分布物理型モデルを用いた霞ヶ浦における 水循環と溶存態窒素の挙動解析 ANALYSIS ON BEHAVIORS OF WATER CYCLE AND DISSOLVED NITROGEN

IN KASUMIGAURA WATERSHED BY DISTRIBUTED PHYSICAL MODEL

リーブーンホン¹・木内 豪²・石川 忠晴³・黎嘉韻⁴ Boon-hon LEE, Tsuyoshi KINOUCHI, Tadaharu ISHIKAWA and Jia-yun LI

1学生会員 学士 東京工業大学大学院 総合理工学研究科 (〒226-8852 横浜市緑区長津田町4259)
 2正会員 工博 東京工業大学大学院准教授 総合理工学研究科 (〒226-8852 横浜市緑区長津田町4259)
 3正会員 工博 東京工業大学大学院教授 総合理工学研究科 (〒226-8852 横浜市緑区長津田町4259)
 4学生会員 修士 東京工業大学大学院 総合理工学研究科 (〒226-8852 横浜市緑区長津田町4259)

There is a need to study water and nutrient transport system of a watershed in order to find effective measurements to reduce amount of non point source pollutant loads. Our research uses WEP model to simulate water and nutrient transport system of Koise watershed. Data of land covers, meteorology, rivers' properties, fertilizer input, nitrate concentration in rainfall and others of Koise watershed was processed as inputs to WEP model. Hydrograph and inorganic nitrogen cycle of year 2007 were simulated. Simulation result pattern of year 2007 agrees well with occasional observed data and estimation from ANN model. Year 2008 hydrograph was simulated by the same set of parameter for verification purpose. High reproducibility rate of 0.98 and 0.91 is achieved. Sensitivity of uncertain parameters was analyzed in search of better parameter set to reduce simulation error. Discharge amount of pollutant loads is found to be hugely influenced by fertilizer input, nitrate concentration in rainfall and underground water.

Key Words: WEP model; Hydrograph; nutrient transport cycle; ANN model; parameter sensitivity

1. はじめに

霞ヶ浦の水質は高度経済成長時代に次第に悪化し、そ の後の様々な対策で一旦改善の兆しを見せたが、近年は COD・全窒素が緩やかな上昇傾向、全リンは高止まってい る. 湖の流入河川では、北浦に流入する鉾田川・巴川の 窒素濃度の上昇が顕著である他、西浦に流入する恋瀬川 等でも上昇傾向が見られる.

流域での点源汚濁負荷対策は下水道整備等により進展 してきたが、大きく影響すると言われる農地等面源¹¹から の汚濁負荷は様々な経路(表流水、地下水等)を経由して 流出するため、その実態把握に基づく効果的な対策が必 要とされる.例えば、農地では生産性向上のため人工的 な窒素肥料が大量に使用され、流域における地下水の硝 酸汚染や水系の窒素富化の一因だとされている.他方、 筑波山の窒素飽和現象に垣間見られるように大気由来の 沈着物による栄養塩負荷の増大が危惧される²¹.そこで、 本研究では窒素に着目し、流域の水循環と溶存態窒素の 挙動を分布物理型モデルにより定量化し、流域の多様な 窒素負荷源が河川水質に及ぼす影響を評価することを最 終的な目的とする.これまでもモデルによる解析事例は あるが³⁾⁴⁾,本研究では可能な限り物理現象に基づいた 解析を試みるとともに,モデルの検証に窒素濃度の時系 列情報を作成し用いている点に特徴がある.

2. 研究対象の概要

霞ヶ浦の流入河川の一つである恋瀬川流域(面積:

図-1 霞ヶ浦流域の恋頼川(実線). 黒点は水質観測地点.

国土数値情報によると本流域の土地利用は水田19.9%, 畑地23.4%,森林39.3%,荒れ地1.7%,建物用地9.7%,幹 線交通地0.6%,その他の用地2.1%,河川1.3%とゴルフ場 2.0%となっている(図-2).水田と畑地・樹園地が4割を 超え,農業が主産業のため面源負荷が多いと考えられる. 流域内における水の流下方向(図-3)は250mメッシュ標 高データから算出した.

