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A variety of cable structures are supposed to be analyzed in the displacement method. In this study,
the elastic catenary is considered to be utilized as a displacement-method element. The flexibility
relations are studied, in relation with its potential, and especially on the singularity exhibited in a
veritically hanging state. A counter treatment of those singular states is presented to deal with any
configurations of a cable structure. In the solution procedure, one iteration method is introduced
to obtain the tension components in each of the elements at any nodal positions, both theoretically

and in numerical examples.
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1. INTRODUCTION

Practically, a pretensioned cable is replaced
into the simple tension element. At the same
time, for accuracy, there have been presented the
sag-embodied elements based on the parabolic
cable or the catenary cable.®& 1)-4) While for a
mere cable assembly there exist certain analyses
categorized into the force method, the displace-
ment method has a potential capability to deal
with a wide variety of “cable structures,” such as
a mixture of cable and beam members.

In a displacement method, the nonlinear equi-
librium equations are iteratively solved for the
nodal displacements. If the hanging cable ele-
ment is employed, an additional difficulty is en-
countered. The spatial configuration is expressed
in a nonlinear parametric form of tension compo-
nents. That is, the nodal forces of each element
are implicit in terms of its nodal coordinates.
This compatibility problem has to be solved nu-
merically for all the cable elements, on each cycle
of the global iteration.

So far as subjected to a uniform weight per
unit natural length, the elastic catenary is exact
for any tensions. But, when the cable is ver-
tically hanging, with absence of the horizontal
tension component, the characteristic relations
become somewhat singular. In this study, after
their degrees are clarified, a treatment of those
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singular states is presented for a complete utiliza-
tion as a displacement-method element. Finally,
the fractional correction method® is verified to
hold a consistent convergence in the compatibil-
ity problem, even if the singularity is involved.

2. SOLUTION OF
A SUSPENDED CABLE

Consider that one end of a flexible cable,
length ! and extension rigidity F A, is anchored
at the origin of spatial rectangular coordinates
{z, y}. With material coordinate s taken along
its natural length, as shown in Fig.1, the spa-
tial configuration is described by a Lagrangian
expression {z(s), y(s) }. It is assumed that ex-
ternal forces are prescribed with respect to s-
coordinate: distributed forces are denoted by
q(s) ={4z(s), gy(s)}; and concentrated forces,
by P = { P, P, }, with acting point s.

In a deformed configuration, an element of
initial length ds becomes to a length d5 =
V(dz/ds)? + (dy/ds)?ds. The magnitude of
tension is related to the unit elongation by

T(s) = EA ( (%)er (%)2—1) 1)

Since tension T is acting into the tangent direc-
tion on the cable (moment equilibrium), its spa-
tial components are written as
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Fig.1 Isclated cable under a general loading

dz

T(s) s
{ T,(s) } - (Z—ZYT-i- <%)2 ;_yg (2)

On the other hand, the equilibrium equations
for element ds are given by

d
E;{va Ty} + { ¢ ¢} = {0, 0}
By the integration with inclusion of the concen-

trated Py = { P, Py }o, the tension components
are written in the form
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in which {Toz, Toy} and {711, Tiy} are tension
components at s = 0 and [, respectively.

Introducing T(s) = 4/ Tx(s)?+ Ty(s)? and
V(dz/ds)? + (dy/ds)? = 1 + T(s)/EA into
Eq.(2), we have derivatives {dz/ds, dy/ds} ex-
pressed in terms of the tension components.
After the integration, the equilibrium curve cor-
responding to tension distribution (3) is written
as

{ zgg }:/05( Tx(s)zl_*_ T,(s)?

w50 e @
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This solution3) is in a parametric form of tension
components at one cross-section, {Toz, Toy} or
{Tiz, Tiy}. If the cable is supported at one end
only, the tension components at the other end
are directly known from the mechanical condi-
tion. But, if the other end also is fixed at an-
other point, say (= {Z, §}), we are faced with
a compatibility problem to find T'j(= {Ti, Tty })
satisfying (T, 1) =% and y(T';, 1) = 7.

