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A new extension of the Applied Element Method (AEM) for structural analysis is introduced. This
paper deals with the large deformation of structures under dynamic loading condition. As no geometric
stiffness matrix is adopted, the formulation used for large deformation is simple and it can be applied for
any structural configuration or material type. A new technique based on determining the residual forces
due to geometrical changes is proposed. The accuracy of this technique is verified in small deformation
range by eigen value analysis. In large deformation range, the collapse behavior of structures and the rigid
body motion of the failed structural elements can be followed accurately.
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1. INTRODUCTION

Applied Element Method (AEM) is a new
method for structural analysis. The strongest point
of the method is that total behavior of structures
from small deformation up to collapse can be
simulated with reliable accuracy. The accuracy of
the method was verified in various publications. The
structural behavior under static monotonic loading
was introduced in Ref. 1). The internal stresses,
strains, crack initiation, propagation and failure load
could be calculated accurately”. In the method, the
effect of Poisson's ratio could be considered using
elements with three degrees of freedom?. The effect
of crack opening and closing during cyclic loading
was discussed in Refs. 1) and 3). It was shown that
the newly developed method, AEM, is as accurate
as the Finite Element Method (FEM) in small
deformation range. The applicability of the method
in large deformation range was also checked in case
of elastic structures. It has been shown that highly
nonlinear geometrical changes of the structure,
including buckling loads, buckling modes and
change of internal stresses due to buckling can be
followed accurately®.

In AEM, the structure is modeled as an assembly
of small elements which are made by dividing the
structure virtually, as shown in Fig. 1 (a). Two
elements shown in Fig. 1 are assumed to be
connected by a pairs of normal and shear springs set
at contact locations which are distributed around the

element edges. Stresses and strains are defined
based on the displacements of the spring end points.
Three degrees of freedom are assumed for each
element. For other details like calculation of spring
stiffness, please refer Ref. 1). In case of reinforced
concrete, the reinforcement bars and concrete are
modeled as continuous springs connecting elements
together. Concrete spring means the spring which is
having the properties of concrete and steel spring
means the spring having the properties of steel.
When the stress calculated from forces acting on
springs exceeds the critical principal stress, local
failure of the elements is modeled by failure of
springs connecting elements.

Although the AEM is much simpler in modeling
than FEM, the analysis introduced in references (1)
to (4) can be performed using the FEM also where
the structure does not collapse. Extending the
applicability of the methods like FEM and BEM to
collapse analysis of structures is quite difficult. The
main problem is the contradiction between the
assumption that the media is a continuum and
complicated fracture behavior of the structure
during collapse. One of the few methods that can
follow structure's behavior from zero load till total
collapse is the Extended Distinct Element Method
EDEM” ©. This method can easily deal with the
behavior in large deformation range accurately.
However, the EDEM faces many difficulties like:
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(a) Element generation for AEM
Fig. 1

1. Analysis under static loading condition is
difficult.

2. The CPU time is long even in case of small
deformation analysis and before cracking.

3. The time increment depends on the structural
material and the element size. Simulation of
materials of high stiffness composed of small-
size elements leads to decreasing the time
increment required and hence, the CPU time
increases.

4. Although accuracy in discrete range is high, the
accuracy in small deformation range is not as
accurate as the FEM.

The main objective of this paper is to show that
the collapse behavior, where both the material and
geometry behave in highly nonlinear way, can be
followed accurately.

2. ELEMENT FORMULATION IN
DYNAMIC SMALL DEFORMATION
RANGE

The general dynamic equation of motion in small
deformation range is:

[1]]a0]+ [c][aU]+ [K][AU]= AR - MAT, | (1)

where [M] is mass matrix; [C] the damping matrix;
[K] the nonlinear stiffness matrix; Af#) the
incremental applied load vector; [AU] the
incremental displacement vector; and [AU ], [AU]
and AUy the incremental velocity, acceleration and
gravity acceleration vectors, respectively. Equation

(1) is solved numerically using Newmark Beta
technique”.

Normal and Shear Springs
AN

Structure boundary|

dT Tan

] "

Area represented
by a pair of normal
and shear springs

a

(b)  Spring distribution and area of influence
of each pair of springs

Modeling of structure to AEM

(1) Determination of mass matrix elements

To simplify the dynamic problem and to reduce
the size required for definition of mass matrix, the
element mass and inertia are assumed lumped at the
element centre. The mass matrix corresponding to
an element, in case of square shaped elements, is:

M, D*xtxp
D*xtxp )
M,| |D*xtxp/6.0

where D is the element size; ¢ the element thickness
and p the density of the material. It should be
noticed that [M] and [M,] are corresponding to the
element mass in X and Y directions and [M;]
corresponding to the element moment of inertia
about the axis passing through centroid. Although
the mass is lumped at the centroid of each element,
its effect is very near to distributed mass systems if
the element size is small.