3. WEPモデルの適用

(1) 水循環解析

本研究では分布物理型の水循環モデル(WEPモデル: Water and Energy transfer Process Model⁵⁾)を用いて 解析した.このモデルは流域を多数の格子に分割し,格 子間の水・物質・エネルギーの循環・輸送を素過程に基 づき計算する(図-4).また,水田における人為的灌漑 排水や水管理も考慮している⁶⁾.他のモデルと比べて,土 地利用の不均質性や地表面過程を詳細に解析できる.任 意の地点の解析結果を出力できる利点もある.

対象流域に関する主な入力データは表-1に示した. こ れらの情報は、必要に応じてArcGISを用いてメッシュデ ータに変換し、WEPモデルに入力した. 各格子のメッシュ サイズは500m×500mに設定した.解析期間内の時間ごと の降雨、風速、日照時間、気温と相対湿度の空間分布は ティーセン分割により定めた.土地利用情報を水域,裸 地, 丈の低い草地, 農耕地と不浸透層に再分類し, 解析 メッシュ内に占める割合を算出してモデルに適応した. 水田では、代掻き、田植えや中干しの期間における灌漑 量変化の実績データを用いた.表層土壌は関東ローム、 沖積土、水田土壌及び基盤岩類に分類し、既往研究の土 壌パラメータに基づき透水係数,間隙率と層厚を設定し た"). 流域内の河川は合計65ノードに分割した. 河川の断 面は全て台形と仮定し、川幅を衛星写真から算出した. マニングの粗度係数と河床の透水係数・厚さはそれぞれ 0.0035, 1.00E-06m/s, 1.0mを与えた.

(2) 溶存態窒素の解析

ここで用いる溶存態窒素モデルは茨城県の牛久沼流域 における溶存態窒素循環解析を行うために開発されたも の⁸を用いたが,変更された解析条件は**表-2**にまとめた. 溶存態窒素にはアンモニア態窒素,亜硝酸態窒素,硝酸 態窒素があり,酸化状態では硝化によってアンモニア態 窒素が亜硝酸態窒素を経て硝酸態窒素へと変化するが, 本モデルではこれらの区別は行わず溶存態窒素として一 括して扱っている.農地や果樹地では,施肥及び作物吸 収の結果として,栄養塩が表層土壌中に一部残留すると ともに,溶脱による土壌から地下水への移動や表面流に よる河川への流出が発生することからモデルではこれら の過程を考慮している(図-5)⁹.

表-1 主な入力データ

データ項目	データソース
流域界・河道	国土数值情報
土地利用	国土数值情報(1/10細分区画,2006)
人口	地域メッシュ統計(12年国勢調査)
利水情報	水資源機構・霞ヶ浦用水管理所
気温・風速・日照時間	AMeDAS(計3地点)
雨量	国土交通省,AMeDAS(計7地点)
相対湿度	管区気象台(計3地点)
下水道整備域	茨城県霞ヶ浦流域下水道事務所

表-2 水質モデルにおける各種条件の設定内容

	-
項目	内容
地下水質の	地下水の溶存態窒素濃度は全域で一定値
初期条件	3.0mgN/1を与えた.
降水の水質	環境省の酸性雨対策調査における公開情報に基
	づき、月別の湿性沈着量と降水量から月別の降
	水中のN03-NとNH4-Nの平均濃度を求め,用いた.
雑排水の水	下水道未整備地域においては、雑排水の溶存態
質	窒素濃度を5.0mgN/1の一定値と与えた.
霞ヶ浦用水	霞ヶ浦用水を利用した灌漑水質は、霞ヶ浦用水
の水質	管理所の公開資料に基づく概算値として、
	1.0mgN/1の一定値を与えた.
施肥及び作	飯泉ら(2005)の方法に基づき,恋瀬川流域内
物吸収	の旧市町村別に施肥による窒素投入量及び作物
	による窒素吸収量を求めてモデルに入力した.

