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We propose a hysteretic model of thin-walled circular steel piers under biaxial bending to predict the
ultimate seismic behavior of cantilever-type thin-walled circular steel piers. The proposed pier model
consists of a concentrated mass and a rigid bar with multiple nonlinear springs located at the pier base. This
multiple spring model is characterized by the point that the hysteretic constitutive relation for each spring is
determined by the in-plane behavior of steel piers. Herein, the in-plane behavior of the steel piers is
predicted by the existing 2-parameter model. The validity of the proposed model is examined by comparing
with the results of the 3D-earthquake response analysis, using FEM shell models.
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1. INTRODUCTION

Thin-walled steel piers are often used in Japan as
elevated highway bridge piers because of their
structural advantages, i.e., small cross-sectional area
and high earthquake resistance. In the design of these
piers, however, the effects of local buckling on their

ductility must be carefully considered, as observedin.

the 1995 Kobe Earthquakel) (Fig.1). Since the 1995
Kobe Earthquake, much experimental and analytical
research? has been conducted to examine the
stability and ductility of thin-walled steel piers under
cyclic loading. Based on these research, some single
degree of freedom empirical models such as bi-linear
kinematic hardening model®, 2-parameter model”
and damage index model” have been presented to
express the in-plane hysteretic behaviors of steel
piers in view of the application to the seismic design
based on the dynamic response analysis. Since the
bi-linear kinematic hardening model ignores the
softening behavior due to local buckling, the

Fig.1 Local buckling of a cylindrical pier in the 1995 Kobe
Earthquake

application of this model is restricted to the region
where the local buckling is insignificant. Regarding
the other two models™ *, the empirical formulas
have been deduced from a lot of experiments and/or
FEM analysis results in order to include the
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complicated effects of local buckling and cyclic
hardening of steel on the hysteretic behavior of piers.
The accuracy of these two models is confirmed by
the pseudo-dynamic tests under in-plane strong
earthquake excitations?.

Up to the present, the research work concerning the
hysteretic modeling of the steel piers has been
mainly restricted to their in-plane behaviors. As
observed in the 1995 Kobe Earthquake and the recent
experiment‘”, however, three-dimensional seismic
excitations affect the damage of steel piers.
Therefore, it is more desirable to consider the
three-dimensional effect in design. For this purpose,
it is necessary to develop a three-dimensional
hysteretic model that considers the interaction of
axial force and bi-axial bending.

Herein, as a three-dimensional hysteretic model for
thin-walled circular steel piers, we propose a
multiple spring model. This model consists of a
concentrated mass and a rigid bar with multiple
nonlinear springs located at the pier base. The idea of
the multiple spring model is similar to that of the four
spring model presented by Lai ef al.” that has been
used to express the three-dimensional behavior of
reinforced concrete elements, although an elastic bar
is used in lieu of the rigid bar. Wada et al.¥ also
presented a multiple shear spring model for
reinforced concrete columns where the number of
springs is increased compared with the four spring
model and the rigid bar is introduced instead of the
elastic bar, similar to our model. But his method to
determine the spring parameters is not described in
detail and looks very empirical. Recently, Ohi et al.”
developed a four spring model for the steel frames by
using the multi-linear skeleton line for spring and
introducing a target point concept for the hysteretic
rule following the original four spring model”.
However the calibration of spring parameters is
based on the monotonic loading test data due to the
lack of the suitable data concerning the hysteretic
behavior. Furthermore, the method of determining
spring parameters is empirical. Four springs are
insufficient to express the homogeneous behavior of
circular steel piers in any horizontal directions. Here,
we determine the number of springs by examining
whether the horizontal homogeneous behavior is
ensured. What is most important for the multiple
spring model is to determine the constitutive rule for
each spring so that the effects of local buckling and
cyclic strain hardening along with the P—A effect
can be properly considered. In our model all the
springs are assumed to have the same constitutive
relations. These constitutive relations are determined
by using curve-fitting techniques such that the
multiple spring model can best express the in-plane
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Fig.2 Multiple spring model

hysteretic behavior of circular steel piers expressed
by the existing 2-parameter model.

The accuracy of our multiple spring model is
examined by comparing with the 3-D earthquake
response analysis results obtained by geometrically
and materially nonlinear FEM shell elements'”. In
this FEM analysis, the three-surface model™ is used
as a cyclic plasticity constitutive model for steel. The
proposed multiple spring model is intended to
express the hysteretic behavior of thin-walled
circular steel piers with constant cross-section.
However, as long as the localized deformation
occurs in a single location, some minor modification
may make it possible to apply the present model to
steel piers with variable cross-section.

