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The identification and control of large-scale structures are considered to be difficult due to structural
complicacy and system uncertainties. In this paper, based on the concept of localized control and neural
networks, a computational algorithm for earthquake response control of large-scale structures is proposed.
In this algorithm, the control-structure interaction (CSI) and actuator dynamics are considered. Moreover,
electro-hydraulic actuators as practical applications are designed to simulate the proposed control
algorithm. Results from the numerical simulations have shown great promise for the control of large-scale
civil engineering structures with localized control using neural networks.
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1. INTRODUCTION

With increasing research activities in the field of
structural control in recent years, a number of
structural control methods have been proposed.
Some of the widely used structural control methods
are explained by Leipholtz, et al.”, Soong  and
Spencer Jr. et al.” ¥. Most of these control
algorithms require the analysis and identification of
the structural system in an explicit mathematical
form. These contemporary control techniques often
rely on the assumption of a good dynamic
mathematical model containing identified system
parameters such as mass, stiffness and damping.
However, there are many factors such as
uncertainties, non-linearities, and measurement
noises, which are so difficult to be identified and
incorporated in control loop as to result in poor
mathematical models and less-effective control
algorithms. The attributes of control algorithms with
artificial neural networks make them potentially
effective in dealing with most of these problems.

The ability of artificial neural networks to
approximate arbitrary continuous function provides

an efficient mechanism for identification and
control of civil engineering structures. The
structural dynamics can be identified by neural
network in an implicit form where modeling of
structural parameters such as stiffness, damping and
mass are not necessary. The knowledge acquired by
a neural network is stored in its connection weights,
which are adaptive and can change in response to
outside stimuli. Neural network does not really
solve control problem in a strictly mathematical
sense, but it is a method of relaxation that gives an
approximate solution to the problem. At present,
several kinds of neural networks have been
proposed. The most widely used neural network is
the multi-layer neural network, which is trained
with the error back-propagation algorithm.

Numerous engineering applications of neural
networks have been reported in the literature of
recent years. Applications of neural networks in
civil engineering have been reviewed by Ghaboussi,
et al.?, Chen et al.?, Xu et al. ¥ 'V, Sato et al. "',
Bani-hani et al.'> ¥ and Kumagai et al. ™.

In the research of Ghaboussi, et al.”, a three-
story frame structure is modeled as a frame structure
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with three degrees of freedom per node, and an
active tendon system is used as actuator. In this
study, the displacements and accelerations
responses of all of the three floors have been used as
inputs to the neuro-controller,

However, a civil engineering structure, especially
for large-scale or complex structure, usually has a
great number of degrees of freedom (DOF), it is
difficult to get all of the dynamic responses and to
submit those to actuators. For large-scale structures,
because of the high dimensionality of the full finite
element model, multiple inputs and outpuits, time-
consuming computation, and complex performance
criteria, it is difficult to design a control strategy to
achieve desired stability, robustness and so on, there
seems to be a critical need for additional research in
order to develop more robust and more effective
control algorithm for large-scale or complex
structures.

Many model reduction methods are available for
the analysis and control design of large-scale or
complex structures. These techniques produce a
lower order model, which is beneficial to the design
for controller. On the other hand, the concepts of
localized and decentralized control have been
proposed for dealing with large-scale problem
In the study of Hannsen et al.”, the concept of
localized vibration control was proposed to
construct a confrol strategy for a complex structure
consisting of a plate supported by two box girders.
Taking advantage of model reduction method, the
state space representation of the structural dynamics
model was derived, and the generalized singular
linear quadratic (GSLQ) control algorithm was used
to decide the control forces. By using multiple
actuators and single control station the transmission
of vibration from the complex structure was
controlled successfully without considering the
hardware limitations (such as actuator dynamics and
actuator output capacity). Combining the concept of
localized vibration control with multi-layer neural
networks, an adaptive localized vibration control
strategy for a continuous concrete bridge under
centralized loads was studied by Xu et al.”. And an
identification method with neural networks by the
using of partly observed dynamics responses has
been proposed by Sato et al. ',

