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This paper proposes a macro-micro analysis for the prediction of a strong motion distribution
in a metropolis. The analysis uses the singular perturbation expansion and the bounding media
theory, to reduce required numerical computation and to consider the uncertainty of ground and
geological structures. A prototype of the numerical code for the macro-micro analysis is developed,
and an actual earthquake is simulated. The comparison with measured data supports the basic

validity of the proposed method.
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1. INTRODUCTION

The prediction of the strong motion distribu-
tion is of major importance in planning coun-
termeasures for a huge earthquake, which could
happen in a metropolis. Higher spatial and time
resolution is desirable. For practical purposes,
the time resolution up to the order of 0.1 [sec]
is needed, and hence, the spatial resolution up
to the order of 1.0 [m] is needed. Hence, we are
considering to numerically simulate wave propa-
gation processes from a fault to a target site.

There are two difficulties in the numerical
simulation of such wave propagation processes,
the requirement of huge computer resources and
the uncertainty of ground and geological struc-
tures. The first difficulty is easily understood if
the wave propagation in a cube of the order of
10x10x10[km] for a time duration of 40[sec] is
simulated. Table 1 shows a rough estimate of
the amount of memory required for a finite dif-
ference method (FDM), a finite element method
(FEM) and a boundary element method (BEM)
to solve this problem with the spatial resolution
of 10[m] and the time resolution of 0.1[sec]. Al-
though the BEM appears acceptable, it must run
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macro-micro analysis, singular perturbation expansion, bounding media theory

Table 1 Estimate of required memory for numerical
simulation

FDM | FEM | BEM |
| memory[MB] [ 5x10° [5x10° | 1 |

a large number of computation steps, which in-
creases, almost proportionally to the square of
the element number. The second difficulty may
be more serious, since accurate modeling is es-
sential for a reliable simulation. Available infor-
mation, however, is always limited for the under-
ground structures of the metropolis. Because of
these two difficulties, the latest numerical analy-
sis at the present date can assure the precision of
the computation with the time resolution up to
0.9[sec]V only.

In this paper, we propose a new analysis
method for the simulation of the wave propa-
gation process in a metropolis?) - ¥+ 4.  This
method, called a macro-micro analysis, solves
the above two difficulties by taking advantage
of the singular perturbation which leads to a
multi-scale analysis to achieve high spatial and
time resolution and the bounding media theory



which provides optimistic and pessimistic evalua-
tion depending on the uncertainty of the ground
structure®6:"). In this macro-micro analysis,
the metropolis is modeled as a statistically vary-
ing heterogeneous body which is constructed by
using boring data measured on several hundred
(or thousand) points and interpolating them with
some variances. The bounding media theory then
determines two fictitious but deterministic me-
dia such that optimistic and pessimistic evalua-
tions are made for the expectation of the strong
motion distribution. The wave propagation pro-
cesses in these media are analyzed by taking the
singular perturbation expansion of a displace-
ment field. The first-order solution is computed
for a whole city with lower resolution (macro-
analysis), and the second-order solution is ob-
tained for some smaller zones with higher reso-
lution (micro-analysis), and hence they lead to
an efficient multi-scale analysis.

The main objectives of the present paper are
1) to rigorously establish a new theory of the
macro-micro analysis, 2) to carry out numerical
experiments to develop a computer code of the
macro-micro analysis, and 3) to verify the basic
validity of the analysis method comparing with
observed data. The comparison uses a strong
motion record obtained in Yokohama City. Note
that this paper uses index notation, denotes the
differentiation with respect to the x; coordinate
by d; ( ie., di = 8/0x;), and employs the sum-
mation convention.

