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This paper presents a method for analysis of strain localization problems which is supported by
the thermodynamics of irreversible processes. Stability and bifurcation criteria and a generalized
localization analysis method are discussed at the level of structural mechanics. A one dimensional
cracking model is examined as a simple example of cracking localization phenomena to show the
framework of our method. The method is applied to a practical example of cracking localization in
a concrete beam during a bending test. From the results, the importance of the method presented
in this paper for a quasi-static strain localization phenomenon in a structure is clarified.
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1. INTRODUCTION

Strain localization behavior, in which homoge-
neous deformation or damage is replaced by de-
formation or damage which is concentrated in a
relatively small zone in the course of failure of ma-
terials, falls into the category of bifurcation phe-
nomena. This type of phenomenon is observed in
various materials: structural metals 1, rocks 2,
concrete 3, granular materials 49 and so on. For
example, Fig.1 shows the maximum shear strain
rate observed in a plane strain biaxial compres-
sion test of soft rock %).

The theoretical description of strain localiza-
tion is reviewed in an early work . In this study,
Hill has presented equations for stationary wave
in a solid; for vanishing wave velocity, these are
interpreted as a condition for shear band local-
ization. Hill and Hutchinson 7 have studied the
strain localization in a rectangular block under
plane strain deformation, and showed that the
bifurcation into a localized shear band is not pos-
sible until the equations governing incremental
equilibrium lose ellipticity. Rudnicki and Rice &
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Fig. 1 Maximum shear strain rate in plain-strain
compression test on soft rock

have provided a general mathematical theory for
analysis of shear band localization. It is shown
that both a vertex-like structure of subsequent
yield surfaces and non-normality of the plastic
strain rate vector to the current yield surface



strongly affect localization; see also reference?).

To make it possible to follow material behav-
ior into the post-localization range, a number of
numerical methods have been provided. For ex-
ample,

(a) nonlocal models in which either stress or
strain is defined as an integral value of the
other over a finite material domain (integral
limiter) 1),

(b) strain gradient models in which strain is de-
fined in terms of derivatives of order higher
than one (gradient limiter) 11):12),

(¢c) generalized continuum theories in which an
internal material length is originally intro-
duced by considering micro-structures in the
material, such as the Cosserat continuum
theory.

(d) modeling materials with rate-dependent con-
stitutive relation (rate limiter) 13):14),

(e) limiting the minimum size of finite elements
by considering the fact that constitutive rela-
tions are originally obtained by observation
of relations between macroscopic quantities
in finite size specimens 15):16)

(f) providing a material model with a descend-
ing gradient of stress-strain relation in the
post-peak regime as a function of mesh size,
such as strain softening materials.

See also references!”)18). These theoretical stud-
ies clarified which features of the constitutive
relation locally initiate strain localization; the
numerical techniques enabled us to analyze the
regime of localization phenomena after initiation
of localization, possibly with a help of assumed
imperfections either in the boundary conditions
or in the material properties.

In addition to the approaches based on con-
stitutive modeling, there are also models which
are based on micro-mechanics. Shi and Horii 1%
showed that a physical mechanism of localization
arises by introducing interaction effects among
micro defects during evolution of the micro de-
fects. Okui and Horii 2) investigated a cracking
localization phenomenon in a rock mass by tak-
ing into account the interaction effects of discrete
micro defects by introducing a pseudo-traction.
In their study, it was revealed that the non-local
constitutive equation can be derived by consid-
ering micro-mechanical behavior and, more over,

that a localization mode observed in a rock mass
under triaxial loading is one of many possible me-
chanical equilibrium solutions for the boundary
value problem.

Now that it has been demonstrated that local-
ization phenomena can be represented beyond bi-
furcation by eliminating the loss of ellipticity of
constitutive equation in some way, and that a lo-
calization mode is one of many possible solutions
of a boundary value problem, our principal objec-
tive in this paper is to describe a criterion which
determines a localization mode in a structural el-
ement without introduction of imperfections. In
the next section, an elementary boundary value
problem is solved to demonstrate the difficulty of
finding a post localization path and it is further
discussed from thermodynamical point of view in
the third section. To clarify the general criterion
for localization of deformation in a structure, the
thermodynamic theory of irreversible processes
21) is introduced. The method is illustrated by
a simple example of one-dimensional cracking lo-
calization in the fourth section, and cracking lo-
calization phenomena in a concrete beam are an-
alyzed as a practical example.