Although the localized control show their great
effectiveness to control large-scale or complex civil
engineering structures, the effects of control-
structure-interaction  (CSI) and the actuator
dynamics in analysis and design procedures have
not been considered in those studies carried out by
Hannsen et al.¥ and Xu et al.”. Neglecting CSI
effects may produce poor or perhaps catastrophic
performance of the controlled system due to the
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unmodeled or mismodeled dynamics of the
actuator-structure  interaction'>',  Moreover,
mechanical actuators, for example, electro-hydraulic
actuators, employed to control structure itself are
also dynamic systems. Because the useful control
signal signals which are used as inputs for actuators
are electrical signals rather than control forces in
control problem, those control algorithms which
only can be used to decide the necessary control
forces can not be put into application directly. In
this paper, the control-structure interaction and the
dynamics of elector-hydraulic actuators are
considered to study the effectiveness of multi-layer
neural network in localized control for large-scale or
complex structure under earthquake excitations.

2. EQUATIONS OF MOTION FOR
STRUCTUR-ACTUATOR COUPLED
SYSTEM

(1) Equations of Motion of Structure
The motion of structure under earthquake is
characterized by the following equation.

Mi+Dx+Kx-1,f=-MIx, ()

where M ,D and K are nxn mass, damping,
and stiffness matrices of structure, n is the number
of DOF (degree of freedom) of structure; ¥ , X
and x are nx1 acceleration, velocity, and
displacement vectors; %, is the base acceleration

of earthquake; f is mx1 vector describing the

forces produced by actuators, and m is the number
of actuators; I, is a nxm Boolean incidence

matrix, the element i of matrix I, equals 1

when the n-th DOF attaches to the m-th actuator,
and equals 0 when the degree of freedom n does not
attach to the m-th actuator; I is a nx1 identity
vector.

A finite element method is used to discrete the
structural model in this paper.

(2) Equation of Actuator”

In this study, electro-hydraulic actuators, which
have been widely used in active structural control
problems, are employed as the active control
devices. It is assumed that there are m actuators
used to control the dynamic response of structure
under earthquake excitations. The dynamics of each
electro-hydraulic actuator  is defined by iwo
differential equations describing the dynamics of the
valve and the ram,

2(82s)



a) Valve Equation
Keeping signal signal e of the i-th actuator

constant during a sampling period, the valve flow
rate g, of i-th actuator during a sampling period

can be determined as follows,

q; =k k, [1 - exp(i)]ei +4; exx{—_——t-)
T; T;

i=1Lm) (2)
where k;;, k;; are the constant gains and T is the
valve’s time constant.

The signal signal e of i-th actuator is issued at
the beginning of each sampling period, which is
considered as the origin of time ¢ in equation (2),
and the valve flow rate at the beginning of the
sampling period is g;o.

b) Ram Equation

In the case of hydraulic actuator, a feedback path
exists between the velocity of each actuator and
signal input to it. The relationship among the control
force f; , the ram displacement x;, and the valve flow
rate g; of i-th actuator can be described in a
differential form as follow,

C, V. .
q; = AX, +j41‘f1 +——f; (i=1m) ®

i ﬁiAE

where A; is the area of ram, C; is the coefficient of
leakage, V; is the volume of piston, 8 is the
compressibility of the i-th actuation system. It is
shown that the force applied by each actuator is
dependent on the actuator velocity response, that is,
the feedback interaction path is intrinsic to the
dynamic response of a hydraulic actuator.

(3) Motion Equation of Coupled System

The equation of actuator and the structure’s
equations of motion are coupled through the
displacements ~ and  the  actuator  forces.
Displacements in some of the structural degrees of
freedom are tied to the ram displacements, while the
generation of the actuator forces is influenced by the

displacements at those structural degrees of freedom.

The relation between the displacements of all of the
rams and structure displacements can be represented
as follows,

X, =I'% )

r u

where {%,.}={5Cl,‘ X,

The coupled equations for the structure-actuator
coupled system are obtained from equations (1), (3),
(4) and (5). The left-hand side of equation (3) is the
valve flow rate, which is considered as a known

i | s)

quantity and is computed from equation (2). Finally,
the coupled equation can be derived as,
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The equation of structure-actuator coupled system
is numerically integrated by Newmark- 8 method

to obtain the solution of dynamic response of
structure and the coupled forces between structure
and actuators under earthquake excitations and
control signals. The integration time step used in the
numerical analysis is chosen to be a small fraction
(one-tenth) of the sampling period. This will allow
for a realistic representation of the generation of
actuator forces during the sampling period as a
result of the actuator’s dynamics, and the interaction
between the structure and the actuators.

