,特に砂礫堤防土のCD試験による内部摩擦角は堤 体安定性を過大評価する可能性があるほど他の試験条件 で得たものより大きくなることを指摘している³⁾.本論 文では,小高らの試験結果³⁾も含め,河川堤防で採取し たいくつかの土を用いて,CU, CU およびCD試験を実 施することにより,それぞれの試験条件で得られる強度 定数について, 土質特性と対比しながら検討を行う.

論文の後半では、土の構造、過圧密、異方性を表現可 能なSYSカムクレイモデル⁴を用いた数値シミュレー ションにより、堤体土の試験結果の違いの原因について 考察する.

2. 砂礫堤防土の強度定数

表-1 は、砂礫を主体とする小鴨川および江の川の堤 防土の三軸試験結果 3 をまとめたものである.いずれ も砂礫堤防であるが、大型供試体は原粒度の試料、小型 供試体は大きな礫を取り除いて粒度調整した試料を用い て再構成したものである. 全体にわたり, CU 試験によ る � u は. CU および CD 試験による がや ぬ よりも小さ には、 グが なより小さくなり、両者に差が生じる. 大型 供試体は締固め度が高い場合でも小型供試体に比べて相 対的にゆる詰め構造になる³⁾ため, D=90%であっても φ'とφ₄の差が大きい.したがって、粒度調整試料を用い た室内試験では、実際の現場の堤防土の内部摩擦角を過 大評価する可能性がある.一方、 🖣 が締固め度に依存し ないのは、せん断中に排水が生じるためであり、初期に ゆる詰め(D:小)であっても、最大せん断応力に到達 した時には密詰め(D:大)に遷移しており、土の固有 のせん断抵抗を過大評価しうることに注意すべきである.

- 82 -

図-5 全応力と有効応力のモールの応力円(仁淀川・大型三軸・相対密度80%)

次に、仁淀川の堤防下の基礎地盤を構成する砂礫土の 強度定数の評価を行った結果を示す.試験試料は河口部 での河床掘削時に採取した砂礫であり、図-1に示す原粒 度試料を再構成し、大型三軸試験を実施した.供試体は、 最適含水比に近い含水比4%に調整した湿潤試料を用い て、5層にわけて締固めて再構成した.供試体寸法は、 直径30cm、高さ60cmである.当該現場のN値は28程度 であり、原・國生の礫質土の最小・最大密度に関する研 究⁵⁾を参考に、本研究では相対密度70および80%の2種類 の供試体を作製した.

供試体は三軸試験機に設置後,二重負圧法による飽和 化を行い,B値0.95以上を確保した.初期有効拘束圧は 50,100および200kPaとし,等方圧密後に排水(CD試 験)ならびに非排水せん断(CU試験)を実施した.な お,載荷速度はいずれの試験でも0.1%/minとした.

図-2に相対密度70%の供試体における試験結果を示す. 軸差応力~軸ひずみ関係より, CU 試験では軸ひずみ 1%程度で最大軸差応力を示した後,急激なひずみ軟化 挙動を示している.有効応力経路を見ると,最大軸差応 力後のポストピークにおいては,塑性圧縮を伴い脆性破 壊を起こしており,供試体が典型的なゆる詰め構造で あったことを示唆している.一方,CD試験においては, CU 試験と対照的に大きな軸差応力が発揮されているが, CD試験の軸差応力がこのように大きくなるのは,図-2(c)に示すように,せん断時の排水に伴って大きく体積 圧縮し,密詰めに遷移していくからである.

図-3に、図-2の試験の破壊時のモールの応力円と破壊 規準を示す. \overline{CU} 試験は全応力でも整理しており、CU試験結果に相当する.内部摩擦角は、 $\phi_u < \phi < \phi_u$ の順に値 が大きくなり、試験条件によって大きく異なる.

図-4,5に相対密度80%の供試体における試験結果, および破壊時のモールの応力円と破壊規準を示すが,相 対密度70%の結果に比べて軸差応力が若干大きくなる程 度であり,試験結果の傾向はほぼ同じである.

以上のように、大きな礫が主体であるが細粒分も有す る礫質土においては、排水条件によってせん断挙動は大 きく異なることが示された.すなわち、CU 試験では極 めてせん断抵抗が小さい一方で、CD試験時には大きな せん断抵抗を発揮する.