2. DIFFICULTY OF SOLVING A
CRACK LOCALIZATION PROB-
LEM

In this section, the discussion is made for a
simple crack opening problem with two crack ele-
ments as an example, mainly to describe the gen-
eral difficulty of solving crack localization prob-
lem.

(1) Model Definition and Equilibrium So-
lution

Let us consider a model with two crack ele-
ments which is connected by a single spring ele-
ment with spring constant k¥ as shown in Fig.2
where @ is a prescribed displacement while ay
and ay are the crack opening displacement of the
crack elements.  For simplicity, it is supposed
that the crack elements starts opening when the
applied force f reaches the capacity f., and that
the resistance force changes as a linear function
of crack opening displacement @ with modulus a,
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Fig. 2 One dimensional model with springs and
crack elements
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Fig. 3 Tension softening curve representing relation-
ship between crack opening displacement and
transmitted force across crack element

as shown in Fig.3:

fla) = fe+aa. (1

The crack opening displacement « is a monotoni-
cally increasing function and its increment is sup-
posed to be non-negative. When a is negative,
the crack element shows a softening behavior. As
shown in Fig.3, this crack element has an oppor-
tunity to choose either loading or unloading path
everywhere along the loading path as the applied
force decreases: omne is to follow the solid line,
loading path, and another is to follow the dashed
line, unloading path. Our problem is to find a
stable path of {a, s} for a prescribed displace-
ment @ at loading point. The given displacement
4 is assumed to be monotonically increasing at
constant speed. Before reaching a crack open-
ing criteria, @ < f./k, the system behaves as
though a single spring element. For simplicity,
a loading parameter A by which the prescribed
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displacement % is expressed:

4= & + A (2)

k
is introduced. In quasi-static equilibrium, mo-
mentum conservation requires that the net force
on each crack must vanish; thus accordingly, for

A>0

fla)=kA-ar—a)+fo  (3)
flag) =k(A—az —az) + fe (4)
It follows by substituting eq.(1) that
k
] = 0y = m)\ (5)

which represents a distributed crack opening
mode.

(2) Stability of Equilibrium Solution

Let us consider the stability of the solution. A
stability of equilibrium state is determined by a
work required to make a small perturbation, that
is, if the system is stable an external work has
to be applied to make small change and the work
is positive, otherwise a small perturbation will
make energy flow from an internal system to an
external system and the work becomes negative.

In this simple case of crack elements the work
is defined as

1
AW = Sadaj + %“50‘3 + %k(éal +da2)” (6)

Hence, if a < 0 the work AW is always posi-
tive and the system is stable all the time, on the
contrary, if @ > 0 the work can be negative for
certain combination of o; so that the system be-
comes unstable and a small disturbance will grow
naturally. However, from this discussion one can
not determine which combination would be the
optimum, that is, in the reality what happens
when the equilibrium stability condition fails.

(3) Engineering Problem

As shown in the previous sections, a crack
opening behavior of crack elements can be solved
and the stability of the solution can be examined
within the framework of the quasi-statical ther-
modynamics, and thus the onset of crack localiza-
tion can be predicted from the discussion. How-
ever, what we, engineers, are really interested in



is a behavior of a structure in a post localization
process, because of the fact that without know-
ing the behavior at post localization it is almost
impossible to predict a stability and a strength
of a structure. In order to determine the post
localization process, the classical stability condi-
tion of the thermodynamics of reversible process,
in which only the stability of a state is concerned,
is not sufficient. In the following sections, we will
discuss the procedure to find a optimum solution
for the post localization process.

3. APPROACH FROM THERMO-
DYNAMICS

To provide a basis for later discussion, the es-
sential features of the thermodynamics of contin-
uous media, are recalled in this section.

(1) Basic assumptions
Throughout this paper, all discussion is based

on the following assumptions:

(a) quasi-static rate-independent elastoplastic-
ity process,

(b) small perturbation hypothesis,

(c) principle of local equilibrium (existence of
entropy and free energy density), and

(d) uniform temperature.