2. MULTIPLE SPRING MODEL

The pier is modeled by a rigid bar with multiple
springs located on the middle surface of the
thin-walled circular pier, as illustrated in Fig.2.
Spring I and spring m, are located on the X-axis,
whilst spring m; and spring m; are on the Y-axis. It is
assumed that no horizontal relative displacement
occurs at the base of the pier. Springs are arranged
with equal intervals along the middle surface of the
thin-walled circular cross-section. Furthermore, the
locations of the respective spring are so arranged that
they become symmetric with respect to both X and ¥
axes.

From the kinematic relation, the incremental
vertical displacement of the i -th spring Ad, is

expressed as

Ad, = —%(ADX cos, + AD, sin6,)+AD, (1)
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where R and L are the radius and height of the pier;
AD, , AD, and AD, are three incremental
translational displacement components at the top of
the pier; 0, is the angle that specifies the location of
the i-th spring (Fig.2).

The moment equilibrium and the vertical force
equilibrium at the base of the pier lead to

R N
AF, = —ZEAf,. cosé, )
Rl; i
AF, = -—L-;Afi sin@, 3)
. .
AF, = 3 A, “)
i=1

where AF, , AF, and AF, are three incremental
force components applied at the top of the pier; Af,
is the incremental force of the i-th spring and NV is the
total number of springs.

For each spring, the following constitutive relation
holds.

Af, = k,Ad, 5)
where k, is the tangent stiffness of the i-th spring.
From Egs. (1)~(5), we can get the following relation
of the incremental force-displacement relation at the
top of the pier,

AFy a, a, a;]|[ADy
AF, L=la, ay, a,|{ADy ©)
AF, ay 4y 4y | |AD,
where
R* &
a, = P—Eki cos’ 0, @
=
2 N
=q,=— Sk _sin@,
=y =5 Z . cos @, sin6, 8)
R N
a,., =0, =-— 5 k, cosb, 9
13 =3 I? Zl i ; ®
R &
a, = ngi sin® 9, (10)
=1
R N
Ay3 =Gz = “zzki sing; 11
N -
Q33 = Eks (12)

i=1

3. CONSTITUTIVE MODEL FOR EACH
SPRING

(1) General
In the multiple spring model, it is critically
important to determine the constitutive relation for
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Fig.3 Skeleton curve of spring

springs so that the model can properly express the
effects of local buckling and cyclic strain hardening
along with the P—A effect. In our model all the
springs are assumed to have the same constitutive
relation.

The local buckling occurs only in the location
where the axial compressive stress becomes
dominant. Therefore, the softening behavior of a
spring is considered only on the compression side.
The shape of the skeleton curve adopted here is
shown in Fig.3. The tension side of the skeleton
curve is expressed by the bi-linear curve while the
compression side is by the tri-linear one with a
descending part that represents the strength
deterioration due to local buckling. In determining
the model parameters for the skeleton curve of the
spring, we use two-step process. First, we assume
that the tension side of the skeleton curve is the same
as the compression side. Then, the model parameters
are determined by curve fitting technique, using the
FEM results with beam elements where the local
buckling effects are ignored. Second, the
compression side is determined on the basis of the
2-parameter model’s empirical in-plane skeleton
curve? that takes into account the local buckling
effect.

As for the hysteretic rule for each spring, we adopt
the basic idea of the 2-parameter model and present a
new hysteretic rule.

(2) Determination of tension side of skeleton
curve

The skeleton curve of a spring (Fig.3) reflects the
behavior of piers. When some parts of pier are
subjected to axial tensile stress, local buckling will
not occur in these parts. So the tension side of
skeleton curve is assumed to be bi-linear type
without considering buckling. To determine the
parameters of the bi-linear model, we use monotonic
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Fig.4 Uniaxial stress-strain relation for steel SS400

in-plane horizontal force-displacement relation at the
top of the pier that is given by FEM analysis with
beam element. In such FEM analysis, local buckling
effects are excluded but the material nonlinearity of
steel is considered by the uniaxial constitutive model
of steel as shown in Fig.4. For simplicity, the vertical
force is assumed to be zero and only the horizontal
force is applied. This assumption is valid since the
geometrical nonlinearity due to the P—A effect is
taken into account when we determine the
compression side of the skeleton curve as explained
later in 3. (3).

From the analysis results of several piers, it is
found that the horizontal force-displacement relation
at the top of pier can be well approximated by a
bi-linear curve, as illustrated in Fig.5, where the

intersection point Y of the two sublines are given in
the following

ol
=12F, =12— —

Fy,

y

(13)

F,
Dy, =12D,, =12-2%

Y0

(14)

where F, , and D, , are yield horizontal force and

yield horizontal displacement of pier without vertical
force obtained by the beam model; o, is the yield

stress of steel; I is the second moment of inertia; L

is the height of the pier; R and ¢ are the radius and the

thickness, respectively, of the thin-walled circular

steel pier; K, that is the initial elastic stiffness is
given as

1

Rerp 1

e

3EI  GAx

where G, 4 and x are the shear elastic modulus,

cross-sectional  area and shear  coefficient

(15)
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Fig.5 Bi- linear model of column

respectively, of the thin-walled circular steel piers.
The secondary tangent stiffness is
K, =0.04K,, (16)

The coefficients 1.2 and 0.04 in Egs. (13), (14) and
(16) are determined based on the results of our FEM
analyses by ABAQUS'. These values are identified
in the present research.