2. FORMULATION

For simplicity, we assume that a metropolis
consists of elastic materials and denote it by V.
This V has distinct sub-domains w?® (o = 1, 2,

-+, N), and the uncertainty of heterogeneous
ground and geological structures is regarded as
a statistical distribution® of the material proper-
ties in each w®. That is, assuming the isotropy,
we set Young’s modulus, F, varies in w® accord-
ing to a suitable probability distribution function
»%; the Poisson ratio is assumed to be constant
throughout V; see Fig. 1. We introduce a non-
dimensional parameter, ¢ (< 1), as the relative
size of the heterogeneity to V, and denote the

Surface Sugface
SN e
: ——
RS e T S — T

Fig. 1 modeling of meteropolis

elasticity tensor and density fields of V by

¢ (x) and p(x)

where x stands for the position vector. The gov-
erning equations for a displacement field, u, are

di(cfjr (3)diug (x, 1)) — p*(x)ij(x,8) = 0. (1)

To show the bounding media, we first consider
the quasi-static deformation of V, neglecting the
inertia terms, i.e.,

i () (%)) = 0. 2)

For one realization of ¢, we can find two ap-
proximate solutions which bound the total strain
energy stored in V. These bounds are de-
rived from the generalized® > ) Hashin-Shtrikman
variational principle (HSVP), and, denoting the
strain energy by e(c®), we can compute the

bounds as follows:

€T —J(s*;¢%¢%t) < e(cf) < €7 —J(s%;¢c%; 7).
3)
Here, e* is the total strain energy when V
con31sts of uniform elasticity, ¢ i kl, which makes
CikL — € J kl positive- and negative-definite, and J

. defined as

ot

is a functional for eigen-stress s;;

'] S C c / 9 zg z]kl zjkl) 15;5
—ej(s7) — 2¢5) AV, (4)
where GU is the strain due to sjj; see APPEN-
DIX A. When ¢, varies, we can define two me-

ijk
dia using Eq. (3) such that the media provide

upper and lower bounds for the expectation of
the strain energy. Indeed, since Eq. (3) holds for
any s;;, the average of the right and left sides with
respect to p®’s of all sub-domains are the bounds.
Putting an overbar on an averaged quantity, we
can compute the bounds as

— 1
T = [ gsii(leh — ) o

—ei(s*) — 2¢l) dV. (5)
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It is easily shown that as cZ %, vanishes or as

0= ot -1
Cjjp increases unboundedly, (cf;y, Cop) ! ap-

proaches (¢ Gkt — Coj) " with
-1
Cin(x) = (/‘P ) cim) ™ (% B) dE) )
(6)
or (G — ipy) " With

) = [HEGuaE) dB, (1)

respectively. Therefore, we can derive the follow-
ing inequality for e:

e’ —J(s*€het) < & < 07— J(s*;T ;0.

(8)
By definition, J yields the sharpest bound for
e for eigen-stress that solves a boundary value
problem of a body with E;hjkl. In other words,
the two fictitious but deterministic media given
by € c” 1 Provide bounds for the expectation of the
strain energy of statistically varying V. These
media, denoted by V* are called bounding me-
dia; see Fig. 2.

When ?:'iijkl requires a huge number of dis-
cretization, the numerical computation becomes
tremendous. For a smarter computation, we ap-
ply the singular perturbation of v, introducing a

slow spatial variable, X

uf(x) =~ ugo)(X,x) + eugl)(X, x)+--. (9)

= £X,

Here, X varies in V and x in a small domain
around X. The derivative with respect to z; can
be replaced by d; + eD; (D; = 9/9X;). We can

obtain the following expansion of Eq. (2) in terms

(0) and uz(l):

O(d‘(nszdlugco)))
+ eMNdi(e “kl(dlu )+ D)) + Di(éjijkldlu§g0)))
+gmﬁmmmk+mﬁm

+ di(E () + D)) + 0(e%) =

of u;

To make the coefficients of € and e! always
vanish, we set that u( ) is a function of X only
and that ug ) is of the form

(1)<X’ x) = tiq(X x)D q“(o)( )
where XE;Q satisfies
i ( Z]kl(X x)(lek:pq(va7t) + ]klpq)) = 0,