(2) Thermodynamics of Local Equilib-
rium

Suppose a mechanical system is in an equilib-
rium state, in which a body force f and a trac-
tion £ are acting on the system and the specific
entropy, internal energy, and Helmholtz free en-
ergy are denoted by s, e, and ¢, respectively. The
first and second laws of thermodynamics can be
stated as:

First law
E=W+Q (7)
where
E:/ pédV
B
W:/ pf-'adV+/ ¢ adA
B sB
Q:—-/ q-ndA
éB

Second law
95> Q (8)

where # is a thermodynamic temperature
and

S = / psdV )
B
A local form of eq.(8) is

pé+V-(g/0) =20 (10)

which is known as the Gibbs-Duhem inequal-
ity.

For a general case of mechanical behavior,
which involves frictional thermoelastic or some
other irreversible process, the Gibbs-Duhem in-
equality is reduced to a form which involves only
an internal variable 22 which represents inter-
nal rearrangement. For an irreversible process,
in which mechanical equilibrium is always satis-
fied, the work rate W is rewritten in the form

W:/pf-adv+/ t.adA
B oB
Z/BO'z‘jiCz‘,jdA (11)

From the principle of local equilibrium, the free
energy density ¢ can then be defined by

p=e—0s (12)
ps = pé — p(p + ) (13)
. Op . Op .  Op,
PP = Py i traaga Tt (14)

where, in analogy with the discussion by Nguyen

23) 4 and o are a displacement with respect to

the reference configuration and an internal vari-

able 22) which represents an irreversible process,

respectively. The associated stress and the associ-

ated thermodynamic force or affinity are defined
by

dp Op

= pe——, A=-—p— 15

Oij Pauz_,ja Paa (15)

From eqn.(7), (8),(11), (13), and (14), the Gibbs-

Duhem inequality becomes
A-a+6q-V(1/8) >0. (16)

Because the temperature is assumed to be uni-
form in our system, the inequality becomes

c=A-a>0. (17)
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where ¢ is the local entropy production rate. This
final inequality means that, for an irreversible me-
chanical process, the dissipation must always be
positive.

(3) Stability of Irreversible Process

Under the assumption of local equilibrium, an
irreversible process must satisfy the local equilib-
rium stability condition and the Lyapounov sta-
bility condition?!). The Lyapounov stability con-
dition is the condition which should be satisfied
for a state function of a stable system, the sign
of which is fixed to either positive or negative.
That is, suppose one can define a state function
P which is always positive, the Lyapounov sta-
bility condition is

dP
P—(—it— <0

The local equilibrium stability condition is spec-
ified by

(18)

5% <0 (19)

or, in global form,

/ §2sdV = 625 < 0 (20)
B

where 42 denotes second order differential. By
applying the Lyapounov stability condition to the
entropy production rate, it follows that

do?
_<
o S 0 (21)
or, because of eqn.(17),
do
=<
5 <0 (22)
The global form of the inequality is
DP
—_ <
o = 0 (23)
where
p= / odV (24)
B

If a certain process for a mechanical system
is completely characterized by (u; ;, o), the local
equilibrium stability condition eqn.(19) is explic-
itly written as

1 8% 02
2= = [ saT 22 T_ 992 su;.
0%s 3 ((50; Bac’?aéa + 20 6a6ui,j5ui”
%y
T.-——._—.... s
+oul; Facsue, 6um> <0 (25)
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where du;; and da denote arbitrary perturba-
tions from the current state which is represented
by (us;, ). This inequality must be satis-
fied for any process, either equilibrium or non-
equilibrium. The Lyapounov stability condition
eqn.(23) becomes
2/A-o‘¢dV<0 (26)
DtJp -
Because our discussion is limited to a quasi-static
mechanical process, it is supposed to be close
to an equilibrium state even though the process
is irreversible. Hence, the Onsager reciprocity
relation??, which is proved to exist between the
affinity A and the internal variable & in a process
close to an equilibrium by the statistical ther-
modynamics, is defined by introducing a phe-
nomenological coefficient L as

a=L-A (27)
where
LT=L (28)
By substituting eqn.(27) to eqn.(26),
D ) D
= /B A-adv =2 /B LijA;A;dv
=9 / A adv
B
<0 (29)
which is locally
A-a<o0 (30)

where the equality is satisfied only at steady
state. If the associated force A is restricted to
be in a convex C, which is called elasticity do-
main, eqn.(30) is equivalent to the inequality:

