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In urban area, constructions of soft ground tunnels are usually important in terms of prediction and
control of surface settlement and gradient. Several approaches are readily used for prediction of the
ground deformations associated with tunneling. This paper discusses the subsidence prediction using
FEM analysis and Artificial Neural Network (ANN) with FEM database. This paper, firstly,
investigates the application of FEM simulation using a proposed model to predict ground movement
caused by tunneling of a shallow NATM tunnel in unconsolidated soil. The proposed model used
here incorporates reduction of shear stiffness, as well as strain softening effects of given material
strength parameters. Numerical simulation is performed with material property values, E, v, ¢, and ¢,
obtained from laboratory. Some additional parametric studies are performed. FEM results shows as
agree well with compare of field data. Secondly, ANN modeling is performed for subsidence
prediction. ANN studies database to provide an FEM analysis result. A learned (trained) ANN model
has the potential to provide accurate desired output (true output) from input data. However, once the
network is trained, its running speed is very high, thereby reducing the total time consumed in the
analysis. The trained ANN model is further validated by carrying out parametric studies to assess
whether the model gives logical and consistent trends and a case study to verify the application to
the actual NATM tunnel in prediction problem. The two methods, FEM and ANN, offer a practical
way for predicting final displacement of shallow NATM tunnel, enabling rational safety
management scheme to be employed.
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1. INTRODUCTION

Currently an increasing number of urban tunnels
with small overburden are excavated according to
the principle of the New Austrian Tunneling
Method (NATM). In urban area, constructions of
soft ground tunnels are usually important in terms
of prediction and control of surface settlement and
gradient. Several approaches are readily used for
prediction of the ground deformations associated
with tunneling. There are three common approaches
for estimating deformation behavior of ground and
tunnel. The first involves analysis of data from
laboratories and fields. The second requires the use
of empirical method. The third method is the use of
a more rigorous approach involving numerical
analysis such as the finite element method. In recent
years, numerical methods for design purposes are
often used to predict deformational behavior around
tunnels”. Finite element procedures have been
applied not only to the ground movement prediction
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but also to the whole tunnel design problem, which
includes simulation of the construction method,
analysis of the extent and development of failed
zones, design of the support system, and effects on
nearby tunnels, etc. In the approach of numerical
modeling, those results are strongly dependent on
the construction stages modeled, the constitutive
law selected, and the appropriate assessment of the
corresponding soil parameters. However, as many
of these geotechnical finite element programs are
not user-friendly, the setting up of the finite element
mesh, the input data preparation, and the
interpretation of the output are rather

time-consuming. An alternative procedure that is

useful for providing estimates of subsidence or
ground deformations for preliminary design
purposes is the use of an artificial intelligence
technique known as artificial neural networks
(ANN). This paper discusses the subsidence
prediction using FEM analysis and ANN with FEM
database.

This paper, firstly, investigates the application of



FEM simulation using a proposed model to predict
ground movement caused by tunneling of a shallow
NATM tunnel in unconsolidated soil. The proposed
model used here incorporates reduction of shear
stiffness, as well as strain softening effects of given
material strength parameters. Numerical simulation
is performed with material property values, E, v, c,
and ¢, obtained from laboratory. Secondly, ANN
model performs for subsidence prediction. ANN is
studies the database and is trained to provide -an
FEM analysis result. A trained ANN model has the
potential to provide accurate desired output (true
output) from input data. However, once the network
is trained, its running speed is very high, thereby
reducting the total time consumed in the analysis.
The trained ANN model was further validated by
carrying out parametric studies to assess whether
the model gives logical and consistent trends and a
case study to verify the application to the actual
NATM tunnel in prediction problem. The two
methods, FEM and ANN, offer a practical way for
prediction final displacement of shallow NATM
tunnel, enabling rational safety management
scheme to be employed.