(10)
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with I;ji; being a fourth-order (symmetric) iden-
tity tensor. Taking the volume average over Qx,
denoted by ((.)), for the coefficient of €2, we ob-
tain

D ipq(dqxz(vk)l + Iqul))Dlul(gO) =0. (11)

Equations (10) and (11) are the governing equa-
% and ugl).
Boundary conditions are required to determine

X§p31 in Qx. Such conditions, however, cannot be

determined unless u; is obtained in V. Instead

tions for ug

of exact boundary conditions, we use the homo-
geneous strain and stress boundary conditions,
u; = z;Ej; and ¢; = n;%;; with constant E;; and
2ij, since they bound the strain energy of Qx
subjected to various boundary conditions, i.e.,

(%6551;{;“6]5) < < 6” ;l]:kﬁg) < <%6i2jzz#j{kl6/§l>a

(12)
where superscripts F, G, and ¥ stand for strains
due to homogeneous strain, general, and homo-
geneous stress boundary conditions, respectively,
satisfying (ef2) = (eff) = (¢I;). Putting the super-
scripts £ and 3, we rewrite Eq. (11) as

Di(CET D" (X)) = 0, (13)

where

Cjkl » +Iqul)>~ (14)

1,

1)E,
- < @iqu(dqngk)l

Finally, we consider a dynamic case when the
inertia effects are included. If waves of smaller
frequencies are dominant, the bounding media
V* for the quasi-static case can be used to ob-
tain approximate solutions (It is certainly possi-
ble to define bounding media considering inertia
effects rigorously. The formulation of these media
is essentially the same as that in the quasi-static
case.). Indeed, the governing equations for the
first term in the expansion are

(X, ) =0,
(15)
where C’g ,’5 is the effective elasticity tensor of the
(quasi-static) V* and R is the effective density
given as R = (p).
Since the regular perturbation does not lead
to the coupling of terms in different orders, we
introduce a slow time variable, T' = /t, and take

Di(CEI(X) D) (X, 1)) — R(X)ii

(
i



Fig. 2 Bounding media

the singular perturbation with respect to time as
well as space, i.e.,

u§(x,t) =~ ugo)(X,T) + 6u§1)(X, x, Tyt) + - -.
(16)
Substitution of this expansion into Eq. (1) leads
to expressions similar to the quasi-static case,
and derives the governing equation for the sec-
ond term as

di (e (X, %) (dyuf” (X, %, T, 1) + Dy (X, T)))

_ 824D
Hp(X7 X) W(Xa X, T) t) = 0. (17)

These equations are essentially the same as a
is regarded as scattered waves due
to the local heterogeneity when uz(-o)
an incident wave ( If another time scale is used,
the resulting equations are different; for instance,
T’ = et naturally leads to the damping in the
larger spatial and slower time scales.).

As is seen, the macro-micro analysis leads to

1
case when ug )
is given as

two approximate solutions for wave propagation
processes in a metropolis with uncertain under-
ground structures. These solutions are for fic-
titious bounding media and computed by using
the singular perturbation method. By definition,
the approximate solutions given by the bounding
media can provide bounds for the expectation of
the total energy stored in the metropolis, and lo-
cal responses may not be bounded. However, we
may expect that the bounding media can bound

Table 2 Material properties

| plkg/m?) | Colm/sec) | v |
upper layer 2000. 120. | 0.27
lower layer 3000. 3500. | 0.27

local quantities such as velocity as it is related to
the local energy.

3. NUMERICAL EXPERIMENT

While the macro-micro analysis solves the two
major difficulties by respectively computing ugo)
. . (1)
in the macro-analysis and wu,
analysis, some cares must be taken for the nu-

in the micro-

merical computation. This section presents re-
sults of numerical experiments made to this end,
in which a simple problem is solved as an exam-
ple; see Fig. 3. The material and source pa-
rameters are summarized in Tables2 and 3. A
point source model with a ramp function is used,;
the fault area is 2.19[km?], the dislocation gap
is 0.3[m], and the rise time?) is 0.64[sec]. The ex-
periments use a DEC-10 Alpha PC164LX with
512MB memory, and the Bi-CGSTAB method!?)
is used in solving large-scale matrix equations.