(A—A*)-a>0, VA*eC (31)

which was termed the mazimal-dissipation prin-
ciple 25),

From the definition of the associated force A,
eqn.(15), and the definition of the free energy den-
sity eqn.(14), it is concluded that

. d (O¢
A=-rg (Ba)
o . %,
= —p (—aaauw U5+ 5&505 (32)



Thus, the local expression of the Lyapounov sta-
bility condition for an irreversible process be-
comes

O
dadu; ;
which is identically satisfied as long as eqn.(25)
applies.

0%
dij + T 2—2é) >(83)

0. . T
—A- &= pla £

4. GENERAL FRAMEWORK

Our objective of the paper is to present a way to
determine the evolution of deformation or dam-
age in the course of failure of structures, espe-
cially when a homogeneous process becomes un-
stable. In this section, we will discuss the evo-
lution law of irreversible process at the level of
structural mechanics, and strain localization pro-
cess in a structure is, further, described.

(1) Evolution of Irreversible Process

The concept of deformation of the structure is
generalized to represent the process in which the
displacement u(t) and the internal variable o(t)
are controlled, so that both the condition of local
equilibrium and the Lyapunov stability condition
are satisfied at each instance of time ¢ for a pre-
scribed boundary displacement A(t). The total
free energy ® and and the entropy production
rate P for the system are defined by

@:/pgpdV—/pf-udV——/ t - udA34)
B B B

Pz/adV
B

—A-& (35)

where

oo
da
which represents a governing equation for the
plastic deformation.

Following the discussion of Nguyen 23, if the
total free energy is a positive definite functional
of the displacement u, so that the system is ge-
ometrically stable, then the mechanical equilib-
rium condition provides a solution for u in the
form of a functional of the internal variable o
and the imposed boundary displacement A, rep-
resented by

A= (36)

u = ula, A) (37)
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It follows that the total free energy ®(u, o, A)
can be re-interpreted as a functional of internal
variable and imposed boundary loading, that is,

&* (e, A) = B(u(a, A), @, ) (38)

Thus, the condition of stability of instanta-
neous equilibrium state requires that

1 020" %" |
2 — IRl - L Sl 2
6“8 = 3 (éaaaaaéa + 250‘80«9)\/\) At

<0 (39)

where At is an arbitrary infinitesimally small
time increment, and ¢& and X are the time rates of
change of the internal variable o and the loading
parameter A, respectively. Thus, if the functional
52®* 529" .
. A
1(9) = 955507 2550 (40)
is introduced, the result (39) implies that I(q) is
minimum when ¢ = &, the actual rate of change
of the internal variable.

The Lyapunov stability condition for the pro-
cess is obtained by assuming the validity of the
Onsager reciprocity condition which, in this case,
implies that

B/G'dV“:QA-O'L
B

Dt
d [0%*\ |
_‘—2;{1;(601).0

_ [P, P
= ada’ " dadn”) ¢
<0 (41)

which is satisfied as long as eqn.(39) is satis-
fied. This simple outcome is perhaps the rea-
son why the study of the thermodynamics of irre-
versible processes is focused mainly on nonlinear
phenomenon.

Hence, it is concluded that, if a structure is ge-
ometrically stable, an irreversible deformation of
the structure should be the process which mini-
mize the functional I(c&), and that such a process
is always stable as far as the Onsager reciprocity
relation can be applied.

(2) Bifurcation: strain localization in
structure

In the present paper, a strain localization is
considered as the process in which a homogeneous




deformation becomes unstable and a localized de-
formation is selected as a stable path.

