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It has been found that as the elastic surface wave in any medium converges to the Rayleigh
surface wave in the limiting case of infinite frequency, the dynamic radius of gyration for a half-
infinite medium is definable despite being unbounded. The dynamic radius of gyration for the
first mode of phase velocity in a beam in the case of infinite frequency converges to 68% of static
values. The same radii converge to zero for modes of phase velocity higher than the second.
This result indicates that only the first mode of phase velocity of a flexural wave survives on

the surface of a beam medium as a Rayleigh surface wave in the case of infinite frequency.
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1. INTRODUCTION

Pochhammer’s ) and Chree’s?) solutions
for the three-dimensional theory of elasticity
for beams with solid circular cross-sections,
written in the late 19th century, have attracted
much attention in regard to problems of wave
propagation in infinite beams. As exact elas-
tic theories are complicated and difficult to
solve, they are used only in cases in which
cross-sections have surfaces with simple out-
lines, such as circular cylindrical bars. Thus,
phase velocity curves were not calculated nu-
merically until the 20th century?’? In contrast,
the approximate beam theory by Timosheko?)
which is simple and clear, can be applied to
various loading and boundary conditions for

This paper is translated into English from the
Japanese paper, which originally appeared on
J. Struct. Mech. Earthquake Eng., JSCE,
No. 661/1-53, pp.231-242, 2000.10.

finite or infinite beams. However, Timosheko’s
beam theory is approximate, so only the phase
velocity curve of the first mode is reliable.
Our studies have focused on how to corre-
late Timoshenko’s beam theory and Mindlin’s
plate theory to the three-dimensional theory of
elasticity. Specifically, by representing the ra-
dius of gyration of a cross-sectional area and
the elastic moduli in the equation of motion
for a Timoshenko’s beam as functions of fre-
quency, we have been able to make the phase
velocity curves agree with the results of the
Pochhammer-Chree theory in the range of in-
termediate and high frequency. Similarly, we
have been able to make the equation of motion
for the Mindlin plate 9 agree with the results of
Lamb plate theory6? However, it is only a nu-
merical agreement of the phase velocity curve,
and it is not based on theoretical evaluation.
Pochhammer-Chree’s three-dimensional the-
ory and the approximate theory of the Tim-
oshenko beam differ in many ways, so it is
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rather strange that the first mode of each the-
ory conforms with the other. Whereas the
three-dimensional theory of elasticity requires
a stress free condition at cross-section outlines,
the Timoshenko beam theory ignores this con-
dition and instead requires equilibrium of the
stress resultants. In the three-dimensional the-
ory of elasticity, trigonometric functions for
warping and inplane displacement are adopted.
In the Timoshenko beam theory, however, a
linear unit warping function and a constant
inplane displacement function are adopted re-
gardless of the frequency range.

We have previously described our attempts
to bring the results of the Timoshenko beam
theory and the Mindlin plate theory close to
that of elasticity theory. In this paper, we
attempt, in the opposite way, to derive the
equation of motion for the Timoshenko beam
from elasticity theory. From this study, we can
now explain how the radius of gyration of area
varies as frequency increases. In concrete, we
assume exact displacement fields for the infi-
nite plate used in the Lamb plate theory as dis-
placement fields for a two-dimensional beam.
The static basis function of axial warping dis-
placement in these displacement fields is a lin-
ear function in the direction of beam height,
and becomes gradually more damped near a
neutral axis as frequency increases. The static
basis function for deflection displacement takes
a constant value of 1 in the direction of beam
height, and is damped near a neutral axis as
frequency increases. The sum of the horizon-
tal and vertical displacements converges to the
state of the Rayleigh surface wave at infinite
frequency.

By finding the phase velocity curve from this
equation of motion based on the exact displace-
ment fields, we investigate whether the curve
conforms to that of Lamb plate theory. We
then confirm the correctness of the equation of
motion. Regardless of the structural system,
for example plate or beam, the first mode of
the phase velocity for the wave propagated in
the medium approaches the Rayleigh surface
wave in the high-frequency region. From this
fact, even in a semi-infinite medium, we can
propose the concept of the dynamic radius of
gyration of area for the Rayleigh surface wave.
In this paper, we find the closed form solutions
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Fig.1 The coordinate system.

and prove that in the case of a Poisson mate-
rial, they decrease to about 68% of the static
radius of gyration of area for the initial case of
the beam. Furthermore, we confirm that the
radii of gyration of the phase velocity for modes
higher than the second become zero. This cor-
responds to the fact that only Rayleigh waves
survive on the surface of the beam or the plate
and that the group of phase velocity curves for
modes higher than the second, converging to
the transverse wave velocity of the medium, fi-
nally vanishes at infinite frequency.

2. STRUCTURAL AND
COORDINATE SYSTEM

We choose the orthogonal z and y axes in
the center of a plate or beam of uniform thick-
ness h. We also choose the z axis perpen-
dicular to the z and y axes in the direction
of thickness. The z, y and z axes are in the
right-hand coordinate system, and the z axis
extends downward from the z axis. At the
same time, the z* axis descends from the up-
per edge of the plate or beam. Displacement
components for the z, y and z directions at
point P(z,y, z) in the plate or beam are u, v
and w, respectively.