2. APPLICATION TO THE SHALLOW NATM
TUNNEL BY FEM AND ANN

(1) Nonlinear deformation in shallow tunnel

Deformational behavior around a shallow tunnel is
often characterized by formation of shear bands
developing from tunnel shoulder reaching,
sometimes, to the ground surface. Fig.1 shows a
strain distribution derived from the results of
displacement measurements taken from a subway
tunnel in Washington D.C.”

One possible explanation of this deformational
behavior may be best stated with a help of an
illustration gtven in Fig.2. Region-A, surrounded by
slip plane -k, is regarded as a poteatially unstable
zone that may displace downward at the lack of
frictional support along k-k planes. What is
separating region-A from the surrounding is shear
band a formed along k-k line with some thickness,
as region A slides downward. The adjacent region-B
follows the movement of region-A, leading to the
formation of another shear band 4. The direction of
shear band b is related to 45° +¢/2 (¢: friction
angle) and often coincides with what is called a
boundary line of zone influenced by excavation.
Regions A and B correspond to the primary and
secondary zones of deformational behavior pointed
out earlier by Murayama et al.”* in the series of
trap door experiments. Confirming the presence of
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these zones is equivalent to acknowledging
formation of shear bands a and b, which may not be
a desirable practice in view of minimizing
deformation during construction of shallow tunnels.
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Fig.1 Strain distribution around a subway tunnel (after
Hansmire and Cording, 19852).

Fig.2 Typical deformational mechanism around
a shallow tunnel.

However, it is regarded very important that a
reliable method be established in order to reveal
non-linear deformational mechanism and identify
the state of deformation  with reference to an
ultimate state, which is of current interest in the
new design practice.

(2) FEM simulation wusing strain softening
analysis

In the framework of applying general numerical
analysis tools, such as finite element methods, there
have been series of approaches taken for simulation
of tunnel excavation. Adachi et al.” made use of
classical slip line theory to define geometrical
distribution of joint elements for modeling shallow
tunnel excavation. Okuda et al.” applied a back
analysis procedure to identify the deformational
mechanism, in which anisotropic damage parameter
m was employed. Sterpi”’ conducted strain softening
analysis in which strength parameters (cohesion and
friction angle) were lowered immediately after the
initiation of plastic yielding. This approach was
applied for the interpretation of field measurements
by Gioda and Locatelli® who succeeded to simulate



the actual excavation procedure with accuracy.
These attempts incorporate some of the key factors
that must be taken into consideration for modeling
shallow tunnel excavation. However, there still is
shortage in modeling capability, which is expected
to cope with development of shear bands, formation
of primary and secondary zones, etc.

By reviewing the previous works, the authors
concluded that the essential features to be taken into
the numerical procedure would be reduction of
shear stiffness and strength parameters after
yielding (namely, strain softening)”. Following is a
brief summary of the procedure employed in this
work, as is references 10). A fundamental
constitutive relation between stress ¢ and strain € is
defined by an elasticity matrix D

. 1-v v 0
zr——?‘ 1—v 0 (1)
VTV 0 00 m-v-2v)

where 0=De holds. E and v stands for Young’s
modulus and Poisson’s ratio, respectively. The
anisotropy parameter m is defined as

m=m, —(m, —m,)[1- Exp{~100a(y - 7.)}1(2)

where m, is the initial value of m, m, is the residual
value, o is a constant, y is shear strain, y. is the
shear strain at the onset of yielding. The
constitutive relationship is defined for conjugate
slip plane direction (45° *£¢/2) and transformed
back to the global coordinate system.
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Fig.3 Reduction of strength parameters.

Strength parameters, namely cohesion ¢ and friction
angle ¢ are reduced from the moment of initiation
of yielding to residual values, as indicated in Fig.3.
This implies that the admissible space for stress is
gradually shrunk as strain-softening process takes
place. Any excess stress, which is computed on the
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transformed coordinate system based on slip plane
direction, outside an updated failure envelope is
converted into unbalanced forces that are
compensated for in an iterative algorithm.