The mass matrix is a diagonal positive definite
matrix. This means that elements of the diagonal
should be greater than zero. The mass matrix is very
important in case of rigid body motion analysis. The
static stiffness matrix becomes singular after failure
due to cracking and separation of elements. This
means that the matrix determinant reduces gradually
till being zero at failure. Solution of a stiffness
matrix having small value of determinant, ill-
conditioned matrix”, is generally inaccurate. This
means that results obtained just before failure, or
partial failure, of the structure is not accurate even if
displacement control technique is used. This
problem does not exist if the analysis is performed
in dynamic case because addition of the mass matrix
to the stiffness matrix results in a positive definite
dynamic stiffness matrix even after failure.
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Moreover, inertia forces play an important role in
failure mechanism during collapse of the structure.

(2) Determination of damping matrix
Sources of structural damping considered in the

analysis of reinforced concrete:

1. Cracking of concrete.

2. Energy dissipation during loading and
unloading process in compression springs, refer
to Sec. (4).

3. Unloading of reinforcement after yield.

4. Energy dissipation due to the process of crack
closure and crack opening. When the crack is
closed, shear stiffness is assumed to be equal to
the initial stiffness. After reopening of cracks,
shear forces developed during crack closure are
redistributed, resulting in dissipation of shear
energy stored during the crack closure.

The aforementioned damping sources affect the
structural behavior in nonlinear stage only. The
material damping matrix [C] accounts for other
sources of damping that are not considered above
and its effect becomes dominant in elastic stage.
The damping matrix calculated based on the first
mode of deformation of the structure is as follows:

[Cl=2x¢ xwy x[M] €))

where ¢ is the damping ratio and w; is the first
natural frequency of the structure. The damping
matrix values are determined using the eigen value
analysis illustrated in the next section.

(3) Eigen value analysis

Finding the vibration properties, natural modes
and natural frequencies of a structure requires
solution of the matrix eigen value problem.
Moreover, making the analysis in frequency domain
necessitates the previous knowledge of eigen values
and eigen modes of the structure. The general
equation for free vibration without damping is:

b2 ] [x]lv]=0 @

Although there are many techniques used for
eigen value analysis, vector iteration with shifts
technique”” ® is adopted in this study. This
technique is a preferred method for eigen value
analysis as it provides a practical tool for computing
as many pairs of natural vibration frequencies and
modes of a structure as desired.
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Table 1 Eigen value analysis of a fixed base cantilever

mode lst znd 3rd 4th Sth

Case 1 i éi 8
w=222 | w=350
N o,
& |4,

Case 2

Theory*

Error

Case 1

ga‘;‘:rz 1.00% | 1.00% | 6.00% | 11.00%| 16%

*Shear deformations are not included

(4) Verification of eigen value analysis
The eigen value analysis results are compared

with the theoretical values to verify the accuracy of
the method. The natural frequencies and natural
modes of the cantilever, shown in Table 1, are
compared with the theoretical values”. To check the
effect of element size, the analysis is performed for
different element sizes, as shown in Table 1. The
following can be concluded:

1. The obtained eigen values and eigen vectors are
close to the theoretical results even in case of
higher modes.

2. The values obtained using "12" elements are
relatively close to those obtained by "300"
elements especially in the first mode. This
indicates that the method is numerically stable.
The main reason for the difference is the change
in the unsupported length in case of large
element size.



(1) w=21.5

2)w=84.8

Byw=134.7

(4) w=147.1

(5) w=274.0

(11) w=689.6

(9) w=592.0

(10) w=678.7

(12) w=817.0

(13) w=97%.0

(14) w=1075.5

(15) w=1156.2

Fig. 2 Eigen value analysis of a fixed-fixed frame (modes and natural frequencies)

3. The difference between eigen values obtained
through our method and theoretical values
increases with higher modes. The reason is
simply because the effects of axial and shear
deformations, which are dominant in higher
modes, are considered in our method, however,
its effect is not included in the theoretical results.