In tensor notation, z, y and z are denoted
by z1, 2 and z3, respectively, and 2* is
denoted by 3. Displacements u, v and w
are denoted by w;, wuy and wg, respectively
(Fig. 1).

3. GOVERNING EQUATIONS

(1) Basic conditions

According to the infinitesimal displacement
theory, the kinematical relations are expressed
as

1
€ij = 'Q'(Uz‘,j + ) (1)



where the values of subscripts ¢ and j are
between 1 and 3. If the Lamé constants,
characteristic values of the material, are repre-
sented by A and p, the constitutive relations
for an elastic medium become

Oap = 2UEqg + Aopeqyy } @)
022 = Aaq

where the values of subscripts «, ( and « are
1 or 3, and 6,5 is Kronecker’s delta symbol.
Substituting Eq. (1) into Eq. (2) of the consti-
tutive relations for the elastic medium results
in the following relation of stress and displace-
ment:

Cag = U(ua,ﬂ +uﬁ,o¢) + Aéaﬁu%“l } (3)
022 = )\ua,a
Denoting the body force component f; in
direction 4, the condition of equilibrium of
stresses for an infinitesimal hexagon element is
expressed as

o445+ ofi = puig (4)

where p denotes the mass density of the
medium and ¢ denotes time.

If the stress components for the condition
of equilibrium are expressed by displacements,
Navier’s equation becomes

(A + Wug pa + Mapp + Pfa = Plat 5)
Hug g3 + pfa = puay

(2) Lamé potential

According to Helmholtz’s decomposition, we
can express the displacement component wuyg
using the Lamé potentials ¢ and 1) as

U = Pk + ErimPmi (6)

In the two-dimensional problem treated here,
¢ and ¢ are functions of z;, z3 and ¢ only.
Therefore, we have

e e } (7)
where we define
P(art) = Pa(tat)
0(2a,t) = 31/}?;:?,15) _ Wla(z:,t) (8)
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and ens is a two-dimensional permutation
symbol. In concrete, equation (7) is written

0 T
u{Ta,t) = B2, +8m3 9)
ug(za,t) = v
0 O
u3(xa7t) - 8333 8$1 (10)
Decomposing the body force as in Eq. (7), it
becomes
fa(xg,t) = f:a + eaﬁF,ﬂy F=F (11)
falz,t) = F31— Fi3

Substituting the decomposition equation for
displacement (7) and that for the body force
(11) into the Navier’s equation (5), we obtain
the following three wave equations:

2gy L _ 107
Vit ¢ Ao

2 é — “1_8_21_] 12

Vo + 23 6‘;2 (12)
F 18%
A il 4
Vit g ko2

where cq (@ = 1,2) is defined as
1/2 1/2
o = <)\+2/J> . o= (ﬁ) (13)
P p

using the Lamé constants. The longitudinal
wave velocity c¢; and the transverse wave ve-
locity co of the medium in which the waves are
propagated are sometimes denoted by c¢r, and
cr , respectively.

Substituting the decomposition equation for
displacement (7) into Eq. (3), the stress com-
ponents become

Oap = AV2G0ap + 201,08
+ pleapt gy + €8y ¥,ay)

14
099 = )\V2¢ ( )
Oa2 = MV«
In concrete,

o11 = AV3¢ + 2ub 11 + 208 13

099 = /\V2¢

033 = AV + 2ud a3 — 2ph 13 (15)

012 = UV, 023 = HU3

o31 = 2up,13 + (33 — P 11)

where V? is a two-dimensional Laplace oper-
ator:



ot 02

Vie 2t o
oz? = Oz}

(16)

We can consider o9 = 0 for beams with ex-
tremely narrow cross-sections, and such beams
are considered to be under the condition of
plane stress. In this case, we should transform
the Lamé constant A to 2uX/(A +2u).

(3) Bending wave for infinite plate

The z3 axis extends downward in the direc-
tion of plate thickness from the center of a plate
that extends to infinity in the =+(z1,z9)— di-
rections. Letting the thickness of the plate be
h, z3=xh/2 represents a position on the sur-
face of the plate (Fig.1). If there is no body
force, the wave equations on the x;—x3 plane
become

2
Vi - o
ot Ot 17
1 9% (17)
Vi) = 55
cs5 Ot

According to Eq. (15), the boundary conditions
for no stresses on the plate surfaces become

o31(z1, 2h/2) = 2pd 13 + p(th 33 — P11) =0
(18)

o33(z1, £h/2) = AV + 2udp 33— 2u1p 13= 0 }

Since the bending wave of the plate has an
asymmetric component of displacement, poten-
tial functions are given in the forms of

¢ = Asinhkuvizg expik(z; — ct) (19)
1 = B cosh kipzy expik(zy — ct)

where A and B are arbitrary complex con-
stants, ¢ is the imaginary unit, and ¢ is phase
velocity. We also define the wave number £
and the function of phase velocity v, as fol-
lows:

2 2 1/
k:—/\—, Va:(l—-c—z) (=1, 2)(20)
(o3

The denominator A in the equation defines
wave k not as the Lamé constant but as the
wavelength.