(3) Artificial neural network (ANN) analysis

ANN is a form of artificial intelligence that
attempts to mimic the behavior of the human brain
and nervous system. A comprehensive description
of ANN is beyond the scope of this paper. Many
authors have described the structure and operation
of ANN'" and its application in civil engineering '?.
A typical structure of ANN consists of a number of
processing elements (PEs), or nodes, that are
usually arranged in layers: and input layer, an
output layer and one or more hidden layers (Fig.4).
il
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Fig.4 A typical structure of ANN

The input from each PE in the previous layer (x;)
is multiplied by an adjustable weight (w;). At each
PE, the weighted input signals are summed and a
threshold value (0;) is added. This combined input
(I) is then passed through an non-linear transfer
function (f(I;})) to produce the output of the PE(y;).
The output of one PE provides the input to the PEs
in the next layer. This process is illustrated in Fig.4.
The network adjusts its weights on the presentation
of a training data set and uses a learning rule to find
a set of weights that will produce the input/output
mapping that has the smallest possible error. This
process is called “learning” or “training”. Once the
training phase of the model has been successfully
accomplished, the performance of the trained model
has to be validated using an independent testing
dataset. As described above, ANN learns from data
examples presented to them and uses these data to
adjust their weights in an attempt to capture the
relationship between the model input variables and
the corresponding outputs. Consequently, ANN
does not need any prior knowledge about the nature
of the relationship between the input/output
variables, which is one of the benefits that ANN has



compared with empirical and statistical methods. In
general, the advantages of ANN are that (1)
application of the ANN does not require a prior
knowledge of the process because the ANN 'is
black-box model, (2) the ANN easily converge to
the optimal solution, (3) the ANN inherently have
non-linearity, (4) the ANN can have multiple inputs
with difference characteristics, and (5) the ANN
have the adaptability to the change of problem
environment.

It has been shown that BPNN are the most
popularly used ANN and they are well suited for
problem of classification, prediction, adaptation
control, system identification, and so on. Fig.5
illustrates  typical two hidden-layer - BPNN
architecture used in this research because of the
similarity of problem complexity to that discussed
in reference 13). '

The BPNN always consists of at least three
layers; input layer, hidden layer and output layer.
Each layer consists of a number of elementary
processing units, called neurons, and each neuron is
connected to the next layer through weights, i.e.
neurons in the input layer will send its output as
input for neurons in the hidden layer and similar is
the connection between hidden and output layer.
Number of hidden layer and number of neurons in

the hidden layer is changed according to the
problem to, be solved. To differentiate between the
different processing units, values called biases are
introduced in the transfer functions.

Hidden layer, h

Input vector

(Input pattern) Output vector

Target vector

1
Output layer, o

Adjust weights and bias

Input layer, i

Fig.5. Scheme of Three-layered BPNN

These biases are referred to as the temperature of
a neuron. All neurons in the BPNN are associated
with a bias neuron and a transfer function, except
for the input layer. The bias has a constant input of
1, while the transfer function filters the summed
signals received from this neuron. The application
of these transfer functions depends on the purpose
of the neural network. The output layer produces
the calculated output vectors corresponding to the
solution. During training of the network, data is

Tunnel{
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Fig.6 Plan and vertical view of the site. Monitored sections are indicated as A and B.
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processed through the input layer to hidden layer,
until it reaches the output layer, as is called forward
process. In this layer, the output is compared to the
targeted values (the “true” output). The difference
or error between both is processed back through the
network, as is called backward process, updating
the individual weights of the connections and the
biases of the individual neurons. The input and
output data are mostly represented as vectors called
training pairs. The process as mentioned above is
repeated for all the training pairs in the dataset,
until the network error converged to a threshold
minimum defined by a corresponding sum square
error function.

Tab.1 Material properties for 4 layers.