図-4 河川流域における水・熱輸送現象

図-5 農地における窒素循環のモデル化

4. 解析結果

(1) 水循環解析結果

2007/1/1 01:00から2007/12/31 24:00までの水循環解 析を行い、年間を通じて実測値を再現できるようにパラ メータのキャリブレーションを行った.解析結果を図-6 に示す.2007年の流量でキャリブレーションしたパラメ ータセットを用いて、2008年におけるモデルの再現性を 確認した(図-9).それぞれの年の洪水時ハイドグラフ を図-7、8、10、11に示す.洪水時のピーク流量もそれぞ れの年で実測値と0.98、0.91の高い相関係数であった (図-12).土地利用が不均一で、灌漑や排水における人 為的影響も大きいと考えられるが、以上により本モデル を恋瀬川流域にも良好に適用できることが確認できた. また、水収支で整理して見ると、地下水流出と中間流出 が流出量の80.8%を占めており、これらが年間の河川流 量に大きな影響を及ぼしていることがわかる(図-13).

図-13 恋瀬川における2007年の水収支

(2) 溶存態窒素の解析結果

水循環の再現性を確認した上で、WEPモデルと組み合わ せた水質モデルを用いて溶存態窒素の循環解析を行った. 非灌漑期には溶存態窒素の濃度が高く、灌漑期には低下 するという挙動がうまく再現できているとともに、洪水 時の濃度変化ではイベントごとに異なる特徴を示した

(図-14).また,恋瀬川府中橋より上流の集水域を対象 に年間の窒素収支を整理したところ,降雨からの窒素流 入量が施肥による正味の投入量(=投入一吸収)よりも 大きいことがわかった(図-15).

この時系列の解析結果は平常時・洪水時の実測結果及 びニューラルネットワークモデル(ANN)¹⁰⁾を用いて別途 推定された溶存態窒素の時系列情報とも類似であった (図-14).ただし、ANNモデルではNH₄-Nを考慮していな いが、実測では考慮している.実測のNH₄-N濃度は溶存態 窒素に対して灌漑期7.6%と非灌漑期4.6%であった.

図-14 恋瀬川における2007年の溶存態窒素の循環解析結果

図-15 恋瀬川における2007年の窒素収支(単位はt-N/year)

流域からの溶存態窒素の負荷流出量の大小には,施肥 量の他に地下水濃度や降雨中の窒素濃度の影響,田面水 位の管理も大きく影響する一方,これらの値や計算上の 設定には不確実な要素も含まれている(例えば,流域内 1地点の降雨水質情報を用いている)ことから,より良 い解析結果を得るために,いくつかのパラメータの感度 に関する分析を以下で行った.

5. 不確実なパラメータの感度分析

本モデルには多数のパラメータ^{7,11}が用いられている ため、それらの内で5つのパラメータ(以下の(1)~(5)) を対象に感度分析を行った.感度分析では、複数個のパ ラメータのうち、ただ1つのパラメータの値を変更させ、 その影響を把握した.

(1) 地下水中の溶存態窒素濃度(地下水濃度)

不確実で複雑な地下水中の濃度状況に加え,現地観測 データも不足している.しかし,前節での計算では地下 水濃度を恋瀬川流域全体で3.0mg/1と仮定していること から,この地下水濃度の初期値が与える影響を評価する ため,値を1.0mg/1(-66.7%)から5.0mg/1(+66.7%) まで変動させて,その感度を確認した.

(2) 脱窒係数

河床や河岸を通過する際に生物学的作用を受けて硝酸

態窒素濃度が変化すると考えられる.本モデルでは、不 圧地下水の河川流出において、式1のように表現する⁹.

$$NO3_{GW} = K \times RNO3_{GW} \tag{1}$$

ここで, *RNO3_{GW}*:流出する硝酸態窒素量, *NO3_{GW}*: 実際に流出する硝酸態窒素量, *K*: 脱窒係数である.

脱窒係数の値は実測等に基づいているわけではなく, 初期解析では全流域一様で0.8と仮定していた.そこで, 脱窒係数*K*を0.2から1.0まで変動させ,解析結果に与え る影響を検討した.

(3) 降雨中の溶存態窒素濃度

前節では降雨中の溶存態窒素濃度(降雨中濃度)を月 別の平均データに基づいて解析したが、実際には雨ごと に濃度が異なる.また、筑波山気象観測ステーションで 観測した値が流域全体にも適用できると仮定していた.