Figure 2 shows the results of eigen value
analysis of a fixed-fixed frame. The frame thickness
is assumed as 0.25 m; the Young's modulus as 2.1 x
10" kN/m” and density as 2.5 t/m’. The first fifteenth
eigen modes and circular frequencies are shown in
Fig. 2.

The above example shows that the new proposed
method can be an efficient tool for structural
analysis not only in time domain, but also in
frequency domain. Obtaining accurate values of
natural modes and natural frequencies is evidence
that the method is applicable in frequency domain.
However, as frequency domain analysis can not be
applied to highly nonlinear material and geometrical
behavior, which is the main target of this research,
no examples are introduced for such cases.

3. ELEMENT FORMULATION IN
DYNAMIC LARGE DEFORMATION
RANGE

The consideration of large deformation in static
loading condition was shown in Ref. 4). The

analysis introduced in Ref. 4) was mainly for elastic
materials under static loading condition. Analysis
could be performed under load or displacement
control. As collapse process of actual structures,
especially concrete structures, is mainly a dynamic
process, the method is extended to follow the large
deformation behavior under dynamic loading
condition. The general dynamic equation of motion
in large deformation case is:

[M]|AT |+ [c][aU ]+ [K][AU]= A0 + R, + R (5)

where [M] is mass matrix; [C] the damping matrix;
[K] the nonlinear stiffness matrix; Aff) the
incremental applied load vector; [AU] the
incremental displacement vector; and [ AU ] and

[ AU ] the incremental velocity and acceleration
vectors, respectively. Equation (5) simply represents
the equilibrium equation between external applied
loads and internal forces (internal stresses, inertia
forces and damping forces). The terms “R,”
represent additional load vectors due to the
nonlinear behavior of the material. After applying a
small load increment, the structure geometry is
modified and hence, incompatibility between
external loads and other forces occurs. This results
in the additional load vector “R;”. The main
difference between the proposed method and the
conventional methods is that the geometrical
stiffness matrix is omitted and its effects were
replaced by adding the geometrical changes effects
as an “additional load vector Rs”. This technique
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was applied in Refs. 4) and 12) and results showed
high accuracy.

The method is applied using the following steps:

1. Solve for gravity loads under static condition and
get the internal forces.

2. Apply a load increment, Af?).

3. Assume that R,, and R are zeros and solve Eq.
(5) using Newmark Beta method® to get
incremental displacement.

4. Calculate incremental strains and stresses.

5. Calculate incremental and total velocities and
accelerations.

6. Modify the geometry of the structure according
to the calculated incremental displacements by
updating the location of elements.

7. Modify the direction of spring force vectors
according to the new element configuration.
Changing the direction of spring forces around
elements leads to incompatibility between
applied loads and internal stresses, damping
forces and inertia forces.

8. From the calculated stresses, check the situation
of cracking and calculate the material residual
load vector R,,.

9. Calculate the element force vector
surrounding springs of each element, F,,.

10.Calculate the geometrical residuals around each
element from Eq. (6)

from

R = f-[M][o]-[c]lv]- F,, ©6)

Equation (6) means that the geometrical residuals
account for the incompatibility between external
applied and internal forces, damping and inertia
forces due to the geometrical changes during
analysis. It should be noted that residual forces
are calculated based on total stress value. Gravity

forces are considered as an external applied force.

Small deformations are assumed during each
increment.

11.Calculate the stiffness matrix for the structure in
the new configuration considering stiffness
changes at each spring location due to cracking
or yield of reinforcement.

12.Apply again a new load increment and repeat the
whole procedure from step 2.

13.Material and geometrical residuals calculated
from the previous increment can be incorporated
in solution of Eq. (6) to reduce the time of
calculation.

It should be also emphasized that this technique
can be applied in both static and dynamic loading
conditions. In case of static loading condition, the
mass and damping matrices are set equal to zero.
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Fig. 3 Material models for steel and concrete

The main limitation in static analysis is that
separation of elements is not permitted during
analysis as it makes the stiffness matrix singular. On
the other hand, analyzing structures subjected to
dynamic loading condition enables us to follow both
geometrical changes of the structure and the rigid
body motion during failure. As the deformations are
assumed to be small in each load increment, small
time increment should be used.