(1) Macro-Analysis
We use the BEM!):12)13).14) for the macro-
analysis since it can easily handle open bound-
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Table 3 Properties of source

Lat. l Long. i Depth i Strike l Dip I Rake 1 Mag. ]

35.6N ‘ 140,0El 76km I 10° I 62° i 100° I 4A7MW}
Observation point
Suz8 e
76000[m]
8 S
T o

36800{m]

Fig. 3 Model used for numerical experiments

ary conditions and requires smaller amount of
memories; see Tablel. While the fast Fourier
transform method is used and frequency domain
problems are solved, the numerical computa-
tion is still huge as a large-scale discretization
is needed. To overcome this problem, we apply
a fast multi-pole method (FMM)%4)-15),16),17),18)
which approximately solve the problem drasti-
cally reducing numerical computation required
for the BEM. The key points of the FMM are 1) to
efficiently compute Green’s function by expand-
ing it in Taylor series and 2) to make smart matrix
computation through the clustering. The cluster-
ing means that for given arrangement of meshes,
each mesh is regarded as an element of the small-
est level, a set of some neighboring meshes as one
element of the second smallest level, and so on.
The matrix algebra for each mesh is efficiently
transformed to matrix algebra for elements of sev-
eral levels; see APPENDIX B for a more detailed
explanation. It should be mentioned that Tay-
lor series expansion of Green’s function could be
made automatically by using, say, MATHEMAT-
ICA, even though the function is complicated.
The accuracy of approximate solutions given
by the FMM mainly depends on the order of the
Taylor expansion and the clustering; see APPEN-
DIX B. Since there is a trade-off between the
accuracy and the efficiency, we choose suitable
the expansion order and the clustering. Since
the macro-analysis is aimed at the time resolu-
tion around 1.0[Hz], the accuracy of computing

Expansion order

Relative error[%]

Fig. 4 Relative error of computing Green function

Green’s function with the FMM up to this order
is first examined. The results are shown in Fig.
4; the expansion order means the highest deriva-
tive with respect to each coordinate, r/ry stands
for the size of clusters, and the relative error is the
maximum value of relative errors with respect to
the exact value during the event (A larger value
of r/rp means more meshes are used in forming
one cluster.). It is seen that, in order for the rel-
ative error to be less than 0.1%, the expansion
order is at least 4 when the cluster size is 1/3.
Next, we check the accuracy of computing waves
from the comparison with the waves obtained by
using a standard BEM. Fig. 5 shows the error at
a center point when the model is discretized into
8x8 meshes; the relative error is the error of the
approximated displacement with respect to the
exact one. It is seen that the accuracy is satis-
factory, even though it is slightly worse than the
accuracy of computing Green’s function.

Since the accuracy is secured, we examine the
numerical efficiency of the FMM. The CPU times
of the BEM with/without the FMM for various
sizes of descritization are shown in Fig. 6; CPU
time is for the matrix computation only. Such
efficiency enables us to compute a descritization
when the model is decritized into 128 x 128 meshes
with 50x50[m]. The standard BEM is not capa-
ble of computing this setting. The computed dis-
placement shown in Fig. 7; the FMM succeeds
in catching the arrival of the primary wave clearly
even for such a large-scale computation.