このような降雨中濃度の不確実性が汚濁負荷の流出量 にどの程度の影響を与えるのかを理解するため,元のデ ータに対して-50%から+80%の範囲で変化させ,降雨中濃 度の感度分析を行った.

(4) 灌漑用水の溶存態窒素濃度(灌漑水濃度)

本解析では、農業用地に配分される灌漑用水の溶存態 窒素濃度が霞ヶ浦の全窒素濃度に等しく、1.0mg/1と仮定 した(灌漑期間は4月15日~8月31日と設定).

しかしながら、これは頻度の低い分析結果に基づく設 定であるとともに有機態窒素濃度も含むことから、灌漑 用水の溶存態窒素濃度にも不確実性が内在する.そこで、 本検討では濃度を1.0mg/1から0.2mg/1まで減少させて、 感度を確認した.

(5) 表面流出水中の溶存態窒素濃度

降水中に含まれる溶存態窒素が表層土壌水中の溶存態 窒素と混合したり,吸着成分を溶存させて河川に流出し たりする現象は,現状,本モデルでは次式により考慮し ている⁹.

$C1ROF = \alpha CRA + C1T(1 - \alpha)$

ここで、*CRA*:降雨中の溶存態窒素濃度、*C1T*:土の 第一層に含まれる窒素濃度、*C1ROF*:流出水中の窒素 濃度である.αは混合度を表し、小さければ第一層中に 存在する窒素の流出の影響が強く現れること意味する. αのデフォルト値は1.0で、それに対し-80%まで変動さ せて解析した.

(2)

(6) 不確実なパラメータの感度分析結果

不確実なパラメータの変動による影響を評価するため, 前節で示した初期設定におけるパラメータとその時の解 析濃度に対する変化率を用いて整理した.なお,月毎の 最終日23時と洪水時における恋瀬川から霞ヶ浦に流出す る溶存態窒素濃度を比較した.

図-16に示すように、月毎の最終日23時の比較では地下 水濃度と脱窒係数が他の要素に比べて濃度に強く影響し ていることがわかる.地下水濃度と脱窒係数の単位変化 は解析結果にそれぞれ0.86と0.78の変化をもたらしてい た.このことは、地下水濃度と脱窒係数が平常時の溶存 態窒素の排出量に大きな影響を与えていることを意味し ており、現実にもこれらの影響が相対的に大きい可能性 を示唆している.

一方,洪水時の比較では降雨中濃度と窒素混合度 a の 変化率は濃度の変化率とそれぞれ強い比例と反比例の関 係をみせた.2007年5月25日に起きた洪水を例にとって図 -17に示した.降雨中濃度と窒素混合度における変化率の 近似直線の傾きはそれぞれ0.84と-0.68であった.このこ とから,洪水時における汚濁負荷流出量の予測・評価に あたっては,降雨中濃度と表面流出の仕組みをよりよく 理解してモデルに反映させることが重要であることを示 唆する.灌漑水濃度の変動は平常時,洪水時のいずれの 場合も影響が非常に小さいことがわかった.

(7) 誤差の分析

不確実なパラメータによって生じる解析誤差(ε)を 以下の**式3**で定義する.

$$\varepsilon = \sqrt{\frac{\sum \left(\beta - \overline{\beta}\right)^2}{n}} \tag{3}$$

ここで、eta: 再現値、 \overline{eta} : 観測値、n: 観測データの数である.

5つの不確実なパラメータについて解析計算を行った ところ、地下水濃度、脱窒係数、灌漑用水、降雨中濃度 が、それぞれ10%、10%、-50%、50%の変化率で最小の 誤差をみせた(図-18参照).一方、窒素混合度について は初期設定値のときに誤差が一番小さくなる結果であっ た.また、上記で述べた各パラメータの最適な変化率を 組み合わせて解析したところ、初期設定時の誤差よりも0. 01大きく、式3で得られる誤差の値が0.54であった. 個々の最適パラメータが必ずしも全体の最適パラメ ータとならないことから、様々なパラメータの組み合わ せで再解析したところ、地下水濃度と降雨中濃度を10% ずつで増加した時に、誤差が最も小さくなる結果であっ た.この時のパラメータセットを用いて解析した年間の 濃度変動結果を図-19に示す.非灌漑時の濃度が初期設定 に対して高くなっていることが明らかである.また、降 雨時の濃度変化を見ると(図-20)、降雨に伴い濃度が低 減する特徴は捉えられているが、実測データが不足して おり、洪水ピーク時の大きな濃度低減については検証で きなかった.