Substituting the form of the potential func-
tion (19) into the boundary condition of no

stress on the plate surface (18) and represent-
ing it in matrices, we obtain the following:

(1 + v2)sinh kv h/2

—2ivy sinh ks h/2
2ivy cosh ki h/2

(14 v2) cosh kiph/2

3] [¢]e

According to the condition in which complex
constants A and B have a non-trivial solu-
tion, the determinant of the coefficient matrix
on the left side of the above equation must be
zero. We then obtain the Rayleigh-Lamb fre-
quency equation of a bending wave propagating
in the infinite plate;

tanh ki h/2 4
tanh kroh/2 (14 v2)2

(22)

Furthermore, when Eq. (21) is solved as simul-
taneous equations for unknowns A and B, the
ratio of A and B,

B 1+ v§sinhkvih/2

A 2ive sinhkigh/2 (23)
or

B 2uy coshkuh/2 (24)

A 1+ v coshkinh/2

is also given.

Substituting the potential function (19) into
the equations of displacement (9) and (10)
and eliminating the complex constant B from
Eq. (23) or (24), we obtain

u; = —kAsinh kmg sink(z; — ct)
o sinh kvyxs 1+ u22 sinh kvgzs
sinh ki h/2 2 sinhkigh/2

h
ug = kAcoshkvy = - cosk(z — ct)
(z/ cosh kv zg _ 2v1  coshkroxg )
Ycoshkvih/2 1+ v2 cosh kugh/2

(25)

Similarly, substituting the potential func-
tion (19) into the stress equation (15) and elim-
inating the complex constant B from Eq. (23)
and (24), we obtain
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h
o11 = —pk? Asinh kv1§ -cosk(zy — ct)
inh kv z sinh kvox
(14202 —p3) Si0BANTS L o _*L{)
Q 1 Uz)suﬂlkbqh/Q ( '*”2)sun1ku2h/2
o92 = pk*(1 — 20¢ + 12) A cos k(z; — ct)
x sinh k1 z3
o33 = pk?(1 + v3) Asinh kulg -cosk(z; — ct)
( sinh kv zs _ sinhkipzy
sinhkinh/2  sinh ngh/Q)

031 = —2uk?v; A cosh kulﬁ -sink(zy — ct)
« ( cosh kv 3 _ coshkupzy
coshkrih/2  cosh kV2h/2)

(26)

Because the stresses are the exact solution
for the two-dimensional theory of elasticity,
Hooke’s law holds for the shear strain 73; from
the equation of the displacement component
(25) and shear stress o3; satisfying the equilib-
rium of stresses, and it is confirmed that there
is no inconsistency such as that found in clas-
sical beam theory.

(4) Limit of zero frequency
We define dimensionless frequency ¥ and di-
mensionless phase velocity ¢ as
h wh

7:k§“7’ c=— (27

In the case of low frequency, i.e., when the
wavelength is longer than the plate thickness
h, we investigate the phase velocity curve when
the frequency approaches zero.

First, we treat phase velocity ¢ as smaller
than the transverse wave velocity co of the
medium (0 < ¢ < ¢z ). Taking out the first two
terms of ascending order of power for the Tay-
lor expansion of two tanh functions in the fre-
quency equation (22) and simplifying the equa-
tion, we obtain

2 2

C 1 2,92 CH
E§- gk h (1‘_ E§ =

2 1
Transposing the second term on the left side

to the right side and taking the square root of
both sides, we obtain

o\ 1/2
£ ::\/Cgkh ( _ C%)
co 3 cy

(28)

(29)

If we plot dimensionless velocity €= c/cz on
the ordinate and dimensionless frequency %=
kh/2 on the abscissa, this equation becomes a
straight line, inclined upward from the origin’)

When kh — 0, the limit of displacement in
the direction of the axis z; and plate thickness
of Eq. (25) is given by

1— 2
u1——kA~kV1~g'sink(ml~ct)~( hvz)-mg

U EA-1-cosk( t)- v (1_V%) 1
3 = . . CO xl—c . 1 D .
1+0v2

(30)

Similarly, we can easily calculate the limit of
the stress component of equation (26) when
kh — 0.

Next, we treat the phase velocity ¢ as
larger than the transverse wave velocity of the
medium ¢z (0 < ¢ < ¢). As the dimen-
sionless frequency ¥ = kh/2 approaches zero,
phase velocity ¢ increases rapidly. As a result,
the phase velocity function v, (o =1, 2) in
Eq. (22) becomes complex. If we define

2 1/2
Pa = (C~2— 1) (@=1,2)  (31)

(o3
the following relation holds using the imaginary
unit ¢:

(@=1,2) (32)

Da = 1Va
Then we can rewrite the frequency equation as

tan k‘plh/Q _ 4p1p2
tankpah/2 (1 - p3)?