During a certain process, if the functional I(c&)
is positive definite for any ¢, then the solution
which makes (&) minimum is unique, and hence
the process of the system is simply defined by

2 H* -1 2H*
a:_(c’?@) e

dodo| Dadh (42)

which is so-called fundamental solution of the
system, and is considered as a homogeneous de-
fromation. However, I(&) can lose the positive
definiteness under a certain condition, and when
the functional I(&) is not positive definite, the
uniqueness of the solution which makes I{¢) min-
imum is no longer guaranteed, and a bifurcation
is supposed to take place. This state is considered
as an onset of a strain localization. After the fun-
damental solution of a system becomes unstable,
the process will folllow one of the possible paths
which make I(&) locally minimum. Of course, if
the minima of I does not exist for the admissible
& of our assumption, then the system will lose
stability in a dynamic manner, which is beyond
the scope of our approach, otherwise such a bifur-
cation path is always stable as far as the Onsager
reciprocity relation can be applied.

Note: Within the assumptions adopted by the
present paper, the solution might be equivalent to
what can be derived by the simplified abstract for-
mulation ?¥), which adapts the maximum dissipa-
tion priciple as the fundamental concept, because
of the fact that the Onsager reciprocity leads one
of the stability conditions of the non-equilibrium
thermodynamics to the same principle, as shown
in eqn.(31). More over, since our discusion has
been limited to the process which is very close to
the global equilibrium, the final criteria for the lo-
calization and the stability of the bifurcation path
has the identical form with the theory of stability
of inelastic structure 26), which is based on the
classical thermodynamics of equilibrium. How-
ever, further discussion of stability of more gen-
eral irreversible process, such as rate-dependent
plasticity, might be done only from the view point
discribed in this paper, but not from the simpli-
fied abstract formulation nor from the classical
thermodynamics of equilibrium.

5. ONE DIMENSIONAL EXAMPLE
WITH CRACK ELEMENTS

In this section cracking localization phenomena
in one dimensional model is examined with the
method described in the last section. The same
two-crack problem as the one which is described
in section 2 is solved.

(1) Cracking Localization Analysis

For the two-crack model, the plastic potential
27) | which represents the reversible energy stored
by modification of the internal structure, is given
by

PP (o) = —;—aoz2 (43)

Then, the free energy of the structure is given by

1 1 1
®(a1,a2) = é-aozg + §aag + ik(/\ — a1 — af¥t)
where 1 and ag correspond to the crack open-
ing displacement of each crack. The functional I,
which is defined by eq.(40), is given by

I(6) = (k + ) (62 + 63) + 2kév1 6

—2k(a1 + do)A (45)
The fundamental solution of the system is
“1‘9‘{‘ = (k+a)d1+kéc2—k5\=0
%%a kéy + (k +a)de — kA =0 1o
204y d1+ (k+a)ag — kA =
. ko
e 0.41 = Q9 = mA (47)

Since the eigenvalue of the second derivative of
the functional I is 2k + a and a, the funda-
mental solution is stable only if ¢ > 0, oth-
erwise the system may have two different solu-
tions (—k < a < 0) or be completely unsta-
ble (a < —k). When —k < a < 0, the min-
ima of I is either (dy,dy) = (k/(k + A)A,0) or
(d1,da) = (0,k/(k + A)X), that is, either left or
right crack will be activated. These solutions cor-
respond to the localized solution of the system.

6. PRACTICAL
EXAMPLE: CRACKING LOCAL-
IZATION IN CONCRETE BEAM

In this section, more general cracking localiza-
tion phenomena in concrete structures is exam-
ined.
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Fig. 4 Tension softening relationship assumed be-
tween crack opening displacement and trans-
mitted stress

(1) Simple model of concrete

For simplicity, nonlinear behavior of material
is ignored, so that a crack opening displacement
is the only source for nonlinearity of a structure
behavior, in this problem. Cracks are initiated
when a maximum tensile stress exceeds the ten-
sile strength o, and the crack opening displace-
ment is controlled by a certain tensile-softening
relation. In this paper, a simplified Dugdale-
Barenblatt type model is adopted. As shown in
Fig.4 by a solid line, a tensile stress transmit-
ted across a single crack is assumed to be a lin-
ear function of crack opening displacement «, in
which the softening modulus is a. A crack clo-
sure in elastic unloading is ignored for simplicity,
that is, when a crack is under unloading condi-
tion, the transmitted stress across the crack de-
creases without any change of crack opening dis-
placement, as shown in Fig.4 by a dotted line.

(2) Finite Element Formulation

In the FEM analysis, cracks are assumed to
have enough length to cut one element into two.
The crack initiation criteria and the tension-
softening relation are examined with a stress state
at the nearest gauss point from the crack.

