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To effectively and efficiently utilize steel/FRP plates or sheets in strengthening civil infrastructures, a design
strategy integrating the FRP properties and composite structural behavior needs to be adopted. The interfacial stress
transfer behavior including debonding should be considered to be one of the most important effects on the composite
structural behavior. In this paper, varieties of nonlinear interfacial constitutive laws, describing the pre- and post-
cracking behaviour of FRP-concrete interface are introduced to solve the nonlinear interfacial stress transfer problems.
Expressions for bonding capacity, interfacial shear stress distribution, initiation and propagation of interfacial crack are

derived analytically.
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1.INTRODUCTION

To effectively and efficiently utilize the steel/
composite plates or sheets, a design strategy
integrating the properties of strengthening materials
(steel/FRP plates or sheets) and composite structural
behavior needs to be adopted. In strengthening
deteriorated concrete structures, different failure
modes have been reported”. There are several local
failures due to interfacial fracture along FRP-
concrete interface which frequently increase design
constraints. Therefore, it is important to understand
deeply the nature of bonding and debonding
mechanism.

The interfacial stress distributions vary
theoretically with thickness, elastic modulus and
interfacial concrete behavior etc. Because of the
complexity of composite and nonlinear interfacial
behavior, the interfacial stress distributions are
complex and also difficult to determine accurately
by experimental investigation. Téljsten” presents the
use of a linear and nonlinear fracture mechanics

(NLFM) approach for the plate bonding technique.
A derivation of the shear and peeling stresses in the
adhesive layer of a beam with a strengthening plate
bonded to its soffit and loaded with an arbitrary
point load are presented in another literature by the
same author”. Roberts? describes a two-stage
analytical procedure for determining the distribution
of shear and normal stresses in a variety of adhesive
joints subjected to bending and axial forces. As for
reinforced concrete beams, Roberts™ gives a simple,
approximate procedure for predicting the shear and
normal stress concentrations in the adhesive layer of
laminate beams. Brosens and Gemert® derive
expressions for the anchoring capacity in both the
serviceability and the ultimate limit state. The
nonlinear concrete properties describing the pre- and

post-cracking behavior are considered.
Triantafillou”  presents  fracture  mechanics
procedures for mechanisms associated with

premature bond failures of FRP-concrete interface.
The implementation of these procedures in practical
design  equations is also  demonstrated.
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Saadatmanesh and Malek® develop a closed form
solution for calculating shear and peeling stresses at
the interface of the FRP plate and adhesive layer.
Shear stress concentration in the adhesive layer
around the flexural cracks has been included in the
study. Malek et al.” present a method for calculating
shear and normal stress concentrations at the cutoff
point of the plate. The effect of the large flexural
cracks along the beam has also been investigated.
Wu and Yoshizawa'” adopt the fracture energy
approach to predict the composite behavior of
reinforced concrete specimens strengthened with
FRP sheet, and to explain the fact that less or no
frictional and interlocking effects along the FRP-
concrete interface could be observed. The predicted
results such as load-deformation relationships and
crack width are in close agreement with the
experimental results. It is worth mentioning that Wu
and Yoshizawa are the first to point out the
softening behavior of concrete in shear based on the
experimental observations. Yin and Wu 'V carry out
a numerical simulation for simple shear and flexural
tests with the FEM to verify the interface crack
model with strain softening and the composite
behavior of FRP-strengthened structures including
debonding and concrete cracking propagation. It is
found that the interfacial fracture energy is the most
important parameter for the bond behavior and the
ultimate load can be expressed in terms of the
fracture energy. Recently, many studies have been
carried out to investigate the FRP bonding and
debonding mechanism through the simple shear
test'? ¥ 9 Kamiharako et al.'? ™ propose the
constitutive model for simulating bonding and
debonding behavior of FRP sheet based on the
experiment of continuous fiber sheet (CF sheet)
bonded on concrete. Sato et al. ' develop a bond-
slip-strain relation for carbon fiber sheet based on
the bond characteristic and demonstrate its
applicability to simulate the actual bond behavior.
Through their research works it is found that the
shear stress-slip relationship with a softening
behavior can represent well the initiation and
propagation of interfacial cracks.