3. LOCALIZED NEURO-CONTROLLER

(1) Concept of Localized Control

Usually, it is difficult to control the vibration of a
entire large-scale or complex structure, moreover
the full finite element model is not suitable for
controller design because the high-order models
maybe inaccurate and the computations for the
controller become too time-consuming and
inefficient. Comparing with general vibration
control, the aim of localized vibration control is to
control only localized areas rather than the entire
structure. And then deciding the position of sensors
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Fig. 1 Concept of localized control

and actuators is somewhat simpler in a localized
vibration control problem than in a general vibration
control problem. For localized vibration control,
sensors and actuators are usually located within the
control areas, which comprise only a small portion
of the full structure. The information submitted to
controller is obtained from localized areas and the
control signals act in localized areas ®* ¥,

The basic concept of localized control is
demonstrated in Fig.1.

(2) Multi-layer Neural Network

A typical three-layer back-propagation neural
network with / nodes in the input layer, m
neurons in the hidden layer and »n neurons in the
output layer is designed. Weights wy,; (h=1,m; i=1,1),
we, (o=ILn; h=Im) are used to represent the
strength of connections of the neurons between the
input layer and the hidden layer, the hidden layer
and output layer respectively.

The first type of operation of three-layer neural
network is called as “feed forward”. In this
operation the output of 'a neuron I of layer N can be
shown as,

=N

x, = f&) (13)

J

=N _ NWN-1_N-1 N

;o= zw,.j x; 7 =k (14)

J=1

1

1o)== (15)
where fix) is an activation function, which is
dlfferentlable x] is the output of neuron j of layer
N-1; b/ is the bias representing the threshold of the

activation function of neuron i of layer N, J is the
number of neurons in Layer N-1.

The second type of operation of the multi-layer
neural network is called as “error back-propagation”.

The error function £ is defined as,

eyl

(16)

where d;, x; are the desired output and the output
of the i-th neuron in output layer respectively; i, p
are the number of output neurons of output layer
and the total number of patterns (examples)
contained in the training set.

Usually, the widely used learning algorithm for
training neural networks is delta rule which is based
on the gradient steepest decent method. In order to
increase the rate of learning and yet avoid the
danger of instability, a modified algorithm called
the generalized delta rule is used in this paper by
including a momentum term, which describe the

the correction of weight w;*"”

relationship of
between layer N-I and layer N at iteration £+ and

it at iteration k as follows,

Bk +1) =08 x] + b k) (17)

where N dE
6, =~ e (18)
Aw*™k+1) and Aw*M (k) are the correction

applied to weight w; "’

at iteration k+1 and k; N
is a positive constant called the learning-rate
parameter, and ¢ is usually a positive value called
the momentum constant. In any event, care has to be
exercised in the selection of the learning-rate
parameter. A small learning-rate parameter lead to a
slower rate of learning, on the other hand, if we
make the learning-rate parameter too large, the
learning procedure may become unstable. In this
paper, let
Hagiwara'”,
restricted to the range 0= & [ <1, here let @=0.6
here.

n =0.8. Moreover, as described by

the momentum constant must be

The updated value of weight w;jMN'I at iteration

k+1 is computed as follows:
W;\'.y.; (k + 1) = W:.N-l (k) + Awil,‘\",\'-l (k + 1) (19)

The neural network learning process is to adjust
the connection weights by repeatedly training
thereby minimizing the error between the network
output and the desired target in the training set.
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(3) Localized Control Using Neural Network
a) Architecture of Localized Control with
Multi-layer Neural Networks

In this paper, two typical three-layer
back-propagation neural networks are adopted as
neural emulator network and neuro-controller
respectively. The basic idea of the localized control
with multi-layer neural network is illustrated in
Fig.2. It includes two stages: localized identification
and controller training for the localized areas of
structure and control signals calculating.

In the first stage, the localized areas of the
structure-actuator coupled system are identified by
the method of training the neural emulator network.
In the second stage, based on the trained neural
emulator network, a neuro-controller is trained to
generate control signals for localized areas.

b) Localized Identification for Localized Areas

The training process of neural emulator network
is to establish the appropriate connection weights
between neurons of each layer by a form of
supervised learning with the help of training set
which is composed of a number of patterns of
network inputs and desired network outputs of
localized areas.