(33)

This equation shows that phase velocity ¢ be-
comes infinite as the dimensionless frequency
7 = kh/2 approaches zero. Then, at the limit
of ¥ — 0, the denominator on the left side
coverges to tankpsh/2 — 0, namely,
h ™
k?p2§ — —2~
Although a part of what is described here
has already been written in Mindlin) and Erin-
gen et al5) we note them in order to clarify the
limited form (equation (30)) of the displace-
ment function in the direction of the axis z;
and plate thickness.

(34)
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(5) Limit of infinite frequency

We consider the case of high frequency,
namely, the case in which the wavelength is
much shorter than the plate thickness h. In
this case, there are two situations depending on
the range of phase velocity. If phase velocity ¢
is smaller than the transverse wave velocity of
the medium c¢s, the left side of the Rayleigh-
Lamb frequency equation (22) becomes

tanh leh/Q

tanh kvgh/2 —1 (39)

when 5 = kh/2 — co. Then the equation
changes to

4119

1= v
(1+ v2)2

(36)
This equation is independent of frequency.
That is, it becomes the equation for Rayleigh
wave velocity with no dispersion;

022 c21/2 021/2
2— = |-4l1-=] [1-5) =0 (3
f-5)-4(-g) (-3) o @

The right side of the displacement equation
(25) and stress equation (26) are composed of
the quotient forms of hyperbolic functions. By
extracting only these quotient forms, changing
the hyperbolic functions to exponential func-
tions and simplifying them, we obtain a trans-
formed equation, as follows:

ekl/ail:g _ e—kuamg

sinh kv, zs

sinhkvyh/2 ~ ekvah/2 — g=kvah/2
2kvaxs

— _phvalbrag) LT €T
1 — e—2kvah/2

1 — e—2kvalh/2-x3)
__e-kuaasa .
1 — e—2kvah/2 (38)
cosh kvgrs ghvats 4 g—kvazs
coshkvah/2 ~ ehvah/2 4 e=kvah/2
2kvgxs
— e“kl/a(%+$3) I+e
1+ e—2kvah/2
—2kva(h/2—x%)
= o—kvad] 14 7= 3

1+ ¢ 2kvah/2

where the % axis extends downward in the di-
rection of plate thickness and the origin of the
axis is on the upper surface of the plate. Ac-
cording to Fig. 1, the following relation holds:

3= 5 +aT3 (39)

2

By making the frequency infinite, these quo-
tient forms become the following:
sinh kv,
sinh kv, h/2
cosh kvaxs
B
cosh kvgh/2

— —e7ha3 (7 = kh/2 — o0)

ka3 (§ = kh/2 — o0)
(40)

At infinite frequency, the displacement equa-

tion (25) and stress equation (26) for the

Rayleigh-Lamb plate can be rewritten as fol-
lows:

u; = —C'sink(z; — ct)

1+ U22 e—kygmg)
2 (41)

ug = Ccosk(z — ct)

21y e—kug:ng
1+v2

% e—kulmg .

x| e hries
o11 = pkCcosk(zy — ct)

X(—(1+ 208 — 1d)eFmE 4 (14 f)eRed)
oog = — (1 =202 +13) pkC cos k(z1 —ct) e #1173
033 = (1 4+ v3)ukC cos k(z1 — ct)

w[e—Fvizs _ o—kvezy
031 = 2 pkCsink(z1 — ct)
X(e*kl/liﬁg . e—kugzg

(42)
Representing the convergent value of the phase
velocity at infinite frequency as cr, with 7] =
(1 —c%/c?)/%, we rewrite the equation as fol-
lows:
. ., h . _h
— C = lim kAsinh kv 3 = lim kAcoshkv; =

F—o0 F—o0 2
(43)
In the case of a Poisson’s ratio of v =1/4, we
have that cg = 0.9194¢y. Then the equations
above become the following:

uy =—Csink(z; — crt)

x (e~0-8478kz3 _ 0_57736~0.3933kx;)
ug = Ccosk(z; — crt)
X (——0.8475e“0'8475k$§ + 1~46798'0‘3933k5’"§>
011 = pkC cosk(z1 — crt)
x (—2.2817¢~08475ka5 | 1 1547¢0-3933ka3
U9 = 02817/111\76’ cos k(xl —CR t) e~0.8475kz§

o3 = 1.1547ukC cosk(z; — crt)
~0.8475kz} _ e~0,3933kxg)

(44)

X (6
031 = 1.6950pkC sink(zy — crt)
% <6—0.8475km§ _ 6—0.3933;m5)
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Fig.2 Distribution geometry of basis functions.

These are the displacement and stress equa-
tions of a Rayleigh surface wave®) for a Poisson
material (v =1/4).