In a displacement-method analysis, the latter is
the case. It is usual for such algebraic equations
to be solved iteratively upon the tangent coeffi-
cients. From Eq.(3), 6T(s) = 6T = 6T;. By
differentiating Eq.(4) with respect to {Tj;, Tiy},
we have

bz = [Q(T

1) 16T (5a)

l
Q@) = { [ e ds] )
(1 1 T(s)T(s)"
[As)] = (|T(s)‘ +EZ) U= Trgp

(5¢)

The quadratic form of integrand [ A(s)]is written

as

STT[A(s) 6T = -1_(5T,§z +6T2)

+IT(1)|3{T()5TM T.(s) 6Ty} (6)

If T(s) # 0, 6TT[A(s)]6T; > 0 for any 6T (#
0). Then, matrix [Q ()] also is positive defi-
nite, if T'(s) # O on the entire length, 0 < s < 1.

By the symmetry of [Q (Ty)], differential
§F = ;(T))T 6T is path-independently inte-
grable. Thus, we have a complementary potential

F(Ty) = /Ol{ms)x + %]ds ™)

By the positive definiteness, this scalar function
is convex. Then, by adding linear term —& T,
we have the total potential

WHT) = F(T)) - (3T +3T,)  (8)
which has its minimum value at the unique
solution of ;(T)) = z.

3. ELASTIC CATENARY

Let the preceding expressions be specified for a
uniform self-weight, say w, acting into y-direction
(see Fig.2). By the actual integration of (4) for
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Fig.2 Elastic catenary element

{T:(s), Ty(s)} = {Tos, Toy — ws}, we have

z(To;s) = %
W TR+ (Toy - ws)? + (Toy — ws)
v, (9a)
Toys — ES
y(Toss) = TA

1
o {VIEH TG — T+ (T, — ws )
(9D)
This is the “elasic catenary,” which has been, ac-
cording to Ref. 1), presented by Rough®) in 1896.
The tangent flexibility matrix and the total

complementary potential are eventually obtained
as follows :

[Q(To)] = [sz Quy ]

Quz Quy
1 (10)
Qxa:_'E_E
1 To + To Ty Ty
{1 —_ v v Y
+w{og(Tl+sz)+Tl To} (11a)

o T (1 1
Qoy = Qo = = = (Tn Tz) (11b)
— ! TDy le)
Quy = EA+ (',:I;(')"—-?l (11¢)
" _ 1 (s To +T0y>
W (7o) = 5o{ T log T4, ) Tt

_leTl} QEA{TO:L' w(TO:; _I’lg)}

- {fﬂx+ysz} (12)
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Fig.3 Vertcally hanging cables

where {11y, T1y} = {Tow, Toy} — {0, wl}, To =

,/T02x+T02y and T} = ,/T,g—t—T,z.

Since no restrictions have been made upon the
sag-to-span ratio, the above expressions are valid
to any deep deflections. However, a vertically
hanging state with T,(s) = 0 is peculiar. The
flexibility relations are here examined for those
vertical states. As shown in Fig.3, they are sep-
arated into three cases: i) Toy > wl; ii) Toy < 03
and iii) 0 < Toy < wl. For Ty (s) = 0, expression
(9a) directly gives z(s) = 0. For simplicity, let
y(s) be argued at s = ! only. Term Tp — 17 =
|Toy| = |Toy — wi| has different values for the
three cases, Toy — (Toy—wl), =Toy+ (Toy —wl)
and Toy + (Toy — wl). Expression (9b) finally

yields the followings :
wl
(%)}

1
l {1 + i
1 wl
: {"” FA (TW 2 >}

2 Toy ) l ( wl )
( w )t Ea T3
for case 1), ii) and iii), respectively. Those y; are
exact for the three states in Fig.3. By the actual
integration of §W™* = (y(Thy) — §) 611y, we can
see potential W*(T'o) given by (12) also correct.

In the tangent flexibility matrix, (10) and (11),
term log{(To + Toy)/(T1 +T1,)} is to be focussed.
If T;(s) = 0, this expression is indeterminate for

Toy < 0 (so Tjy < 0), for instance. But, the
following expansion is possible: since

VIZ + T+ Ty
\/ Ta? + T(?y + TO@

T2+ T2+ Ty

yr= (13)

MTz +T02y - Toy

\/Tg"l"jﬁ"le




1/T3+Tl2y*“le _ \/T%‘{‘Tl?g“l—!ly
JEAT T | JTEATE,~To,

we have

TO + TOy _ Tl - le

log (Tl +T1y) = log (To — TOy) (14)
The latter log{(T; — Tiy)/(To — Toy)} yields a
definite value for Tp, < 0. On the contrary,
the former expression is valid for Tp, > wl.
But, if 0 < Tpy < wl, the cable has a point
of {Ty(a), Ty(a)} = {0, 0}. In this case, the
derivative 8z;/0T}, becomes infinite. So, we have