Based on the training algorithm described above,
the neural emulator network is off-line trained. The
weights are initialized with small random values
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(b)  El-Centro earthquake record with 20% amplitude
Fig. 3 Earthquake records

first. The outputs are then computed by feeding
forward the inputs through the network. The error
function is calculated from the difference between
the outputs of neural emulator network and the
dynamic response recorded by sensors in the
localized areas of the structure-actuator coupled
system. By back-propagating the error function to
adjust the weights, the neural emulator network can
be trained to achieve a desired accuracy for
modeling the dynamic behavior of localized areas of
the structure-actuator coupled system.

¢) Training of Neuro-controller and Calculating

Control Signals for Localized Areas

The neuro-controller is trained based on the
neural emulator network trained above.

At first, the error of signals can be decided by
back-propagating the error function E through the
trained neural emulator network without changing
the weighs. And then the error of signal is
back-propagated to adjust the weights of the
neuro-controller. This training process is repeated
until the structural responses satisfy the control
criterion.

In this paper, the first 15-second record of Kobe
earthquake (Hyogo-ken Nanbu Earthquake, Jan. 17,
1995) with 10% of the amplitude is used to train the
neuro-controller. In order to study the adaptability
and robustness of the trained neuro-controller, the
effectiveness of the trained neuro-controller is
shown in this paper when structure-actuator coupled
system is subjected to Kobe earthquake record with
10% and 20% amplitude and the first 15-second
El-Centro earthquake record (Imperial Valley, May
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19, 1940) with 20% amplitude. The earthquake
excitations used are shown in Fig.3. The sampling
period of the earthquake excitations is 0.05s.

4. NUMERICAL SIMULATIONS

(1) Design of Actuator
The following parameters of electro-hydraulic
actuators are used for composing the equations of
the actuator dynamics.
A = area of ram, 500cm?; V = volume of chamber,

5000cm’; C=coefficient of leakage, 0.lcm’/(kgf s);

B = compressibility of actuator, 2.1e’kgf/cm’; T =
time constant, 0.20s; u,. = maximum absolute
value of actuator force, 80 tf, k; = actuator gain,
10.0; k= actuator gain, 10.0cm’/s; and k; = actuator
transducer gain, 100.0 1/kgf. In this paper, two
actuators are considered to be the same type.

The actuator signals are generated by
neuro-controller at the beginning of each
sampling period and are kept constant within each
sampling period. This will allow for the analysis to
properly account for the effects of actuator
dynamics in generating actuator forces.

(2) Structure-Actuator Coupled System

In order to demonstrate the performance of the
neuro-controller for the control of large-scale or
complex structures under earthquake, a plane
structural model of a continuous concrete bridge is
adopted in the analysis. FEM mesh is shown in
Fig.4. As material properties, Young modulus of
concrete E, = 2.1*10°kgf/cm?, density of concrete
0 =2.5t/m7’, poisson ratio of concrete 7 =0.166, and
damping coefficient is set to be 0.02.

As illustrated in Fig.5 (a) and (b), two cases
corresponding to two kinds of control strategies are
investigated in this study. In case 1, only one
actuator corresponding to one localized area is
employed for the control of the structure, while in
case 2, there are two actuators corresponding to two
localized areas adopted to control horizontal
displacement response. The displacements and
accelerations in horizontal direction (X direction)
and vertical direction (Y direction) at the position of
sensors in each localized area are used as parts of
inputs to neural emulator network and
neuro-controller. Control forces act in horizontal
direction. Connection between structure and
hydraulic actuator is illustrated in Fig.5 (c). In order
to manifest results of simulation, 20 points shown in
Fig.6 are used as the evaluation points.

(3) Localized Identification for Localized Areas

The training of the emulator-emulator network is
a deliberate and challenging process, because it is
the basement of the control loop. The architecture of
the three-layer neural network used as neural
emulator network is presented in Fig.7.

The input layer includes the displacements and
accelerates in horizontal and vertical direction from
sensors in each localized area, actuator signals and
earthquake record at time step K. The number of
neurons in hidden layer is set to be two times of
those in input layer. The neurons in output layer
represent the forecast horizontal and vertical
displacement responses at the position of sensors in
localized areas at time step K+1. In case 1, the input
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Fig.8 Comparison between displacement response produced by
neural emulator network and calculated by FEM in case 1

layer includes 22 neurons, and in case 2, it includes
38 neurons. The number of neurons in output layer
of case 1 and case?2 is, respectively, 10 and 18.