When the phase velocity c¢ is larger than
the transverse wave velocity co, the Rayleigh—
Lamb frequency equation (22) is expressed by

tanh ki, h/2 . 4v1p2 45
tankpeh/2 (1 —pd)? (45)
when the dimensionless frequency 7 = kh/2 —
00 . The phase velocity ¢, included in 4 and
po in the equation, approaches the transverse
wave velocity of the medium ¢y from the up-
per part of the phase velocity curves.

(6) Setting basis functions

Using the results of the exact solution of
elasticity theory, we reconstruct a beam the-
ory. Hereafter, the coordinate system is repre-
sented by z—y—2. In the static beam theory,
the basis function of warping u in the direc-
tion of the z (= z1) axis is z (= z3), and the
basis function of deflection displacement w is
represented by 1. According to equation (25),
the displacement function is given by

u(z, 2,7) = —Z(2,7)¢(z,7) } (46)

such that the basis functions of the dynamic
beam corresponds to those of the static beam
when motion stops (¥ =0). Henceforth,

¥(z,7%) represents the rotation of the beam
cross-section.

These equations are not in the form of
completely separated variables. Both unknown
functions with independent variables of axial
coordinate x and basis functions with indepen-
dent variables of inplane coordinate z are also
functions of frequency % . Therefore, the basis
functions can be normalized by multiplying an
arbitrary dummy function with only one inde-
pendent variable; frequency. With reference to
equation (30), we determine the basis functions
as follows:

sinhk z

1412 sinhkwpz )

Ble 7= -
CEVOTVEST 02 \sinhkinh/2 T 2 sinhkugh/2

1+ 1/%/ cosh kv z 2  coshkiunz
I(Z, 3) = 1t + 5
1- 1/2\ coshkvih/2 1404 coshkuvah/2

(47)

A limit of zero frequency (¥ = kh/2 — 0)
means a static case. In this case, we have
Z2(z,%) — z and Z(z,%) — 1. Thus, we
can confirm that this determination is cor-
rect. Distribution patterns of basis functions
for some values of frequency 7 are given in
Fig.2. As dimensionless frequency % gets
larger, displacements near a neutral axis dis-
appear and the beam surface approaches the
Rayleigh wave state.
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(7) Strain and stress of beams

Substituting the assumptive equation for
displacement (46) into the kinematical rela-
tions (1) and the constitutive equations (3), we
obtain

Ezm(x Za?) = —Z(Z ’Y)"/) (-’E 7)

€22(z,2,7) =1z, fy)IC/le(/x ) (48)

'sz(xv 2, ’7) = (Z, 7)%”3(2: 7)¢($>7)

om(az, 2, 7) = “%Z(zﬁ)d/(% ;)7)
Iy T I )

022(2,2,7) = (—fgzﬁl—)g“)f(zﬁ)w(xﬁ)
—%Z(z,ﬁ)w’(m,ﬁ)

realo,27) = (a7 g~ 2 (2.7

(49)
as components of strain and stress for beams,
where ()’ and ( ) mean differentiation with
respect to x and z, respectively.

(8) Equation of motion and stress
resultants
Using the displacement, strain, and stress
described above, we derive an equation of mo-

tion and define stress resultants. Hamilton’s
principle is expressed by
t1
I T-U-V)dt=0 (50)

to

using a symbol of variation &, where fp and
t1 represent the beginning and end of time £.
Kinetic energy 7T, strain energy U and the
potential external force V' of a system in the
time interval are given by

G o

5 -/V {gzmemm + Opz€2z + Tza:"/zac} av (52)
—/V (pwu+pzw) dv

(ZPu+ZP w) (53)

Substituting the displacement equation (46)
and the strain equation (48) into Hamilton’s

principle, we obtain the relations between
stress resultants, distrubuted load, and inertial
forces;

oQ e OPW

B et / pLdA — pA™(F) 5~ 8t2 =0 (54)
oM " .
8 Qse+] prZdA+ pl ('Y) 61}2 =0 (O‘))

Let I and A of the beam cross-section be an
ordinary static moment of inertia and a cross-
sectional area, respectively. Then I*(¥) and
A*(¥) in the equation above become a dy-
namic moment of inertia and a cross-sectional
area, respectively, taking into account fre-
quency changes.

The boundary conditions become the fol-
lowing:

[5W (Q - ZPZI)}; =0 (56)
(o0 (M- R2)] =0 ()

The stress resultants in the equation above are
defined as follows:

M@7) = [ acl@,27) Z(57)dA (58)
Gela ) = [ ouale, 2Lz dA - (59)
Qe,7) = [ Tale 2 M) T dA - (60)
Quelw,7) = [ rale,27) 274 (61)
Substituting stress equation (49) into the

definition of the stress resultants (58)~(61),
we obtain

Ma7) =~ gy (¥ @)
vE . _
+m3 MW (z,7) (62)
. (0=-vE e _
Gse(,7) = mf{ FIW(z,7)
vE WA
“ml? @)Y (z,7) (63)