Finally, the monotonic horizontal force-
displacement relation of the pier with beam model is
expressed as

o [KePx (0sD, <D,)
"By +K, (Dx -Dy) (D, <D,)

Based on the force-displacement curve of the pier
expressed by Eq. (17), the parameters of the skeleton
curve on the tension side of the spring model (Fig.3)
are obtained. Herein, the horizontal force is applied
in the X direction. From Eq. (6), the incremental
in-plane (X-Z plane) force-displacement relations are
derived respectively as

AFy =a,ADy +a;AD,

an

(18)
(19)

When we determine the elastic constant k,, of the

AF, =aADy +a,AD, =0

spring, k; can be taken as constant, that is, k,=k,,.

Furthermore, a fully plastic state can be assumed to

determine k,p , because the monotonic horizontal

force-displacement relation is approximated by the
bilinear curve where the secondary line corresponds
to the fully plastic state. Therefore, in both cases to

determine stiffness k,, and k,,,

constant and Eqgs. (18) and (19) can be rewritten as
AF, =kb,AD, -kb,AD, (20)

eay)

where k is the tangent stiffness of the springs that

k, can be assumed

AF, = —kbyAD, +kb,AD, =0
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becomes k, in the elastic range and k,, in the
. R(&
plastic range; by, =L_2(;COS 9,.) ;
R N
b, =b,; =Z(20056i) and b, =N . It should be
I=]

noted that Ecos@ =0 when the springs are located
=1

symmetrically with respect to the Y-axis. Therefore,
Eqgs. (20) and (21) are reduced to

AF, =kb ,AD, (22)

AD, =0 (23)
Eq. (22) is used to determine two of the parameters
of spring: the elastic tangent stiffness k, and the

plastic tangent stiffness £,

A

k

te

‘ 24

11

. (25)

A5

k

S
o

11
The intersection point ¢, (d, ,f, ) of the two

sublines of the bi-linear spring model on tension side
is determined by a trial and error method such that
the final elasto-plastic range of monotonic loading
curve by multiple spring model may coincide well
with the bi-linear horizontal force-displacement
curve of a pier determined by FEM beam analysis as
shown in Fig.5.

If we assume a value of d, , a monotonic

horizontal force-displacement curve can be
calculated by the multiple spring model. Fig.6 shows
a comparison between the bi-linear model and the
horizontal force-displacement curve obtained by the
multiple spring model. It is observed from Fig.6 that
the stiffness of monotonic loading curve by the
multiple spring model decreases gradually after
yielding and approaches to a final wvalue
corresponding to a fully plastic state. @ (Dy,,Fy,) is
a point on the secondary line of the bi-linear model of
a pier. as (Dy,,,Fy, ) is a point on the monotonic
horizontal force-displacement curve by the multiple
spring model, where Dy, =D, . D, is arelatively
large value that represents almost a fully plastic state.
As illustrated in Fig.6, the optimum value of d,y

exists somewhere between d, and d, . The
g1 ¥

following can be given as initial limiting values for
the bisection iterative method:

d, =0 (26)

t

" e d, =d
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Fig.6 Determination of tension side of skeleton curve

R
ty = ZDXy

where Dy, is the horizontal coordinate of the

d @7

intersection point y of the bi-linear pier model as
shown in Fig.5. Eq. (27) cormresponds to the
displacement of the outermost springs when the
horizontal displacement at the top of the pier reaches
Dy, . As is clear from the bi-linear approximation

shown in Fig.5, the yielding of multiple spring model
starts at the outermost springs under the horizontal

displacement smaller than D, . Thus, d, < %DXY .

Once the initial range of d, is identified, the usual

bisection iterative method is used to determine the
optimum value of d, . After d, is obtained, f, is

given by
‘fty = ktedty (28)

The tension side of the skeleton curve is finally
determined as

(0sd<a,)

k,d
R

(3) Determination of compression side of skeleton
curve

After the tension side of the skeleton curve is
determined, we proceed to identify the compression
side. Herein, the empirical in-plane skeleton curve of
the 2-parameter model® illustrated in Fig.7 is used as
a basis for our curve fitting. The 2-parameter model
is an evolutionary-degrading restoring force model
developed for thin-walled steel bridge piers. In this
model the following three non-dimensional
quantities' are used as governing parameters for
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thin-walled circular steel piers: the
radius-to-thickness ratio parameter R the

"
slenderness ration parameter A and axial force ratio
M.