Although a lot of researches have been made as
reviewed above, the theoretical problems of
interfacial stress transfer in steel plate- and FRP-
strengthened structures are not well solved until
now. The reason should be imputed to the
complexity in mathematics when softening behavior
is considered. A simpler case (adhesive bonded

joint) is analyzed here to gain insight into the
mechanics of FRP-concrete interface. Stresses in
adhesive bonded joint are determined by the
strength of material approach, where NLFM
approach is introduced. Closed-form solutions are
obtained for four cases of assumed interfacial stress-
slip law. The post-peak softening is shown to lead to
localization of slip and interfacial shear fracturing
propagation with a process zone of finite length.
This zone propagates along the interface during the
loading process, causing the distribution of
interfacial shear stress to become strongly
nonuniform. The solution to this simpler problem
brings some good understanding of the mechanics
of FRP-strengthened structures that is useful for the
FRP reinforcing design.

2. FUNDAMENTAL INTEFACE MODELS

FRP-strengthened concrete structures when
loaded in bending and shearing can fail in several
ways and show very complicated failure phenomena.
These failure types can be grouped into six distinct
categories: (a) steel yield and FRP rupture; (b)
concrete compression failure; (c) shear failure; (d)
debonding of layer along rebar; (¢) delamination of
FRP sheet; (f) peeling due to shear crack. Among
these, the most complicated failure mode for FRP-
strengthened structures is the delamination due to
the unstable propagation of interfacial debonding
initiating from the flexural or shear crack of
concrete and/or various kinds of interlaminar defects.
Therefore, the fracture mechanics based on energy
consideration is considered to be very powerful for
evaluating the load-carrying capacity and other
composite behavior of the FRP-strengthened
structures.

The adhesive bonded joint analyzed, shown in
Fig. 1, may be thought as a simple and typical
model of FRP-strengthened structures to understand
the stress transfer and debonding behavior. The
adhesive layer is mainly subjected to shear (mode
I fracture). Thickness and width of the two layers
are t, and b, for the upper steel/FRP laminate, and
t, and b, for the lower concrete plate, respectively.
The Young’s moduli of the steel/FRP laminate and
the concrete plate are E, and E,, repectively. L

is the bonding length. Before starting the derivations
we make the following assumptions for simplicity
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Fig. 2 Deformation and stresses of bonded joint

of the problems:
#The adherents are homogeneous and linear elastic;
¢The adhesive is assumed as a medium of
negligible thickness and only transfers the shear
stress from FRP to concrete;
4 Bending effects are neglected;
The normal stresses are uniformly distributed over
the cross-section;
¢The thickness and width of the adherents are
constant throughout the bond line.
Considering the element shown in Fig. 2, the
equations of equilibrium for adherents can be
written as ‘

d
Lo o0 M
dx 1,
otb, +0,t,b, =0 2

where T is the shear stress in the adhesive layer.
The constitutive equations for the adhesive layer
and the two adherents are expressed as

T=f(9) €)

where O is defined as the relative displacement
between adherents & =u, —u,.

g, = E} dul 4
dx
d

o, =E,—2 )
dx

Substituting equations (2)-(5) into equation (1)
yields, by introducing two parameters of local bond
strength T, and interfacial fracture energy Gf

a’s 2G
—-—LNf(@®)=0 (6)
dx T,

2

T, dd

O, =——=" 7
Y26\ dx @

where

2

T

ol (L, b ®)
2G, \Et, bEyt,

It should be noted that equations similar to
equation (6) have been successfully used to model
the bond-slip mechanism between embedded
reinforcing bars and concrete'™ 1% 1719,

The four models of stress-slip relationship
(T ~98), as shown in Fig. 3, which are considered to
be possible in representing the nonlinear interfacial
behavior, are introduced here. It is noted that the
area below the T—0 curve represents interfacial
fracture energy of mode II, G, which is defined as

the energy required to bring a local bond element to
shear fracture (debonding).