Q) = GA (1) G~k (L) (64)
Quele 1) = 64" (1n (1) G~ ka7 (0, 7)) (69

where the quantities for beam cross-section
I*(7), A*(¥), B*(y) and H*(3) and three
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kinds of shear correction factors ko(¥), k1(%)
and k2(7), which are used in the above equa-
tions, are defined as

I'(7) = [y 2(2,7)2(2,7)dA
A*() = [4 Lz 7)L(z,7)dA (66)
B(7) = JaZ(z,7)2(2,7)dA
H*(7) = [4Z(2,7)L(z,7)dA
ko(7) = ﬁ [ TemTemia=
b = [ TEDEEDIA 67

ka() = s [ 272 7)dA

If there is a differentiation relation between
the basis function for warping Z(z,7%) and the
basis function for deflection Z(z,%) similar to
the case of static beams, the three shear correc-
tion factors ko(¥), k1(%), k2(%) all become 1.
However, considering the change of frequency,
a differentiation relation does not exist except
in the static case (7 = 0), as shown in Eq. (47);

Z(2,7) # 1(z,7) (68)

(9) Equation of motion for displacement

Substituting the equations for stress resul-
tants (62)~(65) into the equations of motion
(54) and (55), we obtain the equations of mo-
tion for displacement as follows:

{GA* (ko%@ - kﬂpﬂ'
(1-v)E . vE
B [(1+u)(1—2u)H W= (1+v)(1-2v)
2
+ [ peaa - parm G =0 (69)
-v)E

(1 * 41 I/E
{(1+u)(1—2y)1 V- (1+0v)(1-2v)

+ [GA* (kl%-W~ - /mpﬂ

/medA pf*(’y) 2 L

Here, we write the equations of motion for the
Timoshenko beam ) for comparison;

[GAk (——-w)] +/ padA— pAaa Y _o(71)
(EIy] + [GAk (-5; - ¢>} / pazdA

B*d)’]

’
B W}

(70)

1Y &2 =0 (72)
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+ (—GA*k2+ (1-

where the cross-sectional quantities are defined

as
I:/Az‘sz (73)
A:/A1-1dA (74)
R= /A S(2) - S(2)dA (75)
k=t 1. R.T (76)

A

S(z) in equation (75) for shearing resistance R
is a unit shearing stress function that is ob-
tained by integrating unit warping function z,
where k is the shear correction factor?)

After comparing the equations of motion
(69) and (70) obtained above with Timosheko’s
equations (71) and (72), the equations in our
theory are characterized as follows: (1) The
second term [ --- ] of equation (69), consisting
of two partial terms, exists because we con-
sider the normal stress o,, that the engineer-
ing beam theory ignores. (2) There are three
shear correction factors that depend on the fre-
quency; ko(%), ki(¥) and k(7). (3) The
first term [ --- ' of Eq. (70) is composed of
two partial terms, and the expressions of the
material constants become rather complicated
because we consider the Poisson’s ratio exactly,
which the engineering beam theory ignores.

For beams of a constant cross-section, equa-
tions (69) and (70) can be rewritten as

. 8 (1-)E A

(GA g T ae)V

., O vE . 0
( e e (e T M 5&5>¢
—/szdA (77)

A
. 0 vE L 0

( GA kg~ (1+V)(1—21/)B a?)W

(14+v)(1—2v)" 9z2 ot?
- / peZdA
A

We divide the first equation by GA*kq, dif-
ferentiate the second equation once by =z, and
divide the differentiated equation by ET*. Fur-
thermore, we define the longitudinal wave ve-
locity cg, the transverse wave velocity cg; for
the beam material, and the radius of gyration

2 2
vE I*a__p[*_a_)¢

(78)
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Fig. 3 Phase velocity curve for a beam with rectangular cross-section.

of area for a beam 7*(7), consider its frequency
as follows, and rewrite the equation;

E Gk .
C% = 52(7) ( ) (i=0,1,2)
P p 79)
@) (
P9 =
A*(7)
Then we obtain
ko & 1-v G HT 13\,
ki 0z?  (1+v)(1-2v) ¢ A* cf, 08
9 v & B* 0
* (‘5}3 * m‘;‘za—) v
 J4p.ZdA
GA* k1 (%) (80)
(1 gy 0* v 1 B* 52
(r*z & 0x2  (1+v)(1—2v) r*2 A* 0z
(1, 1-v & 1P\
r*2 ¢k (1+I/)(1 2v) Oz2 3 Ot?) Oz
_ [app2dA
- ErG) ey

Three transverse wave velocities are used in the
above equations. The first, cgo, is equal to the

transverse wave velocity co(=cr) for a medium
as a three-dimensional elastic body. cg; and
cga are the transverse wave velocities depend-
ing on the shape of a member’s cross-section.
In equation (13), we defined the longitudinal
wave velocity ¢; and the transverse wave ve-
locity co for a medium that makes up the beam
member.