RO,

R ==— [3(1-v* 30
=3 (30)
2L 1 /oy
g e & 31
r t\E 1)
P
u= (32)
oyA

where R and ¢ are the radius and the thickness,
respectively; o, is the yield stress of steel; E is the

Young’s modulus; v is the Poisson’s ratio; L is the
height of the pier and r is the radius of gyration of the
cross-section; P is a constant vertical compressive
load acting on the top of the pier; 4 is the
cross-sectional area of the pier.

As can be seen from Fig.7, the skeleton curve of
the 2-parameter model is uniquely determined by the
yield point ) ( Dy, , Fy, ), the maximum point
m (D,,, ,Fy,) and the softening stiffness K, . The

details of how to determine these quantities in terms
of the governing parameters R, , A and u are

explained in Refs. 4), 12) and 13). Here we only
show the parameters of this model

B . 002449 33)
Fy, (RA)

Dy, 3(RA™) 3

?d =—141R, (1+ p) A" (35)

1
where F, , D, and K, are obtained from the
Xy Xy 1

elastic theory.

Based on the 2-parameter model, we now try to
determine the parameters of the tri-linear skeleton
curve concerned with the compressive behavior of
the spring as shown in Fig.3. The skeleton curve of
the spring under compressive force is composed of
elastic line, hardening line and descending line. The
tangent stiffness of the three lines are expressed by
k., k, and k, . Two intersection points of the

tri-linear curve is denoted by €, (d,,f, ) and

¢, (d,.f. ). Among these parameters, five are

independent and must be determined.
The stiffness of the elastic line can be assumed to
be the same as the tension side

kce = kte (36)

O D Xy DXm D X

Yo _ FXy
-F

Xm

Fig.7 Skeleton curve of 2-parameter model

It may be assumed that the yield pointy (Fy,, Dy, )

of the pier skeleton curve approximately corresponds
to the state when the outermost spring on the
compression side reaches the yield deformation d_ .

Eq. (1) is integrated with respect to the spring I as
d = —%DX cos6, + D, 37

Noting that d, =d, , Dy =D, , cosf, =1 and
D, =-PL/(EA) , the

compression side is given by

R PL

d, ==7Dy = (38)

f., =k, (39
The three parameters: d, , k,, (or f, ) and k,

yield point of the

are determined by a trial and error method. If we
assume reasonable values for these three parameters,
we can calculate a monotonic loading curve as

shown in Fig.8 by the multiple spring model. y is the
yield point and M is the peak point of the tri-linear

skeleton curve of the 2-parameter model. 715 is the
peak point obtained by the multiple spring model.
The pier under deformation of Dy, is in a state

where the pier exhibits a steady softening behavior.
In this state, the compressive springs are in the fully
softening state and the tensile springs are in the fully
plastic state. We will determine the set of values d__,
k, and k_, so that the point S and the final
descending line stiffness K, matches with the point
m and K, , respectively.

At the fully softening stage when Dy =Dy, K,
is only governed by k_, . Thus, the value of &, is
first determined. In determining k,, what is needed
for d, and k, is just to give them a set of

reasonable values, not exact values. The following
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Fig.8 Fitting of multiple spring model to 2-parameter
model in terms of softening stiffness

equations are used to predict the reasonable values.

R
dc,,. = QZDXm (40)
kce
ky = ey (41)

Eq. (40) corresponds to the displacement of the
outermost springs when the horizontal displacement
at the top of the pier reaches D, , while, just as a

reasonable value, the effect of constant vertical force
P on herizontal displacement is neglected. As shown
in Eq. (41), half of the initial elastic stiffness k_, is

given to k, as a reasonable value. Once reasonable
values are given to d, and k,,, k,, is determined
by the usual bisection method.

If we express the range of k, as k,, <k, <k, ,
the limiting values for the bisection method can be
assumed as

ke =Cy
ky =0
where C, is a big negative value.

(42)
(43)

Secondly, the two parameters, point C,, (d,_ , f, )
or (d, ,k, ) can also be determined by the bisection
method for two variables. Herein, d, and &, are

selected as these two variables to be identified. Since
a particular technique is included in the bisection
method for two variables, the method is explained in
some detail.

The ranges for the two parameters are denoted
here as d, <d,_ <d,_ and k, <k, <k, . The

initial value for d, ~can be given as

R PL
G =P 54

where & is a constant that reflects the effect of

(44)

Fy
m
F Xm (F Xms} V£
y Vs
— 2-parameter model
--------- Monotonic loading curve
by multiple spring model
% D Xm D Xms D X

Fig.9 Fitting of multiple spring model to 2-parameter
model in terms of peak point

plastification on the axial deformation. It is found
that £ =2. is acceptable in analyses.