The training data sets for the purpose of training
neural emulator network are constructed from the
numerical integration analysis results while the
structure-actuator coupled system is subjected to
random control signals and the first 15-second Kobe
earthquake record with 10% amplitude. The
numerical integration analysis is carried out with an
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Fig.9 Comparison between displacement response produced by
neural emulator network and calculated by FEM in case 2

integration time step of 0.005s. The training data
sets are performed with the data taken at the
intervals of the sampling period of 0.05s.

By means of the learning rule described above,
the training data sets performed above are enough to
train the neural emulator network in order to model
the dynamics of the coupled system and to generate
the dynamic responses of structure. Fig.8 and Fig.9
give the comparison between the displacements
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response determined from the numerical integration
analysis by FEM and those forecast by the trained
neural emulator network when the structure-actuator
coupled system subjected to Kobe earthquake
record with 10% amplitude and random control
signals between 0.1 and -0.1 in case 1 and in case 2,
respectively.

This indicates that the trained neural emulator
network has learned about the dynamic behavior of
the structure-actuator coupled system and is capable
of predicting the dynamic response in localized
areas. In other words, information from localized
areas is enough to predict dynamic responses by
multi-layer neural network.

In order to demonstrate the ability of learning of
the multi-layer neural network adopted as emulator
network, Fig.10 presents the relationship between
the average relative error and the times of iteration
of learning procedure. The average relative error is
defined as follows:

I J
55 -l
1=] =

o S

>3

where 1,J are the total number of patterns of training
set and the total number of output neurons of output
layer of neural emulator network , and x;, y; is ,
respectively, the output of neural emulator network
and the theory value from integration.

The result shows that the average relative error
can be guaranteed bellow 0.2% and neural emulator
networks in both case 1 and case 2 can be used to
predict the response of coupled system with the
same precision.

Fig.11 demonstrates the consumed time for
training neural emulator network in two cases, it is
shown that the training procedure is more
time-consuming in case 2 than it in case 1 because
the scale of neural emulator network in case 2 is
greater than it in case 1. Therefore, the concept of
localized control using multi-layer neural network is
advantageous to the realization of on-time control
because the training procedure of a small-scale
neural network is less time-consuming.

(20

(4) Training of Neuro-controller

A three-layer neural network called as neuro-
controller is proposed for control. Fig.12 indicates
the architecture of neuro-controller.
" The inputs to neuro-controller include the
displacements and accelerations in horizontal and
vertical direction from sensors in localized areas,
earthquake excitations and the control signals at the
last time step K. In case 1, the input layer includes
22 neurons, while in case 2, it includes 38 neurons.

25 -

g S Case 1
=

g Case 2
15

g

-:—5- 1

& 05

0 ;
0 1000 2000 3000

Times of lteration of Learning
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Fig.12 Architecture of Neuro-controller

The number of neurons in hidden layer is set to be
two times of those in input layer. The number of
neurons in output layer, which represent the
necessary control signals at the current time step, is
equal to the number of actuators employed. So there
is one neuron, 2 neurons in output layer in case 1,
respectively, in case 2. Taking advantage of the
strategy described above, the neuro-controller can
be trained and used to calculate the mnecessary
control signals for each actuator.

The control criterion defines the objective of
control. A realistic objective of structural control is
to reduce, but not completely eliminate the motion
of structure under external loads. It is difficult to re
duce the structure response to zero, a weak control
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Fig.14 Time history of displacement response in localized area 2
subjected to Kobe earthquake with 10% amplitude with
and without neuro-controller

criterion may be effective. In this study, the control
criterion is set to eliminate the displacements in
horizontal direction of the control points to a small
value of 0.5 cm. And the maximum capacity
(maximum of the possible control force) of the
actuators are defined as 80 tf. A neuro-controller is
trained with this control criterion and is applied to
the control of the structure-actuator coupled system.

(5) Analysis of Simulation Results

The performance of the trained neuro-controller
is illusirated through numerical simulations. As the
first example, the trained neuro-controller is
exploited to control the structure under the Kobe
earthquake record with 10% amplitude, which is the
same earthquake record as that used in the training
of the neuro-controller.