Takadate Takadate
volcanic volcanic

Noheji sandy  Noheji sandy

layer 1 layer 2 layer 3 layer 4
#N m?) 14 18 20 20
-E(Mpa) 5 5 80 100
v 0.286 0.286 0.286 0.286
[ 0 0 35 35
c(Mpa) 30 45 30 50

3. DEFORMATION ANALYSIS BY FEM
(1) Construction site for Rokunohe tunnel

The Rokunohe tunnel, 3810m long, is located at the
northern end of the Honshu, between Hachinohe
and Shin-Aomori as shown in Fig.6. The excavation
was conducted by top heading method. Excavation
of the lower section excavation followed
approximately 40m behind the face of the upper
section excavation. Reinforcement of supports has
been put by using rockbolt, shotctete and steel
support as shown in Fig.7.

Auxiliary method is applied by face shotcrete,
face bolt, deep well, well point, and so on, for face
stabilization and water inflow control.

Rockbolt 22mm .-+ =] 7w .Steel rib H150mm
“f, A Shoterete 20em
" . Lining 30cm

Bottom level
vInvert 45cm

Fig.7 Tunnel cross section.
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The geological profile of the ground consists of
unconsolidated sand layer (Layer 3) which is lying
beneath two layers (Layers 1 and 2) of volcanic ash.
The material properties obtained for each layer are
shown in Tab.l. During the tunnel construction,
various measurements on tunnel and ground were
carried out to confirm the stability of the tunnel and
the adequateness of the excavation method. Crown
settlement, convergence, surface settlement,
subsurface settlement and horizontal displacement
were measured as shown in Fig.8.
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Fig.8 Field instrumentation.

(2) Outline of numerical simulation

Numerical simulations were conducted for two
cross sections with slightly different geometric
configuration. Locations for the two sections A and
B are shown in Fig.6. Geometry and boundary
conditions of the finite element meshes are shown
in Fig.9 for the case of Section A. The ground
behavior was modeled with three different
constitutive laws; namely 1) an elastic model, 2)
elastic-plastic =~ material  model with a
Mohr-Coulomb failure criterion and 3) the strain
softening model”. Shotcrete and steel support were
modeled as elastic elements. Rock bolts are not
modeled in this analysis. The construction sequence
is to excavate the top heading (upper section) in
advance followed by bench (lower section) and
invert excavation. Simulation has been performed
in several computational steps for excavation of the
tunnel top heading.

In the first step, 40% stress release ratio with
excavation of the top heading (upper section) has
applied. This step relates to the timing when an
upper section arrives at a tunnel face. In the second
step, the support has been put in place and, at the
same time, the remaining 60% of the excavation
forces was released.
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Fig.9 Finite element mesh used for simulation.

The same approach was taken for excavation of
lower half and invert portion. As for strain softening
analysis, parametric study was performed in which
Ay (increment of maximum strain during which
strength drops from peak to residual value, see
Fig.3 and the ratio of residual to original strength,
for example c/c; where ¢, and c; are residual and
initial cohesion values, were varied, resulting in the
total of 9 cases as shown in Tab.2.

Tab.2 Scheme for strain softening analyses.

Residual strength/Original strength

80% 60% 40%
0.04 Case 1 Case 4 Case 7
Ay 0.02 Case 2 Case 5 Case 8
0.01 Case 3 Case 6 Case 9

(3) Numerical result

Fig.10 shows surface subsidence from 3 different
material models and the measurement defined for
the final stage. As for the results of strain softening
analysis, the one which gave the closest results to
the measurement is shown for both cross sections A
and B. For section A, where the maximum
subsidence was around 10mm, the results from
different models show insignificant differences.
Although there is some discrepancy in the gradient
of subsidence, however, this is regarded acceptable
because the absolute values of displacement and its
gradient are very small. On the contrary, those for
section B, where the displacement in excess of
50mm was measured; the superiority of the
softening model is seen as compared to elastic or
elasto-plastic analysis. A clear advantage of the
strain softening analysis is seen here for section B,
where the shear band development might have
occurred to produce this particular profile of surface
subsidence.