If we use d, given by Eq. (44) as d, in the
skeleton curve of the spring model, the outermost
spring on compression side of the multiple spring
model starts to enter the descending line when the
horizontal displacement approaches Dy, . Under this
displacement, however, the rest of the springs on the
compression side are still in the hardening stage.
Therefore, under D, , the peak point /715 for the
multiple spring model is not reached yet. This
implies that D, > D, . As can be seen from Fig.9,
if we adopt d_ that

<

satisfies the relation

D,,.. > D, , it is possible to determine the value of
k_, that ensures F,

s

=F,, . So, in the two-variable
bi-section method, we can choose d,_  as an initial
value of d, and increase d, ~with a small step
until

increment  with

Dy

m.

keeping FXm: = FXm
s <Dy, is satisfied. The trial value of d_ in the

i-th iterative process is given as

dV=d, +ind, (45)
where Ad, can be set as
Ad, =-0.005d, (46)

For a given d C(;) , the usual bisection iterative method

is used to determine a corresponding hardening
stiffness kch(i). The initial range for kc,,(i) may be

assumed as
kchl(i) =0 (47)

kchr(i) = kcz (48)

The trial value for the j-th iterative process for &,
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is determined by

PO kchi(i) +kchr(i)

ch(i) 2 (49)
With the parameters so assumed, point
ms(D ms(l)’ (,f‘)s(l.)) can be calculated by the multiple
spring model. If F)E;,)s() >F, , then we set
ko =kU)

(i) Otherwise, k= kch() This iterative

ch(i)
process for a given dc(i) is continued until the
following tolerance is satisfied

()
!F erns(z -F Xm

[P

After the optimum value of k_, is obtained for 4 C(;) ,

sé, (50)

we proceed to identify the optimum value of £, for
the d C(;”) given by Eq. (45).

The above process is repeated until Dy, <Dy, is

Xins
first satisfied for d C(:’” . Then, we can identify the
range for d, as
d, =d? 51)
d, =d (52)

Cmr
Once the range of d, is identified, the next trial

value d f“z) is given by the usual bi-section method

instead of Eq. (45) as

. d, +d
4em = (53)

After the optimum value of k_, is obtained for the

f ok
e C
B e 'y
FN A )
d_ -d &
NN
25! 0 d
y 2f] : k
(3 y
'A A1D
Ae v |
o g
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(a) Unloading and reverse
loading in the hardening
range (case 1)

(b) Unloading and reverse
loading in the degrading
range (case 2)

Fig.11 Hysteretic rule for spring model

given d*?, D" is calculated by using k,, and
df””. The optimum value of d, is determined by
the condition that the following tolerance is satisfied
L U — 34
D Xm
Finally, the skeleton curve on the compression
side is determined as

k.d (e, <a <0)
=1t vha(d-d,).(d, <d<d,) 5)
f, +ky(d-d,),(d=d,)

(54

(4) Hysteretic rule

The hysteretic rule of the spring model is divided
into two parts, that is, the compression side and the
tension side.

Regarding the rule on the compression side, the
one similar to the 2-parameter model is utilized. This
is because the skeleton curve of the spring model on
the compression side is represented by the tri-linear
curve given by the 2-parameter model. The hysteretic
behavior of the 2-parameter model are characterized
by the three rules: 1) the whole loading history is
divided into two stages to consider the cyclic
hardening effect; 2) the accumulated hysteretic
energy of pier is used to predict the stiffness
degradation; 3) the maximum deformation is used as
an index to consider the strength degradation.

Regarding the hysteretic rule on the tension side,
however, the skeleton curve of the spring model is

8(r18s)




expressed by a bi-linear curve without descending
line, being different from the 2-parameter model.
Therefore, we adopt the kinematic hardening rule on
the tension side and the hardening rule with negative
stiffness on the compression side. The details of
these rules are explained below.

Following the original 2-parameter model, the
loading history of the spring model on the
compression side is classified into two stages:
hardening stage and degrading stage. Hardening
stage is defined by the condition that the deformation
of a spring d is within the range specified by
d,_=d. d, isthe displacement at the peak point of

the skeleton curve on the compression side. In this
stage, the behavior of spring is characterized by the
cyclic hardening behavior where the elastic range
and the elastic stiffness stay constant. Once the
displacement passes d, , then the spring moves into

the degrading stage. The hysteretic behavior in the
degrading stage is characterized by the deterioration
of the elastic stiffness k£ and the shrinkage of elastic

range 2 fy' , as illustrated in Fig.10.