We find phase velocity curves for an infi-
nite beam without transverse and longitudinal
distributed loads. The deflection displacement
W (z,¥) and bending rotation for beam cross-
section % (z,7) are assumed to be

W(z,7) = asin Q—W(a; - ct)
g (82)
P(z,5) =bcos ~)\~(:c — ct)

where A\ is the wavelength, ¢ is the phase ve-
locity, and a and b are the amplitudes of
the displacement components. Setting the load
term on the right-hand side of the equations of
motion (77) and (78) to zero, substituting the
assumed equation (82) into the equation of mo-
tion, and enclosing the product of the ampli-
tude and trigonometrical function, we obtain
the characteristic equation

1-v ct H*

ko_ & +< A )2_._____,_,_
ki \2m) (L+v)(1-2v) cH A*

L (. v @B
™22 (14+v)(1—2v) 02Q1 A*

(AY - v co B
27 (1+v)(1—2v) ch A+
1-v c? ( A )2 1 ¢y

(14+v)(1-2v) CO+ or) %

=0 (83)
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as the condition for having a non-trivial so-
lution. This equation formally conforms to
the phase velocity equation for Timosheko’s
beam®) if we rewrite ko/ki — 1, cgo — cQ»
B*—0, H* =0, r*(§) - rand (1-v)/(1+
v)(1—-2v)—1.

From this equation for phase velocity ¢,
we find the phase velocity curves for the in-
finite beam with a solid rectangular cross-
section. They are shown in Fig. 8 along with
the Lamb plate theory. The curves for the
Rayleigh-Lamb theory (broken line) and our
theory (solid line) fit perfectly even in the
higher modes. However, the cause of the ex-
tra lines in the curves for our theory must
be considered. For example, the relation be-
tween the dimensionless phase velocity ¢/cp
at the dimensionless frequency ¥ = 1.0 and
the value of the determinant Det on the left-
hand side of the characteristic equation (83)
is plotted in the right-hand portion of Fig. 3.
The c¢/cr axis intercepts are plotted on the
left of the figure for clarity. While the bro-
ken lines for the Rayleigh-Lamb theory cross
the ¢/cr axis only once, the solid lines for our
theory cross it more than twice. Although one
of the intercepts matches perfectly with that of
the Rayleigh-Lamb equation, the others are ex-
tra roots. Compared with the Rayleigh-Lamb
equation, which is represented by a simple sum-
mation of two tanh functions, the character-
istic equation (83) of our theory has a com-
plicated structure requiring the division and
multiplication of functions A*(¥), B*(¥) and
H*(¥), which contain phase velocity ¢. Thus,
some sort of rationalization effect generates ex-
tra roots.

(10) Radius of gyration of area
for Rayleigh surface wave
Whether the medium is a plate or a beam,
we confirmed in section (5) that waves propa-
gated in media converge to the Rayleigh surface
wave at the limit of high frequency (¥ — oo ).
Using this fact, we can determine the closed
solutions of the radius of gyration of area rp
for the Rayleigh surface wave propagated even
in semi-infinite media.
Substituting the basis function (47) into the
right-hand side of equation (66) of the dynamic
moment of inertia I*(¥) and sectional area
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A*(%), and integrating from —h/2 to +h/2 in
the direction of beam height, we finally obtain

ro= (1--1/22 2kuvy sinh? kv h/2
(1 + 1) —kwph + sinh kigh
4 2k sinh? kvoh/2
vi(1403) sinh k(v +vp)h/2—sinh k(v —vg)h/2

h )2 {—}wlh-}-sinh kvih

k(i —13) sinhkq /2 - sinh kvgh/2
vy(1412) sinh k() +v9)h/2+sinh k(i —1p)h/2
k(vE—v3) sinh ki h/2 - sinh kvoh/2
(84)
A7) = 1402\ [ kuh + sinh kv h
V= 1-12 2k cosh? kv h/2
n 4 kugh + sinh kinh
(14v3)? 2k cosh? kgh/2
41 sinh k(11 +12)h/2+sinh k(v1 —v2)h/2
wk(l—%-z/%)(u%—t/%) cosh kv h/2 - coshkvoh/2
4y sinh k(vy +v)h/2—sinh k(ulvVQ)h/Q}
+k(l+u%)(u12~z/§) cosh kvih/2 - cosh kinh/2
(85)

for a solid rectangular cross-section with unit
width in the case of the first mode. We make
the results dimensionless using the moment of
inertia 7 = 1-h%/12 and the cross-sectional
area,. A = 1-h. The results are shown in
Fig.4(a) as functions of frequency 7. The
medium is a Poisson material (r=1/4). Both
curves start from 1 and a gradient of 0 (hor-
izontal line) and decrease slowly as the fre-
quency 7% increases. At the limit of infinite
frequency, both the dynamic moment of iner-
tia /*(¥) and cross-sectional area A*(¥) grad-
ually approach zero. Thus, the limit of the dy-
namic radius of gyration of area r*(§) defined
in equation (79.c) becomes 0/0, however the
results of the calculation converge to the fol-
lowing finite value:
i T9)