図-16 月毎の最終日における変化率の比較

- 249 -

2007/10/25 2007/11/1 2007/11/8 2007/11/15 図-20 最適なパラメータセットで再現した洪水時の溶存 態窒素の循環解析結果

6. まとめ

不確実な要素の多い流域スケールにおける水・物 質循環の特性解明と霞ヶ浦の水質改善に資すること を目的として,分布物理型モデルを用いた恋瀬川流 域の溶存態窒素の挙動解析を実施した.その結果, 以下の点が明らかになった.

- (1) 恋瀬川流域の水循環解析にWEPモデルが有効で あった.年間の水収支から,地下水流出と中間 流出が河川流量に大きく影響していることを示 した.
- (2) パラメータの感度分析結果より、地下水濃度が 河川水中の溶存態窒素濃度に大きな影響を与え ることがわかった.
- (3) 降雨中の溶存態窒素濃度は、通年では大した影響を及ぼさないが、洪水時の解析結果には非常に大きく影響する.降雨中濃度を50%増加させるとより実測に近い解析結果が得られた.このことは、乾性沈着も含めたより精度良い大気からの窒素供給を考慮しなければならないことを示唆する.
- (4) 不確実なパラメータによる組み合わせの感度分析結果から、地下水濃度と降雨中濃度を10%ずつ増加させた場合に、解析と観測の誤差が最小となった。
- (5) 地下水濃度,降雨中濃度と脱窒係数のパラメー

タ変動が大きな影響を及ぼすため、より現実的 な設定条件を明らかにしていく必要がある.

参考文献

- 井上京、山本忠男、長澤徹明:北海道東部浜仲地区 における流域の土地利用と河川水質、農業土木学会 論文集,200,85-92,1999.
- 渡邊未来:森林から窒素が流れ出す-筑波山の窒素飽 和-,国立環境研究所ニュースVol.27 No.5, 2008.
- 3) 辻倉裕喜,安部和雄,大八木豊,田中伸治:湖沼流 域管理のための総合的な水循環・物質流動モデルの 構築,水工学論文集,第47巻,2003.
- 北村立実:霞ヶ浦流域モデルの構築と河川流域への 適用,茨城県霞ヶ浦環境科学センター年報 第3号 2007.
- 5) Jia, Y., Ni, G., Kawahara, Y., and Suetsugi, T.: Development of WEP model and its application to an urban watershed, *Hydrological Processes*, 15, 2175-2194, 2001.
- 6) Jia, Y., Kinouchi, T. and Yoshitani, J.:Distributed hydrologic modeling in a partially urbanized agricultural watershed using water and energy transfer process model, Journal of Hydrologic Eng., ASCE, Vol. 10, No. 4, pp 253-263, 2005.
- 建設技術研究所:霞ヶ浦流出モデル構築検討業務報 告書, H18.3.
- 8) 飯泉佳子・木内豪・深見和彦: 窒素を対象となる農 地汚濁負荷量算出方法の提示と分布型モデルによる 河川・地下水の水質解析, 土木技術資料 Vol. 47, No. 11, pp. 44-49, 2005.
- 9) 飯泉佳子・木内豪・深見和彦:分布型モデルを用い た河川・地下水の水質解析,河川技術論文集,第12 巻,2006.
- 10) 善見憲二,劉銘環,石川忠晴:光計測による河川 汚濁負荷推定の効率化に関する基礎的研究,河 川技術論文集, Vol. 13, pp. 219-224, 2007.
- Jia, Y., T. Kinouchi, J. Yoshitani, Distributed hydrologic modeling in a partially urbanized agricultural watershed using water and energy transfer process model, *Journal of Hydrologic Engineering*, ASCE, Vol.10, No.4, 253-263, 2005.

(2011.5.19受付)