Finally, Fig.11 shows the maximum shear strain
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distribution at the final stage of analysis for sections
A and B. It is seen for section A, all material models
resulted in similar images since the magnitude of
displacement here was constrained to fairly low
level. However, for section B, the case which
showed the best results in comparison with the
measurement, namely the result from the softening
analysis, shows the development of shear band
from tunnel shoulder. The band is believed to be of
a fair size, although it has not reached the surface of
the ground. However, this development of the shear
band is regarded as the cause of large displacement
that occurred for this section.

Distance from tunnel center (m)

Distance from tunnel cenfer (m)

00 00 10 20 30

Es 1 Ex ]
8 . 1 &, . ]
5 SectionA ] § Section B
£ 0 ——Elastic 1 24 —8-Elastic B
@ —A&—Plastic i @ —&—Plastic
—@—Softening (1) | | —®—Softening 3) | T
—O—Measurement || | 50 —O—Measurement |—

Fig.10 Surface subsidence at final stage. (Softening (1) and (3)
in legends relate to analysis cases,
Case 1 and Case 3, respectively)

Plastic

(a) Section A

" Elastic

PlSth
{b) Section B

Softening

Fig.11 Maximum shear strain distribution at final stage.
4. ANN MODEL DEVELOPMENT

(1) FEM database

Fig. 12 shows a schematic representation of the
excavation geometry and the main parameters
considered in the analyses. A total of 32 governing
parameters were used as the input variables for the
neural network model. The output variable was the



subsidence point, S, where n denotes distance from
center, as shown in Fig. 12. Fig. 12 shows the
scheme of output variable. A total of four soil layers
(soil types) were considered as depicted in Fig. 12.
For each soil layer, the required input parameters
are the unit weight of the soil y, the initial Young’s
modulus E, the horizontal stress state K, the
cohesion ¢, the friction angle ¢, the increment of
maximum strain during which strength drops from
peak to residual value Ay and the ratio of residual
to original strength P and the thickness of the soil
layer ¢.

S(l S} S6 S9 SIZ Sl7 SB()
vV V. V NV V

A
tl Layer 1 Elv Vis &y ¢|s A'Yp Bl‘ %'/‘
H

t,| Layer2 Ey vy ¢y ¢y AY, B,

Layer3 E; Vi, ¢; 05 A7 85 K, T (tunnel step)

(Sandy layer)

t, Layer 4 Epvycy, b, Ayp Bq,

Fig. 12 Cross-section of NATM tunnel geometry

The other input variables for the model are the
excavation radius », the excavation depth H and
tunnel excavation step 7,. The FE program used
strain softening model, for learning and testing data
sets. With varying parameter properties range, FEM
is performed and its result arranged as database for
ANN input/output used. FEM analyses to create
ANN database were performed using property
values given in Table 3.

The data obtained from the FE analyses were
randomly separated into 1134 learning patterns and
196 testing patterns.

Tab. 3 Parameter properties for FEM database

Selected parameter  E(Mpa) Ky Ay §

Propertics 0.4,0.5,0.6,0.7 0.01, 0.02, 80%,60%,
range 80.160.240 " Ge0010 004 40%

(2) Model input/output structure and data
pre-processing

The ANN maps input vectors onto output vectors. It
can be trained to map given input vectors onto
respective given output vectors referred to as
desired output vector. Fig.13 shows the ANN
structure for subsidence prediction. Learned ANN
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model has the potential to provide accurate desired
parameter properties (output) from measurement
data (input).

Input Input layer Output data
data B SR B
KE“ Qutput layer
A =) - "
r (D)-»
ﬂ (r
parameter -
property ANN model Subsidence

Fig.13. ANN model structures

After input/output data division, it is important to
pre-process the data to a suitable form before they
are applied to the ANN. Pre-processing the data,
such as scaling, is important to ensure that all
variables receive equal attention during training.