The displacement field caused by the crack
opening displacements are interpolated by a
shape functions, as shown in Fig.5, which are
suggested by Wan 28) and Dvorkin®® to reduce a
mesh dependencies in the shear localization anal-
ysis of soil foundation. The explicit forms of the
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Fig. 5 Shape functions corresponding to crack open-
ing displacements

shape functions in Fig.5 are respectively
N®(z) = Ni(z) + Na(x) — N3() — Ny() (48)

and

Ne(z) = —Ny() (49)

where N;(z) are the isoparametric quadrilateral
shape functions for 4-node element, the number
of whose nodes is counted counter-clockwise from
the node (—1,—1) in the local coodinate system
&, ¢)- In the shape functions, the displace-
ment jump is assumed to be constant along the
crack. When the maximum tensile stress reaches
the tensile strength, a crack is embedded in the
direction perpendicular to the maximum tensile
stress as shown in Fig.6. The tensile softening
relationship shown in Fig.4 is assumed between
normal stress and normal opening displacement
across a crack. For simplicity shear deformation
along the crack is constrained to zero.
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Fig. 6 Cracked element used in cracking model of
concrete

The displacement field u®(z) is interpolated as

u; (®) = Nij(z)u; + Nj(x) oy, (50)

in which » and & are the nodal displacement and
crack opening displacement of each crack, respec-
tively, and IN and IN° are the shape functions for
nodal displacement u and crack opening displace-
ment «, respectively. Strain field is given as

(@) = 508 (@) + (@)}

= Byjk(z)ur + Bijp(x)ax,  (51)
where
1 8Ny 8N,
f&ﬂ7::§( 6$?7 Ehik) (52)
e _ 1 ONg5 ONj
=300 T B ) (53)

for a small displacement.

Since the increment of crack opening displace-
ment is assumed to be non-negative, they repre-
sent purely irreversible variables. On the other
hand, all degrees of freedom corresponding to the
nodal displacement contribute as components of
the reversible variables.

(3) Crack Localization Analysis

By integrating over the system, the total free
energy ®(u, o, A) can be written in the vector
form by

1
<I>=5u-K’“‘-u+%a-K"‘°‘-a+%A-K’\)‘-A
+u - K. a+u-K™ A+a K.\

~F.u (54)

where u, o, A, and F are respectively nodal
displacement, crack opening displacement, pre-
scribed displacement, and nodal force in the

1958

global configuration. The explicit form of Ks are
found in Appendix A. Following the discussion in
section 2, if the structure is geometrically stable,
that is, K" is positive definite,

u(e, A) = —(K"™) " {K" - o+ K™ - A - £5)
then the free energy is rewritten by

3 (o, A) = d(ula, A), o, A)

=%a-K*°‘“-a+a-K*°"\-z\
+%A-K*/\A-A

—F* .o —F?. A (56)
see Appendix B. Hence, the functional 7 is given
by

I(&,A) =& - K™% a4 2& - K** . A
+A- KM (57)
and the fundamental solution to the crack open-
ing displacement becomes
&= — (K*aa)—l KCXeA . A (58)
The stability of the fundamental solution is ex-
amined by checking the eigenvalue of the Hessian
matrix K**®. In the present FEM analysis, the
eigenvalues of the Hessian matrix K**® are eval-
uated at every time step. When at least one of
the eigenvalues becomes negative, the fundamen-
tal solution is judged to be unstable, then the
program tries to find a point which makes the
functional I(¢&) minimum. In this study, mod-
ified Downhill-Simplex 3% method, in which all
the as are suppressed to be positive in each in-
cremental modification of a simplex, is introduced
to solve this optimization problem.

(4) Four-point bending test

The numerical simulation of crack localization
phenomena is carried out for a rectangular beam
without any notch as shown in Fig.7, in which
Ly : Ly : L3 :D =10:5:10 : 3. Plane
strain conditions are assumed. The beam is sup-
ported by hinge at the left bottom corner and
roller at the right bottom conner. The beam is
supposed to be loaded downward simultaneously
at two points near the center of the beam from the
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Fig. 7 Configuration of four-point bending test in
FEM analysis

Fig. 8 Mesh used in simulation of four-point bending
test

top so that approximately constant moment dis-
tribution can be observed between the two load-
ing points. The loading is done by displacement
control. The finite element discretization is based
on bilinear displacement rectangular elements as
shown in Fig.8.