Fig.13 and Fig.14 show the comparison of time
history of displacements on control point with and
without neuro-controller in area 1, respectively, in
area 2. From Figl3, it can be seen that
displacement response in localized control area 1
where an actuator is located can be controlled
successfully basing on the concept of localized
control using neural network both in case 1 and in
case 2. Fig.14 shows that control effect of
displacement response in localized area 2 in case 1
is not as good as it in case 2 because there is no
actuator in localized area 2 in case 1, however, the
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Fig. 16 Comparison of maximum of displacement

displacement response in localized area 2 can be
controlled successfully by the actuator located there
in case 2.

This demonstrates that neuro-controller can
decide the necessary control signals based on the
information from localized areas. The results show
that the trained neuro-controller has learned to
control the displacement of control point and has
been able to realize the control criteria. These
results suggest that neural-network-based localized
vibration control may be a practical method for
large-scale structure system.

The displacement response in vertical direction of
point 11 in the middle of the span is illustrated in
Fig.15. It can be found that actuators in horizontal
direction do not magnify the displacement response
in vertical direction in the middle of the span of the
structure. In order to investigate the control
effectiveness of each actuator to entire structure, the
comparison of maximum of the displacement
responses in horizontal and vertical direction on
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evaluation points in the entire beam part of the
structure with and without control are indicated in
Fig.16. As shown in Fig.16 (a), it can be seen that
horizontal displacements in localized area 2 is partly
controlled by the actuator located in localized area 1,
but it is impossible to control the localized area 2 of
the structure to a desired level with a actuator in
localized area 1. Moreover, because there are no
actuators used to produce control force in vertical
direction, it is demonstrated in Fig.16 (b) that the
displacements in vertical direction cannot be
controlled. In spite of this, it is found that the
vertical displacement at any node is not amplified
due to the horizontal actuators. Because there is not
any basement used to support a hydraulic actuator
directly in the middle of the span, it is difficult to
produce control force directly by hydraulic actuator.
In order to control the vibration in vertical direction
in the middle of the span, another kind of actuators
such as active mass drivers (AMD) may be used. By
virtue of the motion of AMD, control force can be
produced both in horizontal and in vertical direction
according to control criterion. In order to realize
the full potential of neuro-control method for
large-scale structures, the localized control method
for Active Mass Damper (AMD) is need to be
studied with the consideration of the characteristics
of actuator and the control-structure interaction
(CSI). This is beyond of the scope of this study.

In order to investigate the possibility of carrying
out on-time control, the consumed times for the
purpose of on-line training neural emulator network,
neuro-controller and deciding control signals at each
sampling step by neural-controller in case 1 and
case 2 are shown in Fig.17. The simulations are
carried out on a VT-Alpha 533 workstation with a
RAM of 128MB and the CPU with speed of
533MHz. It can be seen that the consumed time of
each sampling step in case 2 is greater than it in case
1. Neural network with small scale is beneficial for
carrying out on-time control. In spite of this, the
largest consumed time in each sampling step in case
2 is far less than the sampling period of 0.05 second,
therefore on-time control can be carried out by
multi-layer neural network even in the case 2.

In this investigation, signals e (i =1,m), which
are electrical signals, are determined directly by the
trained neuro-controller and can be used as inputs to
actuators to determine the flow rates ¢, (i =1,m) of

the corresponding hydraulic actuators. The coupled
forces between actuators and structure are implicit
variables, which cannot be determined by
neuro-controller directly. In the studies of Hannsen
et al. ¥ and Xu et al.?, the control forces were
calculated by controller directly, however, because
the CSI and dynamics was not considered, the
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Fig. 17 Consumed times to on-line train emulator network and
to decide control signal in each sampling step
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Fig. 18 Coupled force between actuators and structure

useful control signals rather than control force can
not be determined directly. In order to realize and
implement those innovative control strategies for
dynamic hazard mitigation, the CSI and dynamics
should be considered.

The coupled forces between actuators and
structure, when the structure was subjected to Kobe
earthquake record with 10% amplitude, are shown
in Fig.18. It can be found that the control force is
less than the actuator capability. The supposed
abilities of actuators are enough to control the
vibration under Kobe earthquake record with 10%
amplitude

(6) Discussion on Adaptability of Localized
Neuro-controller
In the previous example the structure-actuator
coupled system is subjected to the Kobe earthquake
with 10% amplitude, which is the same earthquake
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Fig.21 Influence of actuator capability

record as that used in training of the localized
neuro-controller.