F—r00 T

_3 402(P1 + 72) — 8U1 (1 + B3) + 11 (T + 72) (1 + P2)2
401(V1 + T2) — 8012 (1 + D3) + Do (U1 + 12) (1 + 12)2

(86)
where we define S\ 12
Vo = - 0_12{) (a =1, 2) (87)
CGﬂ
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Fig.4 Relation between frequency and A*(¥), I *(7) and 7*(3) for v=1/4.

according to equation (20.b). In the case of a
Poisson material with v=1/4, we have

Ay Ry 2 228.42<2_~,2__>
g 7 4 V3 d 30 V3

Substituting the above into equations (86) and
(87), we obtain

1
7y = 5\/3 +2v/3 o 0.847487

/ 2
—1+ -~ 0.393320
V3
ri(F)

lim = 34 2v/3 ~ 0.464102

oo 72

Vg =

Namely, the dynamic radius of gyration of area
decreases as frequency increases, and finally
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decreases to about 68% of the static value ac-
cording to the following equation:

i ) \/ =3 +2v/3 = 0.681250

F—o0 T

The shape of the curves we find here suggests
that three functions A*(¥), I*(¥) and 7*(%)
assumed in reference 5) and 10) for the new
Mindlin plate theory52 and for the arbitrarily
higher order plate theory102 respectively, are
valid.

In the case of modes higher than the second,
we can calculate the values of the cross-section
in the same way. We show only the case of the
second mode in Fig.4(b) as an example. The
dynamic moment of inertia I*(¥) converges to
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Fig.5 Relation between frequency and B*(%), H*(¥), ko(¥), %1(F) and k() for v = 1/4.

a constant value at the limit of infinite fre-
quency, and the dynamic cross-sectional area
A*(%) diverges to infinity at the limit of infi-
nite frequency. Therefore, the dynamic radius
of gyration of area r*(¥) converges to zero at
the limit of infinite frequency. This behavior
is common in all the higher modes. This fact
indicates that only the first mode survives as a
Rayleigh surface wave and all the modes higher
than the second disappear at the limit of infi-
nite frequency, proving that the phenomenon
actually exists.

As the denominator of the basis function
Z(z,%) for axial warping of the beam becomes
zero at ¥ = 7, the dynamic moment of inertia
I*(%) and the dynamic radius of gyration of
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area 7*(y) become infinite at that point. How-
ever, the axial displacement u(x,z,7) itself
changes slowly and does not exhibit singularity
because the longitudinal function (z,7) be-
comes zero at that point.

For reference, the dependence of the other
functions on frequency is given in Fig. 5 for the
cross-sectional values B*(¥) and H*(¥), and
the three shear correction factors ko(y), k1(%)
and k2(7) in the first and second modes.

4. CONCLUSIONS

We have derived a beam equation of mo-
tion using the displacement field as a basis
function, with consideration of the Lamb-plate



frequency, giving the exact solution of elastic
theory. We have confirmed the correctness of
the equation by comparing the phase velocity
curves for the Lamb plate theory with those for
our theory. At the same time, we find that su-
perfluous solutions are produced as well as the
true solution in the process of converting the
equation to the beam equation.

We have obtained a dynamic moment of in-
ertia and a dynamic cross-sectional area, which
are the coefficients of the beam equation of
motion, calculated the dynamic radius of gy-
ration of area from the dynamic moment of in-
ertia and cross-sectional area, and investigated
the dependence of the first three items on fre-
quency. The results are as follows:

(1) In the first mode, the dynamic moment of
inertia and the cross-sectional area gradually
approach zero at the limit of infinite frequency.
However, the dynamic radius of gyration of
area, which is the square of the ratio of the
dynamic moment of inertia to cross-sectional
area, converges to a constant that is slightly
less than 70% of the static value. The phase ve-
locity converges to the propagation velocity of
the Rayleigh surface wave at infinite frequency.
(2) In modes higher than the second, the dy-
namic moment of inertia converges to a con-
stant other than 0, whereas the dynamic cross-
sectional area diverges to positive infinity at
infinite frequency. As a result, the dynamic ra-
dius of gyration of area in this case converges
to zero, and the modes higher than the second
disappear.

(3) From these results, whether considering a
beam, a plate, or a semi-infinite elastic body,
we can confirm the existence of the physical
phenomenon in which motion is governed only
by Rayleigh surface waves in the range of high
frequency.

Whereas we used a solid rectangular cross-
section of the Lamb-plate type in this paper,
the generality holds for a beam cross-section
because regardless of the shape of the cross-
section, the basis function for static warping of
the beam is Z(z,7%) =z, and the basis function
for in-plane deflection is Z(z,7) = 1. Another
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reason is that in the high-frequency range,
regardless of the shape of the cross-section,
these basis functions become the states of the
Rayleigh surface wave. In the intermediate fre-
quency region, the distinct characteristics for
each beam cross-section must appear, however
in a compact cross-section, the phase veloc-
ity of intermediate frequency becomes a mono-
tonic decreasing curve that is only negligibly
influenced by frequency changes.
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