4. MATERIAL MODELING

One of main difficulties in this kind of analysis is
how to deal with compression crushing of elements.
Having crushing of elements at the support location
means, from numerical view point, that the elements
lose all its stiffness and the structure is not
connected to the ground any more. In this analysis,
Maekawa compression model'” is adopted till 1%
strain in compression. This model is shown in Fig. 3
(a). After reaching this strain, minimum stiffness
value (0.01 of the initial value) is assumed so that
the connection of the element to the other element is
not lost. For reinforcement, the model shown in Fig.
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3 (b)'V is adopted. Namely after reaching 10%
tensile strain, it is assumed that the reinforcement
bar is cut. The force carried by the reinforcement
bar is redistributed, when it reaches the failure
criterion, by applying the redistributed force to the
corresponding elements in the reverse direction. For
cracking criteria, principal stress based failure
criteria is adopted. For more details refer to Ref. 2).

The main assumptions in our analysis are:

1. Although the post-peak fracture process of
concrete or steel spring is time dependent
(according to the post-peak strain value), this
effect is neglected in our analysis. The total
value of the failed spring force is redistributed in
the following time increment irrespective of the
post-peak strain value.

2. Effects of buckling of reinforcement bars were
not considered yet in the analysis as the same
element represents the concrete and steel
behavior.

3. In static analysis, minimum stiffness value was
assumed for concrete springs after cracking. This
results in having residual tension force acting at
the normal springs after cracking which is
redistributed in the next increment. However,
this technique can not be applied in dynamic
analysis cases. Assuming minimum stiffness
value at the crack location affects greatly the
dynamic behayior of elements after separation of
structural elements. For example, rigid body
motion of elements can not be followed

accurately if minimum stiffness value is assumed.

Hence, spring stiffness after cracking is assumed
zero till the crack closure occurs.

4. After reaching 1.0% strain in concrete,
compression springs are not allowed to fail.

5. Collision between elements, which are not in
contact at the initial stage may occur at very
large deformation level and this is not considered
in the verification examples. This effect was
already studied and a new method was proposed.
For more details refer to Ref. 12).

S. VERIFICATION OF LARGE
DEFORMATION DYNAMIC
ANALYSIS

To verify the accuracy of the newly proposed
method, case studies for large deformation analyses
are performed. These cases are divided into two
categories. The first one is for large deformation
dynamic analysis for unstable elastic structures.
These structures are supposed to have rigid body
motion together with large geometrical changes.

Proposed method ~ Hlinge Jy /i\O

&

Bo:

initial angle

X-Displacement (m)

0 5 10 15 20 25
Time {Sec)
Fig. 4 Harmonic motion of a rigid bar under own weight and
initial excitation (without damping).
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Damping ratio
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Fig. 5 Harmonic motion of a rigid bar under own weight and
initial excitation (with damping).
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Fig.6  Comparison between applied and calculated
damping ratios

The main objective of the first category is to
compare the accuracy of the proposed technique
with the theoretical results because experimental
results of failed structures are not available. The
other group of analyses is simulation of structures
from zero loading till total collapse, and before the
collision of structural elements. In all cases, the

simulation time increment is 0.001 seconds.
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The first case is harmonic motion of a bar due to
self-weight. The bar configuration and the
simulation results are shown in Fig. 4. Two different
initial angles were used (6,=0.05 and 0.3 rad). The
result due to small angle (6,=0.05 rad) was
compared with that obtained by theory based on
assumption that Sin (6)~6 The calculated X-
displacement is almost the same as the one obtained
from kinematics. When X-displacement equals zero,
the rod velocity, slope to the horizontal, is always
equal to the initial velocity, which is equal to zero.
This indicates that there is no energy loss during the
rotation of the bar. In case where 8,=0.3 rad, it is
obvious that the amplitude of displacement and the
oscillation period increases when the initial angle
increases. This indicates that the geometrical
residuals technique can simulate both the
geometrical changes and rigid body motion. This
analysis shows that the behavior of structural
elements moving as rigid bodies after failure can be
simulated.

To verify the accuracy of the proposed technique
analyses using initial angle (4,=0.05 rad) with
different damping ratios are performed using the
same bar shown in Fig. 4. Figure 5 shows the
relation between the angle 6 with time. Damping
ratio can also be calculated from the logarithmic
decrement relationship shown in Fig. 4 by® :

,n[ijzﬁfg ;
Uirl ) J1-¢2 M
where, ¢ is damping ratio; % and ., the

displacement amplitude of two successive peaks.

From this equation, the applied and calculated
damping ratios are compared in Fig. 6. Damping

ratios are calculated from each time response history.

From Fig. 6, it is clear that the applied and
calculated values are very close except that when
the damping ratio is less than 0.5%. For practical
damping ratios, the accuracy is quite acceptable.
The reason why the simulated damping ratio
becomes smaller than the adopted value in very
small damping case is due to underflow error during
simulation.