In the next example, we explore the performance
of localized  neuro-controller — when  the
structure-actuator coupled system is subjected to
ground shaking with high intensity. The localized
neuro-controller, which is trained with the Kobe
earthquake record with 10% amplitude, is employed
in this simulation too. This localized
neuro-controller is applied to control the
structure-actuator coupled system that is subjected
to the Kobe earthquake record with 20% amplitude.
The results of the analyses are shown in Fig. 19 and
Fig.20. It can be found that the trained localized
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Fig. 22 Time history of displacement response of in localized
area 1 subjected to Ei-Centro earthquake record with
20% amplitude and controlled with neuro-controller
trained on Kobe earthquake record with 10% amplitude
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Fig. 23 Time history of displacement response in localized area
2 subjected to El-Centro earthquake record with 20%
amplitude and controlled with neuro-controller trained
on Kobe earthquake record with 10% amplitude

neuro-controller has done its best to control the
displacement response too.

And the issue of the effect of the actuator
saturation is considered here. Fig.21 gives the time
history of displacement response on the control
point in localized area 1 of the structure-actuator
coupled system subjected to Kobe earthquake
record with 20% amplitude and controlled by
neural-controller when actuators with different
saturation capabilities of 60 tf and 80 tf are used
respectively. It can be found that the maximum
capability of actuators influences the control
efficiency, but the neural-controller does its best to
control the structure-actuator coupled system.

This demonstrates that the performance of the
neuro-controller trained using the training set due to
Kobe earthquake with 10% amplitude is also very
efficient for the earthquake record with different
amplitude.

As a last example, the performance of the
neuro-controller trained above for different kind of
earthquake record, is demonstrated. Not loss the
generality, the numerical simulation is carried out
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for the load case when structure-actuator coupled
system is subjected to the El-Centro earthquake with
20% amplitude. The results are illustrated in Fig. 22
and Fig. 23.

Although there are a lot of differences in the peak,
shape, and amplitude between the EL-Centro
earthquake with 20% amplitude and the Kobe
earthquake with 10% amplitude which is used to
train the neuro-controller, the numerical simulations
indicate that the neuro-controller is as effective in
controlling the coupled structure when it is
subjected to El-Centro earthquake record, as it is in
controlling the structure when the structure is
subjected to the earthquake record which the
neuro-controller was trained on. This demonstrates
the fact that the neuro-controller learns to control
the motion of the coupled structure, regardless of
the source of excitation if actuators with enough
capability are designed.

S. CONCLUSION

A new method of localized active control for
large-scale or complex structures using artificial
neural networks is proposed in this paper. In this
proposed control method, a neuro-controller
replaces the control algorithm of conventional
localized control method, which is usually based on
the method of model reduction and generalized
singular linear quadratic algorithm. And the
control-structure interaction (CSI) and dynamics of
typical electro-hydraulic actuators are considered.
Throughout the numerical simulations the following
conclusions may be made:

(1) A neural emulator network can be trained to
forecast the dynamic response in localized areas of
large-scale structure according to partial information
(displacement and acceleration) from each localized
area, earthquake record and control signals. In other
words, localized identification can be carried out by
multi-layer neural network when the control-
structure interaction and dynamic of actuator is
considered.

(2) During the procedure of vibration control of
coupled system under earthquake excitation, based
on the trained neural emulator network, a
neuro-controller can also be trained to decide the
necessary control signals according to partial
information from each localized area of coupled
system. The dynamic response of each localized
area can be controlled by the actuator located in the
area with neuro-controller.

(3) To large-scale or complex structures,
localized vibration control by using multi-layer
neural network is a promising method under
earthquake when dynamics of actuator is considered.

In localized vibration control problem, less sensors
and less computation cost are necessary. Localized
vibration control is an economical method for
large-scale or complex structure. And on the other
hand, because the scale of neural network used in
localized vibration control is small, the procedure of
training the neural emulator network and calculating
the control signals are less time-consuming. This
kind of advantage is very useful for on-time control.
(4) The method of localized vibration control
using multi-layer neural network is adaptable for
earthquakes different from it used for training the
neuro-controller. The learning capabilities of the
neuro-controller make it an adaptive controller.
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