M1 To l ]
_log(___q__.)%,_. 0
i): [Q]= w Toy — wl FA l
i 0 FA
M1 Toy — wl l )
Liog (22 4 o
i): [Ql=| ¥ Toy EA ;
I 0 FA
S 0 }
i) : [Q)]= 2 l (15)
L 0 w+EA

The singularity is seen only in the element tan-
gent flexibility. Even if the case iii) happens in
iteration for the compatibility, only to leave for
a normal state, the infinite log{(ZTo + To,)/(T1 +
Tiy)} can be temporarily replaced by an unreal
large value such as EA/wl. If a cable is found
singular in the global displacement method, by
giving zero to the corresponding coefficient, we
have its tangent stiffness restored. To be noted,
such a singular element does not necessarily mean
a singularity in the global tangent stiffness.

4. FRACTIONAL CORRECTION
METHOD

Our functions, { z;(Tig, Tiy) , ¥1(Tiz, Tiy) }, are
in a one-to-one correspondence, but are quite
nonlinear: the derivatives can vary from a very
small I/(EA) to the infinity. So, the simple
Newton-Raphson method is not sufficient to solve
the compatibility problem. In the below, we con-
sider an advanced Newton-Raphson scheme for
the extremal problem of a convex potential,S)
categorized into the so-called “step-length con-
trolled.” 6)7)

Suppose the [i]-th trial where a;(;}, [@ ][;] and
W'[";.] are estimated for T';;}. The Taylor’s expan-
sion of potential W*(T;) at this T';[;] is written
as

W*(T4 + AT)) = W[’,:] + Awai}ATl
. ;
+5ATT [Q1 AT1 + 0 (ar?) (16)

in which Az,[;) indicates error vector z;[;) — &.
Instead of the full correction, AT[;} = —[Q]ﬁ
Az(;1, we now put a fractional 0(;)Az;[;) upon
the tangent correction :

Tijivn) = Tipig — 0 [Q G A2ap)

where 0 < 6};) < 1. Since [Q]}4) is exact for
the differentials, the T';[;;] shifted with a small
enough ;) is improved toward the solution. This
feature can be seen upon the potential. By the
substitution of (17) into (16), we have

Wi = Wi

(17)

92 , .
in which (0 -5 ) Bl + 06 (18)

Ry = \/AwlT[i][Q]ﬁ Ay (19)
This Ry} is a norm of vector Aw;[;) weighted by
[Q]ﬁ . As can be seen from the above (18) for
f:) = 1, quantity 1/2- R[%-] represents the first-
approximated difference of the current W[’;] from
the minimum at the solution. Even if error Az;[;
is large, by the use of a small f[;], the remainder
can be made negligible; and 6 — 62/2 > 0 for
0<#<1. Hence W[’:-] > W[’;fﬂ].
To generate the sequenced {0y}, f[2), -} in
the iteration, the followings are important :

A) 1If 6};) are taken too small, the fractional cor-
rections themselves are kept accurate, but a
vainly large number of cycles are needed to
attain the solution.

B) Since the accuracy of correction (17) depends
upon the magnitude of 6[;;Az;[;), factor 8}
ought to be taken larger with decrease of
Aml[i] .

Since Rj;) is homogeneous to vector Aw;j,
scalar ;) f;) corresponds to 0[;1A;;), and can
be regarded as a magnitude of the correction.
To carry the above B), we now determine [;
such that 0[;) R[;] are kept constant on the earlier
cycles. With decrease of Ry;)in 8[;)R;; =const.,
factor 6[;; becomes infinitely large, but is to be
bounded by 1 (the full correction). Eventually,

we have
foRo] )
fr;1 = min. , 1
” ( Ry

(20)
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Fig.4 Convergence to a vertical support

in which 8y is a quantity called “basic correction
factor,” initially assumed within 0 < 6 < 1.