As for the degradation rule for elastic stiffness &,
the idea of the 2-parameter model is used for each
spring. In the degrading stage, stiffness degradation
occurs, whenever unloading occurs. The degraded
elastic stiffness & is assumed to be governed as
follows by the accumulated hysteretic energy of the

spring, ZEi .

k 1 ZEi/Ee
;—=1—gln(——1—66-——+1)=g(2E,) (56)

te
where o =1/(7.36R,) according to the 2-parameter
model. Although the shapes of skeleton curves on the
tension side and compression side are different, we
use the same value for the empirical parameter « .
With the use of the degraded elastic stiffness k
calculated by Eq. (56), the shrinked elastic range

2 fy' is assumed to be given by

2f, =k(d, +d.) (57)

where d, and d, denote yield displacements of

the skeleton curve on the tension side and the
compression side, respectively. The above equation
implies that the elastic range shrinks in proportion to
the elastic stiffness.

In what follows, two important loading histories
are chosen to explain the hysteretic rules. The first
one represents the loading history in the hardening
stage, while the second one represents the loading
history in the degrading stage.

Fig.11(a) illustrates the hysteretic rule when the
spring is in the hardening stage and the unloading
first occurs on the compression side. At this stage the
cyclic hardening effect is the major characteristics of
the hysteretic behavior. Starting from point O, the
initial yielding occurs at point A. Then, the loading
point follows a hardening line heading to the peak
point €, (d, ,f, ). Suppose that unloading occurs

at point B on the hardening line and this unloading is
followed by reverse loading. The loading point goes
to the yield point C on the tension side with the
elastic stiffness of k,, that is the same as the initial
elastic stiffness. In the hardening stage, the
kinematic hardening model is used and the elastic

’ . .
range 2f remains constant as given b
y

2f, = f, + 1, (58)
where f, and f., denote yield forces of the

skeleton curve on tension side and compression side,
respectively. Beyond point C, the loading point
follows the hardening line that is parallel to the
initial skeleton curve where the stiffness of the
hardening line on the tension side keeps the initial
value k,, . If unloading occurs at point D, the loading

point heads to the yield point F, where both the
elastic stiffness k and the elastic range 2f, keep

the initial values. After point F the loading point will
again follows a hardening line heading to the peak
point ¢,, (@, ,f. ).

Fig.11(b) shows the case when the first unloading
occurs at point 4 in the degrading range on the
compression side. From point 4, the loading point
goes to the yield point B under unloading and
subsequent reverse loading. Since the loading point
is in the degrading range, the elastic stiffness &

decreases and the elastic range 2 fy' shrinks,

depending on the hysteretic energy E, , as
respectively given by Eqgs. (56) and (57). After point
B is reached, the loading point follows a hardening
line that is parallel to the skeleton curve with the
stiffness of k,,. When unlading occurs at point C,
loading point goes to the yield point D under reverse
loading. In this elastic stage, the elastic stiffness and
the elastic range are governed by the accumulated

hysteretic energy E, + E,. After point D is reached,
the loading point heads to point F that is on the
skeleton curve with the deformation of d d

denotes the maximum deformation that the spring
has ever experienced on the compression side.

cmax * “Ycmax
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Table 1 Dimensions and governing parameters of circular pier models

Piermodel | L(m) R(m) ¢(m) R, A H Mass (kg) Number of springs
1 14.814 1.00 0.0332 007 05 0.10 8.174x10° 32
2 19.997 135 0.0285 0.11 05 0.10 9.530x10° 32
3 11.851 1.00 0.0332 007 04 0.15 9.343x10° 32

Table 2 Identified parameters for the skeleton curve of spring

Table 3 Three-surface model parameters

Pier model 1 2 3 Steel Type Parameters
k,, (MPa) 7.41 6.38 9.14 E =206.0 (GPa)
k.. (MPa) 265 228 326 o, =289.6 (MPa)
kce (MP&) 265 228 326 o, =495.0 (MPa)
ke, (MPa) 22.6 140. 15.0 V=03
ks (MPa) -41.6 -52.5 -48.5 0'_'0 0183
d, (m) 0.00618  0.00840  0.00502 e
v SS400 f, /o, <0581
f,, (MN) 1.64 1.91 1.64 iy
£ =100
d, (m)  1.000702 -0.00953  -0.00570 02
f., (MN) -1.86 217 -1.86 H,,/E=0.05
d, (m) -0.0176  -0.0116  -0.0151 HZ (%)
f., (MN) -2.10 -2.46 -2.00 (*): Plastic modulus determined by
monotonic loading test'.
Table 4 Comparison of computation time
Pier Input wave né\c}il:sng}e;'oE};vI Time ratio
model shell model (Multiple spring model : FEM shell model)

i HKB (15sec.) 2940 1:5040

1 JMA (15sec.) 2940 1:6480

2 JMA (10sec.) 3360 1:5760

3 JMA (15sec.) 2640 1:5040

The validity of the present hysteretic rules is
examined in the next section, by comparing the

hysteretic curves of steel piers obtained by the

multiple spring model with those by the 2-parameter

model.