(3) BPNN development process

The sigmoid function is preferred as the transfer
function in this study and is used the delta rule for
the learning rule of BPNN. The validation of a
trained ANN model is based upon one or more error
indices, such as mean absolute error (MAE), mean
square error (MSE), and root mean square
error(RMSE). The RMSE was used in the paper for
the evaluation of the ANN performance. In this
paper, training parameter is used as a tolerance to
indicate end of training that the number of training
(Epoch) over 400000 or the error of the network
(SSE) 1s below 0.0001. The initial weight range was
selected as [0.5;0.5]. In this study, the learning rate
was selected as 0.01, 0.1 and 0.3 separately for the
training process to search for the most effective
ANN architecture; the momentum coefficient was
also selected as 0.1,0.3,0.5,0.7 and 0.9. In order to
obtain good performance of the ANN, tuning of the
ANN architecture and parameters is indispensable. -
In this case, the ANN architecture was tested with
various nodes per hidden layer and the ANN
parameters with various learning rate and
momentum rates to find fine better values and
architecture. ANN analysis process is follow as;
(DSection of data preparation and pre-processing.
@ Define the neural network structure and
parameter about the given problem.

(®Next, the neural network is trained by using the
input and output data of learning process.

@To confirm awareness ability of neural network
that finishes studying, we achieved the
testing(prediction) by using data which are not used
for learning. Network development was performed
on an IBM-compatible Pentium 4 class machine



(598MHz, 248MB RAM). Training took about
4-hours for 600 thousand training cycles.
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Fig.14 ANN output for different hidden layers
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Fig.15 ANN output for different learning rate , a, and
momentum rate,&.

(4) BPNN results

The development of an ANN model for subsidence
estimation during tunneling was performed for
cross section A. In order to obtain good
performance of the ANN, the ANN architecture
was tested with various number of node per hidden
layer, various learning rates and momentum rates.
Firstly, the influenced of the pattern analysis with
various ANN structure and parameter was studied.
The RMSE was used in the paper for the evaluation
of the ANN performance. Despite learning data
‘being adequately prepared, it is known that
predictability of an ANN varies depending on the
chosen architecture and learning environments. In
addition, ANN learning should be carefully carried
out to guarantee generality for further application.
Therefore, following the trial-error method, it was
recommended to choose an optimal architecture of
ANN, as well as adapted learning parameters, for a
given learning pattern. To confine the generality of
a trained ANN, testing is undertaken with un-used
13 data sets. The ANN outputs are shown in Figs.
14 and 15.

Fig. 14 show the ANN output for different
hidden node with RMSE in o = 0.1 and £ = 0.3. The
result revealed that the BPNN model had a better
learning and testing at the 64 nodes and RMSE
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value was 3.02 for the subsidence estimation. Fig.
15 show the ANN output for different ANN
parameter with Ave. RMSE in hidden node=64.
The result showed that the learning and momentum
rate were 0.1 and 0.3 that had a better learning and
testing and RMSE value were 3.02. In Fig. 14 and
15, Ave. RMSE means the average of total RMSE
value of learning and testing time.

Tab. 4 shows ANN structure pattern for optimal
structure determination in subsidence prediction.
ANN architecture, 32-64-7, shows that input layer .
unit is 32, hidden layer unit is 64 and output layer is
7. And, output layer, 7, is subsidence point, as in
Fig.12. Fig.16 show the comparison of true output
(target data) and calculated ones in subsidence point,
So.

Tab. 4 Learning and testing result of ANN

BPNN model A section B section
Learning data/Testing data 1134/168 1134/216
Learning rule Delta rule Delta rule
Transformation function Sigmoid Sigmoid
BPNN structure 32-64-7 25-25-10
Learning rate 0.1 0.1
Momentum rate 0.3 0.7
Fianl system error 0.79 1.13
Final epoch(cycles) 2793 1378
Learning Ave. RMSE 4.27 3.51
Testing Ave. RMSE 3.02 193
Learning Ave. R2 0.97 0.97
Testing Ave. R2 0.95 0.94
300.0
- ]
O Learning ©9°
] 2500 A Testing Oo
=1
2000 |
§ O O
B 1500 | o)
% 0 o 008@ % °
£ 1000 |- 8 o
8 O
500 }Q
0.0 L : . . :

0.0 50.0 100.0 150.0 200.0 250.0 300.0
True Values

Fig.16 True value vs. computed value by ANNs,S,

The correlation coefficient for the training and

testing are 0.96. The results indicate that the model
is able to capture the relationship between the
inputs (material parameter and tunnel dimension
and soil condition) and outputs (subsidence).