3. 乱れの少ない砂質土の強度定数

試験試料は淀川下流堤防から採取した堤体土であり, 天端から深度1~2m, 2~3mおよび3~4mの位置からサ ンドサンプラーによって乱れの少ない砂質試料を採取し た(以下,各深度の試料を試料1,2および3と記す). 採取後に凍結して保管し,凍結したまま供試体に成型し, 三軸試験装置に設置後,2重負圧法により飽和化した. 実施した試験は, CU 試験とCD試験である.表-2に試

表-2 淀川試料供試体情報(小型三軸試験)

	試験	拘束圧	乾燥密度	初期間隙	粉度粗成
	条件	(kPa)	(g/cm^3)	比 vo	
試 料 1	$\overline{\mathrm{CU}}$	50	1.49	0.779	》 四約 120/
		100	1.51	0.754	和公力4~~12%
	CD	50	1.50	0.768	磁分 4~8%
		100	1.49	0.777	
試料2	$\overline{\mathrm{CU}}$	50	1.49	0.777	
		100	1.49	0.773	細粒分3~7%
	CD	50	1.58	0.679	砂分 89~91%
		50	1.41	0.883	礫分 2~8%
		100	1.45	0.824	
試料3	CU	50	1.34	0.972	
		100	1.43	0.851	細粒分
		150	1.62	0.638	48~67%
	CD	50	1.46	0.813	砂分 31~50%
		100	1.32	1.004	礫分 1~3%
		150	1.51	0.754	

料ごとの試験条件と使用した個々の供試体の情報を示す. 所定の有効拘束圧にて3時間等方圧密した後に,ひずみ 速度は0.1%/minで単調載荷した.

図-6に試料1の試験結果を示す.軸差応力~軸ひずみ に着目すると、CU試験ではせん断終了時まで軸差応力 が増加し続けて試験を終了しているが、CD試験では軸 ひずみ6%程度からひずみ軟化挙動が見られる.有効応 力経路を見ると、CU試験に着目すると、いずれの有効 拘束圧でも塑性圧縮後、膨張に転じている.CD試験お ける体積ひずみ~軸ひずみ関係を見ると、軸ひずみ2% 程度まで圧縮し、その後膨張に転じていることがわかる.

図-7には試料2の試験結果を示す. CU 試験では有効 拘束E100kPaの試験よりも50kPaの軸差応力の増加度合 いが大きくなっている.有効応力経路で見ても,有効拘 束圧50kPaの供試体は,変相後の塑性膨張が顕著に現れ, 負圧による有効拘束圧増加によって軸差応力が増大して いる様子がよくわかる.CD試験においては,同じサン プリングチューブの供試体を用いて有効拘束圧50kPaの 同条件の試験を行ったが,軸差応力〜軸ひずみ関係およ び体積ひずみ〜軸ひずみ関係からわかるように,両者の せん断挙動は大きく異なっている.特に,CASE1では試 料1と同様の挙動を示しているのに対し,CASE2では軸 ひずみ10%程度まで圧縮し,その後膨張に転じてはいる が,CASE1ほど大きく膨張はしていない.

図-8に示す試料3においては、CU 試験ではいずれの 有効拘束圧においても軸差応力は試験中盤からほぼ一定 値となる.有効応力経路を見ると、有効拘束圧50kPaの 試験のみ、変相には至らず塑性圧縮したまま試験を終了 している.CD試験は有効拘束圧にかかわらず、せん断 終了時まで軸差応力が単調に増加している.また、いず れの試験でも圧縮し続けている.以上のことから、同じ サンプリングチューブ内の供試体であっても、わずかな 深度の違いによって力学特性が異なることがわかる.

(a) 軸差応力~軸ひずみ関係

表-3 淀川各試料の強度定数							
		<i>¢</i> _{cu} (°)	¢'(°)	$c_{\rm d}$ (kPa)	<i>¢</i> _d (°)		
試料1		23.5	34.9	0	40.3		
試料2	CASE1		35.5	38.2	24.8		
	CASE2			7.5	32.8		
試料3		27.7	37.2	0	33.8		

表-3に、破壊時のモールの応力円と破壊規準から求め たそれぞれの強度定数を示す. CU試験の場合, いずれ の試料も拘束圧に整合した大きさのモール円が得られず、 包絡線で破壊規準を規定するのが難しい. 試料1および 試料3で示す \$u, 仮に拘束圧100kPaの試験結果から設 定した値である.一方, CU 試験やCD試験では試験結 果は整合している. これらの試験条件においては、試験 条件ごとに異なるせん断中のダイレイタンシー特性が モールの応力円に反映されているためである.