(2) Micro-Analysis

We apply the FEM!) for the micro-analysis,
since it is suitable to compute the wave prop-
agation processes through highly heterogeneous
ground structures. Furthermore, the FEM will
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Fig. 5 Relative error of BEM with FMM
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Fig. 6 CPU time for matrix computation

be applicable to a case when non-linear responses
of soils need to be accounted for. The major diffi-
culty in solving dynamic problems with the FEM
is the treatment of artificial boundary, which is
introduced to make a target body finite. Besides,
in the present formulation, the second order solu-
tion, ugl), should not produce any reflection to the
surrounding media, since a target of the micro-
analysis is regarded as a small sub-domain em-
bedded in a large medium which is computed in
the macro-analysis. We put a layer around the
sub-domain to eliminate reflection there such the
sub-domain is surrounded by a large domain. We

180s

10.00

. 800
E .00
T 400
E 200 F
g 0.00 N [
§ -2.00 ¢ 10 20 30 40
& .00 |
2 600
-8.00 |
-10.00 b
a) north/south
1000
8.00 |-
E 600
5
= 400 F
<
E 2.00 |
E 0.00 - e} [sec]
§ -2.00 10 20 30 10
< 400 -
4
& 600 |
-8.00 |
-10.00
b) east/west
100.00
80.00 |
E 60.00
~= 000 |
<
:;i 20.00 F
E] 0.00 [sec]
E 2000 ¢ 10 20 30 10
8
g
S 4000 -
& 6000 |
-80.00

-100.00 *~

¢) up/down

Fig. 7 Computed profile of displacement

use tuned Rayleigh dampers for the layer, which
can cut waves going out more or less normal to
the boundary.

The properties of the Rayleigh dampers (the
damping matrix) must be determined through
trial-and-error. We apply the micro-analysis to
the previous example to this end. A homogeneous
sub-domain to which the micro-analysis is applied
is shown in Fig. 8b), when the incident wave
(ugo)) is computed for a domain shown in Fig.
8a); see Tables 2 and 3 for the material and
source parameters. A point source model with a
ramp function is used; the fault area is 2.19[km?],
the dislocation gap is 0.3[m], and the rise time®
is 0.64[sec]. It is shown that two distinct layers
of the Rayleigh dampers are sufficient when the
sub-domain of 40x40x40[m] is descritized by el-
ements of 2x2x2[m] ( It is certainly true that
thicker layers are better to cut unnecessary re-
flected waves. However, they result in larger nu-
merical computation.). The inner and outer lay-
ers have damper matrices, [C] = 1.[M][kg/sec]
and 10.[M][kg/sec], respectively. The trial-and-
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Fig. 8 Model for numerical experiment

error is made to minimize scattered waves (ugl))
when the first order solution (ugo)) is put into
a sub-domain which is set to be homogeneous.
In Fig. 9, the wave profiles of both uz(-o) and
ugo) + sugl) are plotted. As is seen, these wave
profiles are almost identical, and the maximum
relative error is less than 0.1%.

4. RESULTS AND DISCUSSIONS

In order to verify its basic validity of the pro-
posed analysis method, we try to simulate actual
an earthquake and compare the results with ob-
served data. The properties of the target earth-
quake are summarized in Table 4. A point source
model with a ramp function is used; the fault
area is 3.8[km?], the dislocation gap is 0.47[m],
and the rise time® is 0.64[sec]. Data measured at
the Chitose Park (35.4338N, 139.6372E) in Yoko-
hama City are used for the comparison. Due
to the limitation of computational resources, we
use a simple parallel two-layer structure shown in
Fig. 10 to model the geological structure near
the observation point; the top and bottom lay-
ers correspond to the surface grounds and the
base, respectively. Table 5 presents the prop-
erties of the bottom layer. For the more compli-
cated top layer, Fiigs. 11 and 12 together with
Table 6 show the ground structures and the ma-
terial properties; a number (401~414) in Fig. 11
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E o4 |
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E 0.00 - - L [sec]
8 020 ¢ 10 20 30 40
2 040 |
a 060 Micro

-0.80
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E
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g
g
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a
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-0.70
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Fig. 9 Wave profile computed by micro-analysis
Table 4 Properties of earthquake
I Lat. I Long. ] Depth l Strike | Dip Rake Mag.
l 35.6N i 140.0E[ 56km | 213° 66 ° -151° | 5.3Mw

Table 5 Properties of bottom layer
' plkg/m3] | Ca[m/sec] | v l

I 2500.