4. COMPARISONS WITH THE OTHER
MODELS

(1) In-plane hysteretic behavior

Herein, we examine the accuracy of the multiple
spring model by comparing with 2-parameter model.
For this purpose, three pier models with different
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Fig.13 Comparison between multiple spring model and 2-parameter model
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governing parameters shown in Table 1 are used as
numerical examples. Since the 2-parameter model is
applicable for thin-walled circular steel piers with
0.07<R =0.11, pier 1 with R, =0.07 and pier 2

with R, =0.11 are adopted here to cover the
applicable range for R, . The other two governing
parameters A and g are changed for pier 3 with
keeping R, =0.07.

First, the parameters for the skeleton curves of the
springs are identified following the procedure
explained in section 3 based on the 2-parameter
model. Parameters of the skeleton curves so
identified are summarized in Table 2. The number of
springs, that is 32, is determined by considering
homogeneous behavior of steel piers in any
horizontal directions. In Fig.12, it is shown how the
horizontal force-horizontal displacement relation of
pier 1 becomes homogeneous by increasing the
number of springs. From this figure, it is observed

that 16 springs are enough to ensure the homogeneity.

Herein, 32 springs are used by taking into account of
the homogeneous behavior of pier 2 and pier 3.

In Fig.13, the multiple spring model is compared
with the 2-parameter model for three pier models in
terms of the in-plane skeleton curves and hysteretic
behaviors. It is observed from Fig.13(a) that the
multiple spring model shows acceptable accuracy to
express the in-plane skeleton curves of the
2-parameter model. However, some difference exists
in the cyclic behavior in the post-peak range. This
difference is more evident for pier 2 with a larger
value of R, where the deterioration is strongly

affected by the local buckling. There still remains
some room to improve the hysteretic rule for thinner
circular steel piers.

(2) 3-D dynamic response

In the three-dimensional dynamic response
analyses, the accuracy of the multiple spring model is
examined in comparison with the 3-D FEM dynamic
analysis using shell element where the local buckling
behavior is precisely considered. Piers shown in
Table 1 with different values of R, are chosen for

these analyses. The FEM analysis using shell
elements is carried by ABAQUS'. The pier model
used for the FEM analysis is illustrated in Fig.14.
The thick shell element S4R is chosen as the element
type in the whole cylinder. The very fine mesh
division is used especially near the pier base where
large localized deformation is expected to occur. As
the constitutive model to express the cyclic plasticity
of steel, the three-surface model'” is implemented in
ABAQUS by using the user defined subroutine

Concentrated mass

Cross-section

Fig.14 Pier model for dynamic analysis

feature. The material constants of the three-surface
model are given in Table 3.

Regarding the multiple spring model, number of
springs used in the present analysis is the same as
that in the previous sub-section 4. (1). For pier 1, two
kinds of earthquake waves recorded in the 1995
Kobe Earthquake are applied. One is the HKB
(Higashi Kobe Bridge) acceleration wave where L-G,
T-R and U-D components are assumed to be
respectively coincident with X, Y and Z components.
The other is the JMA (Japan Meteorological
Agency) acceleration wave where E-W, N-§ and U-D
components are used as X, Y and Z direction. In the
analysis of pier 2 and pier 3, only the JMA record is
considered. The integration time step used in the 3-D
earthquake response analysis is set as 0.005 second
for JMA wave and 0.01 second for HKB wave. In
Table 4, the multiple spring model is compared with
the FEM shell model in view of the computational
efficiency. It can be seen from Table 4 that the
computation time is drastically shortened by the
multiple spring model.

The results of the earthquake response analysis
obtained by the multiple-spring model are
summarized in Figs.15~24, in comparison with those
obtained by the FEM analysis. Figs.15~18 show the
sway displacement response histories of piers and
Figs.19~22  illustrate the sway-displacement
trajectories. Fig.24 shows the final deformation
patterns of pier models obtained by FEM analysis.
From this figure, local buckling patterns are
observed in all piers. Among the three piers, pier 3
with the largest radius-to-thickness ratio exhibits the
largest localized deformation. This large localized
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Fig.15 Time horizontal response displacement of pier 1
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Fig.17 Time- horizontal response displacement of pier 2
under JMA wave

deformation may lead to some discrepancy between
the FEM shell model and the multiple spring model
in the horizontal response displacement of pier 3, as
can be seen from Figs.13(b), 18 and 22. Except for
the error caused by highly localized deformation, it is
observed from Figs.15~18 and Figs.19~22 that the

Fig.18 Time- horizontal response displacement of pier 3

under JIMA wave

proposed multiple spring model can be an acceptable
alternative to the FEM shell model in practical
design as long as the localized deformation is
moderate and not extremely large.