淀川 (小型三軸・試料3) 図-8

> 表-2に示すようにそれぞれの試料はほぼ同じ粒度組成 であるが、供試体毎の乾燥密度の違いによって得られる 力学特性が異なることが分かった.一方, CU 試験の結 果のみに着目すると、試料1の場合、いずれの初期有効 拘束圧においても、 せん断初期から塑性圧縮が見られ、 変相後に塑性膨張に転じて正のダイレイタンシーが発現 している。試料3の場合、いずれの初期有効拘束圧にお いても試験中盤から軸差応力がほぼ一定となる。これら の試験結果は、供試体毎に乾燥密度が若干異なるために 観察される見かけの力学特性は異なるものの、ダイレイ タンシーまで含めて詳細に検討すれば、根本的な力学特 性はほとんど同じであることを示唆している。次章では、 試験結果をSYSカムクレイモデル⁵でシミュレートする ことにより、供試体毎の乾燥密度(締固め履歴)による 力学特性の違いを、骨格構造および過圧密度の程度の違 いのみによって表現することを試みる.

CD

100kPa

10 12 14 16

CD

100kPa

10 12 14 16

150kPa

50kPa

8

E (%)

10 12 14 16

8

 $\varepsilon(\%)$

8

E (%)

6

4. SYSカムクレイモデルによるシミュレーション

(1) シミュレーションの概要

本章では、前章における供試体毎の力学挙動の相違が 供試体の構造に起因すると仮定し、骨格構造の変化を記 述することができる上下負荷面カムクレイモデル (SYS カムクレイモデル⁴)を用いて試験結果をシミュレート することにより、上記の考えの理論的な裏付けを行う. 具体的には、各供試体が有する骨格構造の程度とその劣 化のしやすさを系統的に設定することにより、一様変形 場におけるSYSカムクレイモデルの構成式応答が各供試 体の三軸試験結果を説明できることを示す.なお、SYS カムクレイモデルは、カムクレイモデルに骨格構造(以 下、単に構造と呼ぶ)・過圧密・異方性の3つの概念を 導入した構成モデルであり、構造は載荷時の塑性変形の 進展に伴って次第に劣化するが、その際の構造劣化の速 さの大小によって、様々な土の力学挙動を統一的に記述 することが可能となる⁴.

表-4に弾塑性パラメータ,発展則パラメータ,初期状態を示す.本章の解析では、同試料においても供試体密度等の違いによって異なる骨格構造を有していると仮定しているため、各供試体の初期の構造の程度を表す1/R₀*,初期の過圧密度1/R₀および構造劣化の速さを表す構造劣化指数aを変化させて設定し、その他の土質定数は共通とした.構造の程度1/R₀*が大きいほど構造が高位である(嵩張っている)ことを示す.また,1/R₀*と1/R₀は従属関係にあり、1/R₀*を設定すれば、1/R₀は初期

比体積 v_0 とNCLの切片Nの値から自ずと決定される.一 方,構造劣化指数aが大きいほど構造の劣化が速い.初 期比体積 v_0 および限界状態定数Mは試験結果を参考に決 定した.その他の共通パラメータはすべてフィッティン グにより決定した.いずれのケースにおいても,初期平 均有効応力は p_0 ' = 9.8 kPaとし, 50, 100, 150kPaまでの 等方圧密過程をシミュレートした後に,非排水せん断を 行った.

表4	シミュレーションに用いた各種パラメータ
----	---------------------

-							
			料1	試料3			
	有効拘束圧(kPa)	50	100	50	100	150	
弾塑性パラメー	圧縮指数 <i>λ</i>	0.200		0.170			
	膨潤指数 κ	0.010		0.010			
	限界状態定数 M	1.45		1.60			
	*NCLの切片N	1.75		1.85			
タ	ポアソン比 v			0.300			
発展則パラメータ	構造劣化指数 a	15.0	30	07	0.5	0.5	
	(<i>b</i> = <i>c</i> =1.0)	15.0	5.0	0.7	0.5	0.5	
	正規圧密土化指数m	0.05		0.05			
	回転硬化指数 br	0.00					
	回転硬化限界定数 mb	0.00					
初期値	初期比体積 vo	1.779	1.754	1.972	1.852	1.638	
	初期構造の程度 $1/R_0^*$	2.5	7.0	12.0	12.0	7.0	
	初期過圧密度 1/R ₀	8.8	12.7	17.0	18.8	24.6	
	初期異方性			0.01			
	$\zeta = \sqrt{2/3\beta_0 \cdot \beta_0}$						
	初期平均有劾応力 p_0 '	9.80					

*NCLの切片 N (q=0, P'=98.1kPaの時の比体積)