Model

2

T
_f
£(8) = 2, 0 when 05656f

0 when 6>6f

As shown in Fig. 3a, the stress-slip relation is
linearly ascending before the occurrence of
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interfacial fracture and the value of shear stress
suddenly drops to zero when the value of slip
exceeds O, without consideration of softening

behavior.
Model 1
T,
—0 when 0=08=9,
1
Y (s, -5)
f(8) = 6/.-6 when 61<656f

&, -9,
0 when §>6f

As shown in Fig. 3b, the stress-slip relation is
linearly ascending when the value of slip is smailer
than 8,. After the occurrence of interfacial fracture

the stress-slip relation is linearly descending in a
range of &, to O, . And the value of shear stress

reduces to zero when the value of slip exceeds & Iy

Model I

I PR e
£8) = f(6)~1:f(1 2, 6]when 0=8s9,
0 when & >3,

Fig. 3c, which is a good approximation to model
I by omitting the ascending linear part because
d, is often much less than §,, shows a linearly

descending stress-slip relation when the value of
slip is smaller than & ;- And the value of shear

stress reduces to zero when the value of slip exceeds

5,

Model IV

£) L
=T, eXp| -~ ——
r %P G,
As shown in Fig. 3d, the stress-slip relation has
an exponential softening behavior and the value of
shear stress gradually descends to zero with the
increase of slip.

3. THEORETICAL DERIVATIONS

In what follows the four models of stress-slip
law are introduced to derive the shear stresses along
the length in the bond zone in detail.

(1) Model [ : linear interfacial shear stress-slip
relationship with a sudden stress drop
Substituting the relationship as shown in Fig. 3a

for the case of 8 <8  into equation (6), we obtain

d*s

e -N8=0 ©)

The similar bond-slip relationship between
reinforcing bars and concrete has been used by
Yoshikawa and Tanabe'®, Wu'” and Wu et al.'®.
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The boundary conditions can
follows

be given as

o,=0at x=0,

Gl=~f-)—at x=1L
bltl

(10)

The solution of equation (9) for relative shear
displacement, shear stress of adhesive layer and
normal stress of laminate can be written in the form

8 = Acosh(dx) + Bsinh(Ax) (11)

= —L_[dcosh(hx) + Bsinh(wx)]  (12)
2G,

2

Y [4sinh(hx) + B cosh(uo)] (13)

2G M,y

O, =

The unknown constants in above equations can
be solved by substituting the boundary conditions

2G
A="1 —fgi——, B=0
T,” b;sinh(AL)

(14)

Rewriting equations (11), (12) and (13) yields

_2G, Phcosh(hx)

d 2 - (15)
T,° by sinh(AL)
e P cosh(hx) 16)
b, sinh(AL)
__Psinh(Mx) an

' by, sinh(AL)

when T=71, at x= L, P reaches its maximum
value

P =’Efb1

max

tanh(AL) (18)

Substituting equation (18) into equation (16), we
obtain interfacial shear stress distribution at
maximum load value of P

__ cosh(lx)
S cosh(AL)

For large values of L, equation (18) converges
to

Crack propagation occurs when 8> 9. It can

be studied by decreasing the values of bonding
length L.

(2) Model II: T-98 relationship with linearly
ascending and descending branches
Substituting the relationship as shown in Fig. 3b

into equation (6), we obtain

d*$

2
X

-2\28=0 for 0s8<9,

(19

d*d

x2

+,70 =18, for 3, <8=5, (20)

where

)\12=k22Gf =3f_ 1 + b1
o, & \Ep bE,

2G,
(f)f -0,);

T 1 N b, )
6, -8\ Eyty bEx,

For 0<&=<39,, the solution of equation (19)

A=W

can be derived as follows with similar form of
equations (11), (12) and (13)

& = Acosh(h,x) + Bsinh(h,x) 21

T= Z—f[A cosh(Ax)+ B sinh(?xlx)] (22)
1

2

A
o, =~ [ Asinh(hx) + Beosh(h,x)|(23)

26 1\
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Moreover, for 6, <8=9 s+ the solution of

equation (20) can be derived in the form

8 = Csin|h, (x - L +a)] )
+Dcos[k2(x—L+a)]+6f @9

Y {csinfh, (e~ L +a)]
5, -0, (25)

+Dcos[h, (x ~ L+ a)]}

T=-~

o - 1,.27\2
b2G W
-Dsin[A,(x - L + a)}}

{C cos[h,(x - L +a)] 26)

where a is the softening zone (micro-crack) length.
The constants 4,B,C and D in above equations
are determined by the substitution of boundary and
continuous conditions. The conditions can be

written as
o,=0 at x=0 27
O, is continuous at x =1L ~a (28)
d=8 ort=1, at x=L-a (29)
P
O, =—atx=1L (30)

tlbl
Therefore, we have

A= O
cosh[h, (L - a)]