The second case is also harmonic motion of a
"L" shaped bar under its own weight. The bar
configuration and results are shows in Fig. 7. The
damping ratio used in the analysis is 4% to enable
the structure to reach its stability condition. It is
obvious that the bar starts oscillation around the
equilibrium position. Oscillation reduces gradually
and finally stops at the equilibrium position. The

Angle of rotation (rad)

of stability

0 20 40 60 80 100 120 14C
Time {Sec)

Fig. 7 Harmonic motion of a rigid "L" bar under its own
weight. (Damping ratio is 4%)
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Fig. 8 Deformed shape and failure pattern of a hinged-roller
RC frame
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Fig. 9 Load, vertical and horizontal displacement at the
loading point vs. time
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simulated angle of final stability is the same as that
calculated from theory.

These two analyses show that if some part of the
structure failed, the rigid body motion of this part
together with the final equilibrium position can be
simulated automatically. In addition, no previous
knowledge about the dynamic behavior is required
before the analysis.

The third example shows the time history of
failure process of an RC frame. The frame is
supported by hinged bearing (left) and hinged roller
bearing (right). A concentrated load is applied at the
center of the beam. The frame shape, dimensions,
loading conditions and deformations under the
applied load are shown in Figs. 8 and 9. The
material properties are taken as follows: =36
kN/em’, o, =3.5 kN/em®, o =0.21 kN/cm® and
E=2000 kN/cm’. Percentage of longitudinal
reinforcement ratio is about 2 % of cross section.
The frame is divided into 900 elements with 5
connecting springs between elements.

The failure process can be summarized as
follows:

1. Cracking starts from the center of the beam
because of maximum bending moment. It was
verified in Ref. 2) that the failure load can be
calculated accurately.

2. During loading, and before yield of
reinforcement bars, cracks propagate at the
center of the frame and at connections.

3. Reinforcement bars yield in the center of the
beam.

4. Steel bars cut off after yield in the middle of the
beam first followed by cut off in the left
connection and finally the right one. The cracks
at the steel cut locations dominate the behavior
of the structure during failure.

5. Refering to Fig. 9, displacements drastically
increase after 0.7 seconds because of failure of
reinforcement bars. At the same time, the
structure begins unstable dynamic motion.

6. Tension cracks appear at the left connection first,
because of difference of supporting conditions.
After midspan cracking, the beam behaves as a
double cantilevers connected to unstable
columns. As the loading rate is very high, crack
generation at connections is faster than the rigid
body motion of the failed parts.

7. Tension cracks appear at the right connection
together with motion of the roller.

7. The structural members lose curvature and
move as three rigid bodies in the space.

Figure 10 shows failure pattern of a plain
concrete simple beam subjected to three point
bending. The beam is supported by two hinged
rollers. The material properties are taken as follows:
o. =3.5 kN/em’, o; =0.2 kN/em® and E=2100
KN/cm?. Half of the beam was simulated using 126
elements with 10 connecting springs between
elements.

It can be easily seen that realistic failure behavior
can be obtained. After cracking of concrete in the
mid-span, the beam is separated into three parts, two
beams and elements subjected to the load. The two
beams rotate around the rollers till becoming
vertical and then separated from the support and
move as rigid bodies in the space. The elements,
where the load is applied, are separated and move
downward. After separation of beam segments, the
rollers start inward motion. It should be emphasized
that no previous knowledge of the behavior is
necessary before the analysis. The crack separation
location is arbitrary.

Figure 11 shows failure mechanism of a fixed-
fixed frame subjected to lateral load. The material
properties are taken as follows: g, =36 KN/em?, o,
=2.5 kN/em’, ¢; =0.2 kN/em’® and E.=2100 kN/cm’.
Percentage of longitudinal reinforcement ratio is
about 2 % of cross section. The frame is divided to
34 elements only with 10 connecting springs
between elements.