Inequality Wiy > W[*;‘+1] means that T'yp;4q;
is relatively improved from T(;;. But, after
the solution is almost approached, this compari-
son becomes numerically difficult: for, difference
W{*z. ]~ VV{";] is consisting of the quadratic and
higher-order terms of Az;[;;. On the other hand,
Rp;) becomes accurate to measure smaller Az ;.
Then, we examine each correction by

for 6 <1
for O[i] =1

(21a)
(21b)

If this inequality is not true, factor 6y is found
still too large. The false [¢+1]-th result is aban-
doned, and, before resuming the iteration from
the previous [i]-th, we change 6y into a smaller
one, for instance, such that the new ;) becomes
half of the false 6[;; :

Wiy > Wi
By > Big

o[i]false . R[i]

2 R[O]
(alternatively, a simple 6o — 6¢/2 is acceptable)

Sequence {W[’B], Wiy - Wiy and { Rpgag,
R(142), - - - } are bounded from below, and are
regulated by the re-iteration routine to be mono-
tone decreasing. Those two conditions say the
iteration is convergent. Since W*(T) is prop-
erly convex, there exists such a positive 6 that,
for 8 < 8, W*i] > W[*;+1] at any Ty[;). In
other words, after its change by several times at
most, factor 8y remains a certain fraction (does
not vanish into 0). The convergence is a result of
Az;; — 0. In the above iteration upon (17),
(19), (20), (21) and (22), the unique solution is
attained from any initial T[] and 6.

Bonew = (22)
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5. NUMERICAL EXAMPLE

(1) Isolated Cable

[ =100.[L]), EA = 1000.[F] and w = 0.1[F/L]
are assumed for the cable shown in Fig.2. For
a leveled support, {z, 5} = {102., 0.}[L],
the tension components are beforehand obtained:
{Ti, Ty} = {26.04, —5.} [F).

For a vertical support, {Z, 7} = {0., 50.},
the fractional correction method is executed from
the former state with 6o = 1, until (R/vF)(;) <
0.2 x 1074, After the fifth change of factor 6y ( —
0.03125), {Tis, Tiy} = { —0.212x 10~*, -2.512 }
is attained at the 21-st cycle. The process is
shown in Fig.4 : in a common {z, y }-plane with
a relative scaling, {71, Tiy}i7 and {21, y1 )5
are plotted by the lines with symbol O and O3,
respectively; and the changes of W[‘;] (O: po-
tential), Rp;) (O: error R), ff;) (O: current)
and 6y (O: basic) are shown in the left box.
This final state is not treated as singular, for the
attained T}, is infinitesimally small but not exact
zero. The reversed computation is also executed:
from {Tjz, Ty} = {0., —2.512} (singular) with
fo = 1, the leveled state is approached with no
change of 8y after the ninth cycle.

(2) Cable Assembly

The three members shown in Fig.5 are chained
into one cable, and so can be dealt with by the
force method, directly. But, the displacement
method is here applied to the nodal freedom: on
each correction of the nodal positions, the mem-
bers are computed for their tensions. By the use
of the strain energy (also given by the second term
in (12)) and the self-weight potential in each elas-

tic ca,tenary,g) we can have the total potential
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Fig.5 An assembly of three cables

energy. To minimize that potential toward the
solution, the fractional correction method is ap-
plied to this equilibrium problem also.

The members are assumed to have w =
0.0395tonf/m, EA = 92000.tonf and natural
length 1(y), (2),(3y = 20., 20. and 60.m. In the
vertical hanging with the self-weight, joint 2
and 3 are located at yo = 20.00034 and y3 =
40.00052m. In this state, the horizontal stiff-
nesses at the nodes are extremely small (but not
zero). Shown on the right side is another equilib-
rium for two horizaontal 1.tonf added at the free
nodes, in which {z, y }» = {14.12088, 14.10464 }
and {z, y}s = {26.52301, 29.62051} m. The
iteration is executed between those two: in the
left — («) the right, the basic correction factor
is changed from 1 into 0.03125 (0.015625), and
the other one is approached after 78 (48) cycles.
This fractional correction is substantially load-
incremental, and so, in the interior iteration on
each step, the compatible tensions in the mem-
bers are obtained after less than ten cycles from
their previous values.

6. CONCLUDING REMARKS

The present analysis is enabled by the dou-
ble iterations: the force-method iteration on each
of the catenary cables; and the displacement-
method iteration for the global equilibrium. In
such a multilayered scheme, the consisting rou-
tines are required to leave no uncertainty in their
operations. Our numerical examples are involved
with the singular cables. If iterated within a
regular domain, the fractional correction method
yields much fast convergences, and is, of course,
applicable to a general convex-potential problem.
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