B=0

C= %—161 tanh{A, (L - a)]

2
D=5 -8,

Finally, we obtain for 0 =93 <9,

5=, cosh(h, x) 31)
cosh[A, (L - a)]

cosh(h,x) 32)
7 cosh[M (L -a)]
Ty . sinh(Ax) (33)

o, =
t,h, cosh[h (L -a)]

andfor 8, <8=9,

d=(5, - 61){%tanh[7xl(L —-a)]x

sin[h, (x - L + a)Fcos|h, (x - L + a)l+ i }
5, -0,

(34
T=-T, {%\;——2— tanh[A, (L —a)]sin[h, (x - L + a)]

—cos[A,(x-L + a)]}
(35)

o, = Y {?}%2— tanh[A, (L —a)]cos[h,(x = L +a)]
271 1

+sin[A,(x - L + a)]}
(36)

Substituting equation (30) into equation (36), we
obtain

’cfbl A,
P = ———!—=tanh[\, (L - a)]cos(h,a)
Ay, | A (37

+ sin()»za)}

)

It is obvious that P reaches maximum value

when i—P =0 for general case or for simplicity,
a

when T=0 at x =L for large value of bonding
length. Therefore, a at maximum load can be
found from the relation

! A tan(A,a)

—— = (38)
tanh[7 (L -a)] 7y

32(32s)




Substituting equation (38) into equation (37), we
obtain

T d

b
P, =111 "1 _tanh?[A (L -a)|+1
S {5f_51 anh’[1,(L - )] }

-sin(A,a)

(39

The problem in this model is that a is defined
as an implicit function and can only be found by
iteration. However it can be shown that for large
values of L, equation (39) converges to

which is the same with model I .
Crack propagation occurs when &> 8. It can

be studied by decreasing the values of bonding
length L. For large values of L, by letting
0=20, at load end x =L in equation (34), we
obtain the maximum value of a that is associated
with the initiation of macro-crack (debonding)

(3)Model Il: T3 relationship with only
linearly descending branch
As for this model, there is no relative shear
displacement until the maximum shear stress T,

occurs at load end x =L . And the relative shear
displacement increases gradually with the maximum
shear stress shifts from load end to the other end of
laminates. Substituting the relationship as shown in
Fig. 3c for the case of 8 <8, into equation (6), we

obtain

d*o 2G
S+ Ny =N —L (40)
dx T,
The solution of equation (40) for relative shear
displacement, shear stress of adhesive layer and
normal stress of laminate can be written in the form

8 = Asin\[x - (L - a)]

+BcosA[x - (L ——a)]+%€f— 1)
Ts
sz { .
T=— Asin A\[x - (L —a)]

, “2)

+ BeosMNx - (L - a)l}

0, = —2 {4cosMx - (L - a)]

2G M, 43)

~BsinA[x - (L -a)]}

At the cross section with no interface slip (no
shear  micro-crack), the interfacial  shear
displacement and normal stresses in the steel/FRP
and the concrete are equal to zero. At micro-crack
tip we always have T=7T,, 0=0. And we can

also infer from equilibrium of steel/FRP element
that o, =0 at micro-crack tip. Assuming that
micro-crack (softening zone) length is a, we can
write the boundary conditions as follows
0,=0, 0=0at x=L-a 44
Therefore, the unknown constants 4 and B
are obtained as

2G,
A=0, B=-—"L
Ty

Substituting these constants into equations (41)-
(43) leads to

_29 0 coshx-(L-a)]}  (49)
Ts

T="1, cosMx - (L -a)] (46)

o, = —T—f—sin Mx - (L -a)] 47
Y,

1

Therefore, interfacial shear displacement, shear
stress and normal stress in steel/FRP laminate are
related with a . The value of @ can be determined
by the load value of P atload end. According to

33(339)



We obtain

'cfbl .
P= y sin(ha) (48)

I
If Lza, = BT then P reaches maximum

at a=a that is

max ?