3500. I 0.27 I

indicates boring data shown in Fig. 12, and a
character (Acig, Asp, T) in Fig. 12 is a sub-
layer referred in Table 6 in which the material
properties are presented.

First, we determine a stochastic body for a
region around the observation point. Assuming
that the bottom layer is deterministic, we set
variances of 10% for each sub-layers a top layer
which is now modeled as a heterogeneous domain
of 400x400x50[m] around the observation point
and determine ground structures through the lin-
ear interpolation. Two bounding media are de-
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Table 6 Properties of top layer

plkg/m?] | Calm/sec] | v
Acy 1500. 100. | 0.27
Acy 1600. 140. | 0.27
Asg 1800. 210. | 0.27
T 2100. 700. | 0.27

Surface
50[m] Surface layer

Bottom layer
56000[m]
» Source

Fig. 10 Geological structure

400[m]
405405 405]414]414]414] 414} 404|403
405]405]414]414]414]414]414|404] 203
404[414]414]414]414[414][414]403]403
404]404]414]414] 204} 414] 404]403]403
400[m] | [405}405| 405|404} 4041 403} 403403} 403
414 414} 414] 4031403 403| 402| 403|403
403 403]403]401]401|401|402] 403[ 402

NT 401]401]401{401]401]401}402|403]402
E,  J|401]401|461]401}401]401}402]402| 402

Observation point

Fig. 11 Structure of top layer

Fig. 12 Soil structure

termined for this domain, and Table 7 summa-
rizes the material properties which are easily ob-
tained by assuming uniform strain or stress state.
Next, we compute the wave propagation process
in these media for the time duration of 40.96
[sec] with the time increment of 0.32 [sec|. The
model used for the macro-analysis is shown in
Fig. 13a). The ground surface and the interface
are of 800x800[m], and are divided into 16x16
elements. It should be mentioned that some care
must be taken in solving the resulting matrix
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equation since the contrast in the material prop-
erties between the top and bottom layers is quite
high. We apply the sub-structure method which
is often used in the FEM; see APPENDIX C for
the detailed explanation. The micro-analysis is
applied to one sub-domain of 40x40x40[m] in
the top layer, and cubic elements of 2x2x2[m]
are used for the descritization; see Fig. 13b).

The displacement computed by the macro-
analysis is in Fig. 14. The acceleration com-
puted by the micro-analysis during 1.0 [sec] after
the arrival of the main shock is plotted in Fig.
15 (The value of ¢ is set as 0.04, as the ratio
of the element scale in the macro- and in micro-
analysis.). These displacement and acceleration
are at the observation point, which is located in
the center of the surface. It should be noted that
the results of the micro-analysis is computed up
to 5.0[Hz] as the present analysis assures the pre-
cision of computation only to this frequency. The
displacement waveform in the optimistic and pes-
simistic cases resembles very well each other. The
maximum value of the displacement amplitude,
however, is different for 11.8% in the maximum
between the optimistic case and the pessimistic
case. The profile of the computed acceleration is
different from that of the measured one, mainly
because the fault mechanism is modeled in the
simplest manner. However, the magnitude of the
computed acceleration is of the same order as that
of the measured one. These results support the
basic validity of the proposed method.

In the present simulation, the two bounding
media do not bound the acceleration which were
locally measured. However, they may provide op-
timistic and pessimistic estimates on local quanti-
ties such as the maximum acceleration; see Fig.
15. As an illustrative example, we present the
distribution of the maximum value of computed
acceleration in each direction at 20x20[m] re-
gion around the observation point in Fig. 16
for the optimistic and pessimistic cases, respec-
tively. The spatial resolution is 2.0[m]. The
macro-analysis cannot tell the difference in this
resolution, and the distribution becomes almost
uniform. Due to the local ground structures, the
micro-analysis can produce some local concentra-
tion. It should be emphasized that the validity of
these results shown in Fig. 16 can not be verified




Table 7 Properties of bounding media

plkg/m3] | Calm/sec] v
v+ 1796.6 451.5 | 0.27
V- 1783.6 319.1 | 0.27

Observation point

56000[m]
P
800[m]|
Ul ? 750\"‘06
K 20500[m]

36800[m]

a) model for macro-analysis

Observation point
20{m
20[m

b) model for micro-analysis

Fig. 13 Model for numerical simulation

by the measured data at all. However, they sug-
gest the potential usefulness of the present anal-
ysis method.