5. SUBSIDENCE ANALYSIS BY ANN

5.1 Subsidence prediction

As mentioned earlier, this neural network model has



the advantage over other more conventional
methods in that once learning (weight adjustments)
is completed, it provides rapid results. In A
cross-section, Fig.17 shows plots of the finite
element method (FEM) subsidence values versus
the values predicted by the neural network (NN),
with field data. In Fig.17, this shows little
difference between FEM, ANN result and field
measurement. From its result, the neural network
model analyses agree with FEM result and
measured data. That is, ANN analysis can provide
prediction value of subsidence behavior during
tunneling in a much faster way than by other
method. However, if we make sure of adequate
stress-strain model and reliable measurements data,
proposed method will assist the NATM tunnel
design/construction in view of parameter estimation
and prediction of ground movement.

Distance from tunnel center (m)
0 10 20 30 40

iy

(¥

=

é 15 - B - Predicted value by FEM

£ i ~e—Predicted value by ANN
—©-Measurement

Fig.17 FEM values versus the predicted by the neural network.

(2) Further validations; Key parametric studies
using trained ANN model

Key parametric studies using trained ANN model
was performed to assess whether the model gives
logical and consistent trends. It should be noted that
these analyses were carried out using another
independent set of FE generated data that are
different from the training and testing data
described earlier. In Fig.18 and 19, the effects of Ay
value of sandy layer were examined. Fig. 18 shows
the effect of the Young’s modulus, E, on the
maximum surface settlement.

The general trend was for the maximum surface
settlement to decrease with increasing Young’s
modulus and increasing Ay values. As expected, the
settlements tend to decrease. The plot in Fig. 19
showed the same trend of maximum surface
settlement decreasing with increasing residual
strength/original strength and Ay values. Generally,
the above results demonstrate that the trained neural
network model gave reasonable and consistent
relationships between the various input variables.
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Parametric studies using the trained network model
can be readily performed as illustrated in this
section. The trained network model is not only able
to capture the non-linear relationship of the input
variables but also their inter-dependency. This is
mainly due to its inter-connective architecture of
the neural network model. '
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Fig.18 Plot of maximum surface settlement versus Young’s
modulus with Ay=0.01, 0.02, 0.03 and 0.04.

E 350
E300 | ©-0.01
=
5 550 | -+~0.02
g £-0.03
5 200 r -~ 0.04
8150 |
8
5 100 |
w
% 50 b
2 o0 . . . . .

0.3 0.4 05 0.6 07 0.8 0.9

Residual strength/Original strength

Fig.19 Plot of maximum surface settlement versus residual
strength/original strength with Ay=0.01, 0.02, 0.03 and 0.04.

6. CONCLUSION

This paper discussed the subsidence prediction
using artificial neural network (ANN) and FEM
database. The ground movement was predicted
using FEM analysis and ANN ones. A case study
was performed to verify the application to the
actual NATM tunnel. Once the network is trained,
its running speed is very high, thereby reducing the
total time consumed in the analysis which is
conducted once construction starts. As a nonlinear
problem such as shallow tunneling problems
contains inherent complexity in a model set up
whether that is for a FEM modeling or a ANN
modeling. It is, however, advantageous to employ
the ANN approach and execute pre-computation,
namely structuring of the ANN model, before
construction. This enables fast analysis of the
measured deformation leading to quick engineering
Judgment, if necessary, regarding safety issues on
site.
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