P, =12
max }\‘

(49)

Andthen t=0 at x=L.

If L<a,, then P reaches maximum at
a = L, that is
T ,.bl )
P,y =—1=sin(AL) (50)

Then T=7,cosAL =0 at x=1L.
Crack propagation occurs when &> & s~ It can

be studied by decreasing the values of bonding
length L. a is associated with the initiation of

max

macro-crack (debonding).

(4) Model IV: t-9 relationship with only
exponential softening branch
Substituting the relationship as shown in Fig. 3d
for the case of 8 <&, into equation (6), we obtain

QY

i T.
-N —Lexp|-—L58|=0
T, G

Similar with model I, we have boundary
conditions

0,=0and §=0at x=L-a

and solving equation (51), we obtain

2G
6=
T,

L infcosh[A(x - L +a)]}

(52

_ ’Iff.
" Toshh(x-L +a NS &)

o, = {tf—tanh[x(x “L+a)] (54

1

Again, interfacial shear displacement, shear
stress and normal stress in steel/FRP laminate are
related with a . The value of a can be determined
by the load value of P atload end. According to

p
Oy=—at x=1L
11

We obtain

T,b,
P= . tanh(ha) (55)

Therefore, P
a =L, thatis

reaches maximum value at

(56)

max

T,b,
P. = N tanh(AL)

which is the same as equation (18). So for large
values of L, equation (56) converges to

Pmax =
A

Let a=L in equation (53), we obtain
interfacial shear stress distribution at maximum
value of P

‘Iff

S S
[cosh(Ax)]?

Crack propagation occurs when P attains 97%
of P, - Taking into account that tanh(2)=0.97,

following equation can be derived

3
g
>
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4. NUMERICAL RESULTS

(1) Shear stress distribution and crack

propagation along interface

Based on above theoretical derivations, we first
discuss numerically on shear stress distribution and
crack propagation along interface of a single-lap
pure shear test as shown in Fig. 1. Different
following stages of shear stress distributions are
represented in Fig. 4, which are associated with
different models of stress-slip law.

As shown in Fig. 4, section [ is called the
elastic stress state, and there is no interfacial crack
or micro-crack (softening zone) along FRP-concrete
interface. Section I is called the softening state,
and the interface is micro-cracked but still able to
transfer shear stress. In section Il an interfacial
crack (debonding) without stress transfer occurs.
The detail discussion may be made as follows.

» Model [ At small loads, there is no interfacial
debonding or softening along FRP-
concrete interface as long as the
interfacial shear stress at the end

x =L isless than T ;e The maximum

transferable force appears when the
shear stress reaches the value T ; at

the end. After this the debonding at the
end appears and the crack propagation
happens, the shear stress peak (bond
strength) T, moves towards the other

end of the bonded joint, and the whole
interface is in an elastic-debonding
stage.

» Model II At small loads, there is no interfacial
debonding or softening along FRP-
concrete interface as long as the
interfacial shear stress at the end
x =1L 1is less than T,. After shear

stress attains T, (8=29,) at the end,

the softening appears at the end, the
whole FRP-concrete interface is in a
combined elastic-softening stage, the
load P increases with the increase of
softening zone length a, and the
maximum transfreable load appears at
this stage. Debonding initiates when
the softening zone length attains a .

(=08, and T=0 at x=1L). After

this the crack propagation happens, the
whole FRP-concrete interface is in a
combined elastic-softening-debonded
stage, and the shear stress peak T,

moves towards the other end of the
bonded joint. At certain moment, the
shear stress peak T, reaches the end

x =0 and the whole interface is in the
softening-debonded stage. After this,
the transferable load decreases until the
joint completely fails.