The analysis is performed till recontact between
elements occurs. It is noticed that cracks mainly
start from the left connections. Compression failure
occurs at the right support. After having crushing of
the right column support, the two columns and the
attached beam moves as a rigid body. As, the effects
of collision are not considered in this paper, the
effects of collision with the ground elements are not
presented in the current model. However, this is
discussed in Ref. 12). As the number of elements is
small, it took only 10 minutes using a personal
computer (CPU Pentium 267 MHz) to make such
analysis. :

These results show that the crack initiation, crack
propagation, failure of reinforcement, separation of
structural members and rigid body motion of
structural members after failure can be followed
without any additional complications to the model.
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6. CONCLUSIONS

In this paper, a new technique was developed by
which structure behavior can be followed during
loading till complete failure. Adopting geometrical
residuals technique, instead of geometrical stiffness
matrix, makes it easier to follow the detailed failure
process including separation of structural members
and rigid body motions. Moreover, the addition of
the mass and inertia terms to the static stiffness
matrix during solution of equations is very
important to assure positive definite dynamic
stiffness matrix. It means that solutions of equations
of each of the elements exist even when an element
and/or assembly of elements separate from the
surrounding elements.

The simulation results are compared with the
theoretical ones and the results showed high
accuracy. The main advantages of the proposed
technique are:

1. This technique is general and can be applied for
any material or structural configuration, in two
or three-dimensional analysis.

2. This technique does not require calculation of
geometrical stiffness matrix, thus makes the
analysis easier.

3. The geometrical changes of the structure during
loading together with the rigid body motion of
failed structural elements can be followed with
reliable accuracy and without any additional
complications.

4. Unlike FEM, the crack location is arbitrary. No
previous knowledge about the failure process is
needed before the analysis.

As the main objective of this paper is to show the
wide applicability range of the proposed method,
however, adopting better material models to account
for proper concrete and steel behavior at high strain
levels improve the accuracy of the simulation. At
this stage, the main limitation of the applicability of
the method is that the collision and recontact effects
are not taken into account. This means that elements
can separate but new element contacts are not
permitted. Study on the consideration of this effect
was already carried out and it will be reported in
further publications.

REFERENCES

1) Meguro, K. and Tagel-Din, H.: A new efficient technique
for fracture analysis of structures, Bulletin of Earthquake
Resistant Structure Research center No. 30, March 1997.

2) Meguro, K. and Tagel-Din, H.: Applied Element Method
for structural analysis: theory and application for linear

(10)

Fig. 10 Failure pattern of a plain concrete simple beam in three
point bending

ST LTI

L

(1) (2) 3)

4) (5) (8)

| e

(7) (8) (9)

Fig. 11 Failure pattern of a RC concrete frame subjected to
lateral load

materials, Structural Eng./Earthquake Eng., JSCE. , Vol.
17, No. 1, 21s-35s, April 2000.

3) Meguro, K. and Tagel-Din, H.: Development of a new
fracture analysis method with high accuracy based on
discontinuous material modeling, 16th annual Conf. on
Natural Disaster Reduction, Osaka, Japan, Oct. 1997.

4) Meguro, K. and Tagel-Din, H.: Simulation of buckling and
post-buckling behavior of structures using applied element
method, Bulletin of Earthquake Resistant Structure
Research center No. 32, , pp. 125-135, March 1999.

5) Meguro, K. and Hakuno, M.: Fracture analyses of
structures by the modified distinct element method,
Structural Eng./Earthquake Eng., Vol. 6. No. 2, 283s-294s.,
Japan Society of Civil Engineers, 1989.

6) Meguro, K., Iwashita, K. and Hakuno, M.: Fracture
analysis of media composed of irregularly shaped regions
by the extended distinct element method, Structural
Eng./Earthquake Eng., Vol. 8, No. 3, pp. 131s~142s, Japan
Society of Civil Engineers, 1991.

7) William, H.: Numerical Receipes in Fortran 77, Cambridge
University Press, New York, 1996.

8) Chopra, K..: Dynamics of structures, Theory and
applications to earthquake engineering, Prentice Hall, 1995.

9) Walter C. and Moshe F.: Dynamics of structures, Prentice
Hall, Inc., Englewood Cliffs, New Jersey, 1965.

2238



10)

11)

Okamura, H., Mackawa, K. and Izumo, J.: Reinforced
concrete plate element subjected to cyclic loading, 10th
annual lecture on “FEM Analysis of Reinforced Concrete
Structures”, Civil Engineering Department, The University
of Tokyo, 1995.

Ristic, D., Yamada, Y., and Iemura H.: Stress-strain based
modeling of hystertic structures under earthquake induced
bending and varying axial loads, Research report, No. 86-
ST-01, School of Civil Engineering, Kyoto University,
March, 1986.

2248

12) Tagel-Din, H. and Meguro, K.: Analysis of a small scale

RC building subjected to shaking table tests using Applied
Element Method, Proceedings of the 12th World
Conference on Earthquake Engineering, January 30th-
February 4th, 2000.

(Received May 12, 1999)