Regarding the vertical response of piers, the
results obtained by the multiple spring model are
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———FEM shell model
----- Multiple spring model
6"

Fig.19 Trajectory of response sway displacement of

pier 1 on X-Y plane under HKB wave

Mo me= ]

———FEM shell model
----- Multiple spring model

3"
Fig.21 Trajectory of response sway displacement of
pier 2 on X-Y plane under JMA wave

very different from those obtained by the FEM
analysis as shown in Fig.23. One reason for this
difference is that the constitutive relation for springs
is calibrated not by the vertical displacement but by
the horizontal displacement at the top of the pier. The
other reason is that the magnitude of the vertical
displacement is much smaller than that of the
horizontal displacement. However, the vertical
displacement predicted by the multiple spring model

———FEM shell model
----- Multiple spring model
3

Fig.20 Trajectory of response sway displacement of
pier 1 on X-Y plane under JIMA wave

—— FEM shell model

Multiple spring model
-4

Fig.22 Trajectory of response sway displacement of
pier 3 on X-Y plane under JMA wave

may have little effects practically because the
vertical behavior is usually ignored in seismic
design.

The residual displacement calculated by the
multiple spring model also tends to be somewhat
different from that by FEM analysis. This is because
the residual displacement is very sensitive to the
numerical errors and even small errors have a big
influence on the final displacement.
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Fig.24 Deformation patterns at the bottom (displacement amplification factor=4)

5. CONCLUSIONS

In view of the application to the practical design, a
multiple spring model is proposed to express the

3D-hysteretic behavior of moderately thin-walled
piers. The model consists of a rigid pier and multiple
nonlinear springs located at the pier base. These
multiple springs can represent not only the
interaction between the axial force and the biaxial
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bending but also the local buckling effect. The
constitutive relation for each spring is expressed by
the multi-linear model and the parameters of this
model are calibrated based on the in-plane hysteretic
behavior of the 2-parameter model. In order to show
the validity of the proposed model, 3-D earthquake
response analyses are carried out by using both the
multiple spring model and the FEM shell model. The
results showed that the multiple spring model can be
an acceptable alternative to the costly FEM shell
analysis as long as the localized deformation is
moderate and not extremely large. Furthermore, the
computation time of the multiple spring model in the
3-D dynamic response analyses is drastically
reduced to 1/5000 ~1/6000 of the computation time

of the FEM shell model.

NOTATION
A = cross-sectional area of the pier;
d,, =limiting value for d. ;

dtyl , d,yr = limiting values for dzy ;

AD, , AD,, AD, = incremental displacement

components at the top of the
pier;
E = Young’s modulus;
E,, E; = elastic energy and hysteretic energy in the
i-th loading;

fcy ,d o = yield force and deformation of the

compression side of skeleton curve of
spring;

f. , d, = maximum force and deformation of the
m m

compression side of skeleton curve of
spring;

f,y , d,y = yield force and deformation of the

tension side of skeleton curve of spring;
Af;, Ad, = incremental force and deformation of the
i-th spring;
Fy, Dy, = maximum force and displacement of the
skeleton curve of the 2-parameter model;
Fy;, Dy, = yield horizontal force and horizontal
displacement in X direction of the
skeleton curve of the 2-parameter model;
Fyxy0, Dxyo = yield horizontal force and horizontal
displacement in X direction of the pier
without vertical force obtained by the
beam model;
AF, , AF,, AF, = incremental force components at

the top of the pier;
G = elastic shear modulus;
I = second moment of inertia of pier;

keey ken, keq = stiffness in elastic range, hardening
range and softening range respectively,
at compression side of skeleton curve
of spring;

kear, keqr = limiting values for k.4;

kens, ke = limiting values for ke

k; = tangent stiffness of the i-th spring;

ke, ky, = stiffness in elastic range and plastic range

respectively, at tension side of skeleton
curve of spring; :

Ky, Ky, = stiffness in elastic range and plastic range

respectively, of the bi-linear model;

K;, K,, K, = stiffness in elastic range, hardening
range and softening range respectively,
of the 2-parameter model;

L = length of the pier;

R = radius of thin-walled circular steel pier;

R, = radius-to-thickness ratio parameter;

= thickness of thin-walled circular steel pier;
a = empirical parameter of the 2-parameter model;
0, = angle specifies the location of the i-th spring;

x = shear coefficient of the thin-walled circular
steel pier;

A = slenderness ration parameter;

M = axial force ratio; and

o, = yield stress of steel.
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