Two types of numerical computations were con-
ducted: 1) with localization judgment and 2)
without localization judgment. Fig.9 and Fig.10
show the history of crack initiation and propaga-
tion in the analysis with and without localization
judgment. The lines with arrows inside each el-
ement represent the orientation and the amount
of crack opening displacements (incremental) in a
certain increment. It is observed that, in the sim-
ulation with localization judgment, distributed
crack openings gradually concentrate into several
crack paths and, in the final stage of the calcu-
lation, crack opening displacements are observed
in only two crack paths. While in the computa-
tion without localization analysis, the result just
follows the fundamental solutions and crack open-
ing displacements remains distributed. What is
more remarkable aspect of cracking pattern clar-
ified in the numerical simulation is that, even in
the loading step in which whole structure shows
hardening, cracking localization occurs, and that
all the cracks which are selected to be stable in
a certain increment will not always be activated
after the increment, that is, the cracking pattern
often changes in the course of loading.

B

Fig. 9 History of crack propagation in
analysis with localization check

7. CONCLUSION

In the present paper, an analytical and numer-
ical method for strain localization in a structural
level is presented. The evolution law of irre-
versible process has been given from the thermo-
dynamics of irreversible process, within the con-
cept of the Onsager’s theory. Localization prob-
lem for rate-independent elastoplasticity is shown
to be a minimization problem of second order dif-
ferential of total entropy, which is defined in the
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Fig. 10 History of crack propagation
in analysis without localiza-
tion check

velocity field c.

In the example of four point bending test of
concrete, the results of calculation, such as load-
ing history, are not compared quantitatively with
the experimental data, since this study is aimed
at establishing a analysis method for a strain lo-
calization phenomena. However, the remarkable
crack localization pattern changes which will not
be derived from a calculation without localization
analysis happen to be found by applying a sim-
ple cracking model of concrete. This result shows

that stability checking analysis as shown in this
paper is necessary for a simulation of the struc-
ture which has a opportunity to have an unstable
behavior.

From the practical point of view, the nonlo-
cal theories, which are very effective to solve lo-
calization problem, is enough for reproducing a
behavior of structures. However, these conven-
tional techniques cannot answer to a more gen-
eral problem in which there is no empirical in-
formation about the localization mode. In order
to solve such kind of problem, a stability checking
and optimization analysis that is suggested in the
present paper is necessary.

Our discussion is limited to the rate-
independent elastoplastic material with a dis-
placement control boundary condition and uni-
form temperature. However, the basic idea of the
thermodynamics of irreversible process is not lim-
ited to such conditions. The extension to a more
general problem will be our future work.

Finally, since our discussion is limited by such
assumptions, the final criteria of localization and
the stability condition of bifurcation path has
an identical form with the theory described by
Bazant %), and possibly the resulting solution is
equivalent to the analysis outlined by Nguyen 23).
However, for a more general case of irreversible
process in which, for instance, temperature- and
rate-dependent behavior is considered the non-
equilibrium approach might be the only possible
approach.

APPENDIX A

Kw KM K" K% and K are

K = / Bi:D:Bidv (59)
Q
where
B*=B*=B (60)
B = B¢ (61)

within an element which contains coresponding
nodes, u,ox and A, and  is a domain in which
concrete are filled, while K¢ is

Ka"‘=/BC:D:B“dV+/NC-A-NCdS
0 T
(62)
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where I' is a crack surface and A is a hardning
parameter. The external nodal force F' is

F—_—/mN.fds (63)

APPENDIX B
K*aa’ K*A)\, and K*a,\ are

K*oox — oo gou, (Kuu)——l . KU (64)
K*)\)\ — K)\,\ _ KAu . (Kuu)—l . Ku/\ (65)
KoM — oA _ gou. (Kuu)—l LKW (66)

and F** and F** are

F*o — o, (Kuu)—l . F
F*’\ — K/\u . (Kuu)~1 .F

(67)
(68)
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