(2) シミュレーションの結果と考察

図-9, 10にSYSカムクレイモデルによる, 淀川試料1, 3のシミュレーション結果を示すが、いずれも三軸試験 結果を適切に表現できている。すなわち、構造と過圧密 度の程度を示す初期構造の程度1/R₀*と構造劣化指数a, 過圧密度1/Rのみを変えることにより、供試体の力学挙 動の相違が表現できている. 河川堤防土は盛土材料であ るため、同じサンプリングチューブの試料であってもわ ずかに深度が異なるため、供試体毎に施工時に受けた締 固め履歴は異なると考えられる.一般に、同じ有効応力 で比較すれば初期比体積が大きいほど初期の構造は高位 でかつ劣化しやすいと仮定できるが、 試料3のパラメー タはその仮定に合致している.一方,試料1は初期比体 積が小さい供試体の初期構造を高位としなければ試験結 果を説明できなかったが、これは供試体の差が締固め履 歴のみではなく、供試体間に粒度組成の差もあったこと が考えられる.

図(c)に示す, せん断に伴う程度1/R*の低下履歴より, いずれの供試体も, せん断が進むにつれ, 構造の程度 1/R*は低下しているが, 構造は完全には消失せず, せん 断完了後でも高位な構造を維持している. 試料1の拘束 圧50kPaの結果のみ, 構造の程度1/R*が1.0(完全に構造 が消失した状態) となる.

さらにせん断に伴う過圧密度の変化からは、供試体密 度が大きいほど初期の過圧密度が大きく、せん断開始と 同時に急激に低下している傾向が見られる.いずれの供 試体も、せん断が進むにつれて過圧密度は同程度の値に 推移していくが完全には消失せず、残留している.

本章ではシミュレーションを通して、同深度の供試体 に対し、構造の概念を導入することで、密度および粒度 組成が異なる供試体の力学特性を同じパラメータを用い て表現することができた.供試体密度が大きいほど、高 位でありかつ劣化しにくい構造であると考えられるが、 粒度組成が異なる場合にはその限りではない.今後は試 験ケースを増やして更なる検証を行う必要がある.なお、 河川堤防は盛土構造物であるため、乱れの少ない現場採 取試料で力学特性を評価する際には、施工履歴の影響を 大きく受けていることに注意する必要がある.

5. おわりに

大きな礫を含む砂礫堤防は、締固め度が大きな場合で も、せん断中に塑性圧縮を起こす土質力学的にゆる詰め 傾向の強い構造体である場合が多い³. そのような土に 対してCD試験を実施すると、せん断中に密詰め構造へ と構造変化してしまうことから、固有の初期構造を有す る土粒子構造体としての堤防盛土が本来有しているせん 断抵抗を過大評価する懸念がある.

一方、細粒分が多く含まれる堤防土では、サンドサン プラーで現地土の採取が比較的容易であることから、再 構成試料を用いずに乱れの少ない試料で試験を実施する ことが多い.このような土は比較的密詰め構造であるが、 人工物である堤防は、深度の違いによって盛土材が大き く異なることがあり、また同じ盛土材と見なせる場合で あっても、ごくわずかな深度の違いで、締固め履歴に よって乾燥密度が異なるため、試験で得られる力学特性 が異なる.特に供試体による試験結果の差は、CU試験 に顕著に現れる.しかし、CU 試験では、供試体のダイ レイタンシー特性を反映した結果が得られるため、供試 体の差が出にくい長所を有する.ただし、全応力法の円 弧すべり解析にCU 試験結果を用いる合理性はないため、 より一層の議論が必要である.

参考文献

- 1) 国土技術研究センター:河川堤防の構造検討の手引き, 2002.
- 国土技術研究センター:河川堤防の構造検討の手引き(改訂版),2012.
- 3) 小高猛司,板橋一雄,中島康介,牧田祐輝,李 圭太,上村 俊英,坪田邦治,加藤雅也:河川堤防砂礫の変形・強度特性 の評価手法に関する考察,地盤工学ジャーナル, Vol.5, No.2, pp. 193-205, 2010.
- 4) 例えば, Asaoka, A., Noda, T., Yamada, E., Kaneda, K. and Nakano, M.: An elasto-plastic description of two distinct volume change mechanisms of soils, Soils and Foundations, Vol.42. No.5, pp.47-57, 2002.
- 5) 原 忠, 國生剛治: 砂礫の最小・最大密度に及ぼす影響因子 の分析, 土木学会論文集, No.778/III-69, pp.151-162, 2004.
- 6)小高猛司,崔瑛,李 圭太,森 涼香,兼松祐志:河川堤防 砂の構造の程度が力学特性の評価に及ぼす影響,河川技術論 文集,Vol.18, pp.339-344, 2012.

(2013.4.4受付)