» Model Il At small loads, the softening zone
exists and the whole FRP-concrete
interface is in a combined elastic-
softening  stage. The  maximum
transferable  load  appears  and
debonding initiates when the softening
zone length attains a,, (8=0, and

=0 at x=1L). After this the crack
propagation happens, the whole FRP-
concrete interface is in a combined
elastic-softening-debonded stage, and
the shear stress peak T, moves

towards the other end of the bonded
joint. At certain moment, the shear
stress peak T, reaches the end x = 0,

and the whole interface is in the
softening-debonded stage. After this,
the transferable load decreases until the
joint completely fails.

e Model IV This case is simmilar with model III,
but the shear stress distribution is
different. At small loads, the softening
zone exists and the whole FRP-
concrete interface is in a combined
elastic-softening stage. The maximum
transferable  load  appears  and
debonding initiates when the softening
zone length attains a_, (t=0 at

x=L)  After this the
propagation happens.

crack
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Fig. 4 Different crack propagation mode at simple shear test
Crack propagation
. (2) Load-carrying capacity
o I For large values of stress transfer length L, five
T,b
. I
Crack propagation to the end of laminate models assumed give a same formula B, = n

It can also be written as

(b) Model I
T 2G,
I f ‘-]h Pmax = bl 1 ! b
>l .
A<Bpay Et  bEt,

Before interfacial crack (P<P,,,)
It can be concluded that load-carrying capacity
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of the four T—38 models is the same if the
interfacial fracture energy G, is taken as the same

value. It is found that P, is independent of T,
and &, .

(3) Effective stress transfer length

The effective stress transfer (bond) length [, is
defined as the length needed to attain 97% of P_,_
formodels I, II and IV, and is defined as the
length needed to attain P, for models IIl. Taking
into account that tanh(2)=~0.97, following
equations can be derived

L, =% for models I and IV;

| —as —1~1n A, + A, tan(h,a)

., for model II,
2N, A=A, tan(Ah,a)

8, -d
where a =—1—arcsin 0.97 |1 ;
2 f

e

I - for model T
2A

Following gives a numerical solution for the
case of one layer carbon FRP sheet bonded on a
concrete plate. The material properties and sizes of
structure model are given as follows:

t, =0.111mm, ¢, = 60mm, b, =100 mm,

b, =300mm, L =150mm, E, = 2.3x10°MPa,
E, =3.25x10* MPa, 6]‘. = 0.2 mm,
6, =0.02mm, T, = 45MPa, G, =0.45N/mm.

The numerical calculation results of effective bond
length are 67.2mm, 48.5mm, 52.8mm,
67.2 mm, respectively. The computation value of
maximum load is 15121kN.

The relation between the maximum transferable
load (load-carrying capacity) and interfacial fracture
energy, the relation between the maximum
transferable load and thickness of FRP, and the
relation between the maximum transferable load and
Young’s modulus of FRP are shown in Fig. 5-7,
respectively for the case of [ >1,. In Fig. 8, the

maximum transferable load is expressed as a
function of total bond length L . Variations of
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effective bond length with interfacial fracture energy,
thickness of FRP and Young’s modulus of FRP are
shown as in Fig. 9-11, respectively. It is found that
P and [, increase with the increase of

max

interfacial fracture energy G, and FRP stiffness

(FRP thickness 7, times FRP Young’s modulus
E).

5. CONCLUSIONS

In this paper, a nonlinear fracture mechanics
approach has been introduced to derive theoretical

solutions on interfacial stress transfer of the
adhesive bonded joint. The nonlinear behavior is
modeled by using four kinds of assumed shear
stress-slip curves. The numerical simulations
indicate that this method can be used to predict
fracturing procedure such as initiation of micro-
cracking and cracking (debonding), cracking
propagation, shear stress distribution and load-
carrying capacity along laminate-concrete interface.

The following conclusions can be made.

1) The derived expressions for the maximum
transferable load (load-carrying capacity) have a
same form, which is only dependent on the value
of interfacial fracture energy, thickness and
Young’s modulus of laminates, even different
stress-slip models are considered, if the bond
length is relatively large (larger than effective
bond length).

2) Load-carrying capacity increases with the
increase of interfacial fracture energy, thickness
of laminate and Young’s modulus of laminate.

3) Effective bond length is dependent on the value
of A, which may be varied by the different bond
strength (shear stress peak) T, interfacial

fracture energy and shear stress-slip curves.
Effective bond length increases with the increase
of interfacial fracture energy, thickness and
Young’s modulus of laminate.

4) Shear stress-slip curves significantly affects the
debonding propagation, shear stress distribution
along the interface, and elastic-softening-
debonding region and effective bond length.

5) The derived solutions can be used to predict the
debonding behavior and debonding failure of
steel/FRP strengthened concrete structures by
comparing with the experimental results.
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