5. CONCLUDING REMARKS

The basic validity of the macro-micro analy-
sis is verified through the comparison of actual
data; it might be remarkable that the computed
waves are of the same order as the observed one
even though the simplest model was used. While
further investigation is inevitable, we can ex-
pect some potential usefulness of the proposed
method. At this stage, we are planning to com-
pare the numerical simulation with observed data
in a wider region in respect of the maximum value
and the waveform; for instance, the whole Yoko-
hama City is a candidate. The validity of op-
timistic and pessimistic estimates of some local
quantities will be focused, in order to examine the
practical application of the bounding media the-
ory when a metropolis is statistically modeled.
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APPENDIX A HSVP

The HSVP is based on the equivalent inclusion
method which replace Eq. (2) as

imdidiug (x) + diog;(x) =0,

o7j(x) = (G (x) = C?jkl)%(dlui(X) + dguf(x)).

(A1)

% . 3 *
% is called eigen-stress. For a given o7;

and given suitable boundary conditions, the so-
lution of the first equation is formally expressed
as ul + uf, where u and u¢ are displacement in
the absence and the presence of o7;. Then, the

Here, o

second equation is replaced by

(c5im(x) — i) o (%) - el (x) + ey (x,0%).
(A.2)
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Fig. 16 Distribution of maximum acceleration

We can define a functional, J given by Eq. (4),
such that the Euler equations coincide with Eq.
(A.2). This functional has the following two prop-
erties: 1) J gives e for the exact eigen-stress that
stationarizes J, as J(0*) = e—e°. and; 2) for ¢,
making ¢k — C;‘)jkl positive- or negative-definite,
the stationary value of J is the minimum or max-
It follows from the above
properties that the total strain energy of V is
bounded by Eq. (3).

imum, respectively.

APPENDIX B FMM

In terms of Green’s function, &G, an effect of
sources which are distributed on a surface S upon
the origin is formally expressed as

1.6(0,0,0;2,4, 2)u(z,, ) ds.
S

The FMM ( Strictly speaking, this method
ought to be called a panel clustering method.)
efficiently'® computes this surface integral. The

Taylor expansion of G around, say, a point
(xﬂ’yﬂvz())a yields

oo o0 [o0]

k=0 [=0 m=0

< [ @=a0)* (v =w0) (2 = 20)™ ulzy, 2)as

1 9%HEMG(0,0,0; 2, y, 2)

X .
kLIt m! oz oyt 92" (0,y0,70)
The coeflicients of Green’s function can be ob-
tained through MATHEMATICA, and a trun-
cated sum can provide an accurate value if the

sources are relatively far.

When S is divided into several subsurfaces,
S;’s, the surface integral of polynomials derived
from the Tayler expansion becomes

25 s s 000

[ @=—a =) (-2 ulz,y,2)dS;
S,

7

x (zi — 20)F7F (yi —y0)' ™" (2 — 20)™™,

184s




where (z;,9;,2;) is a point at the center of S;. This
expression means that the integration over S is
given by combining the integration over smaller
sub-surfaces.
and can reduce the numerical computation dras-

This method is called clustering,

tically.

APPENDIX C SUB-STRUCTURE
METHOD

The two layered model used in Section 4 has
high contrast in material properties between the
top and bottom layers. Since the iteration
method is used as a solver, the BEM cannot
solve the resulting matrix equation well. The
sub-structure method is thus introduced, such
that the convergence is guaranteed even for such
a model. The procedure of the sub-structure
method is summarized as follows: 1) divide a
whole domain into several distinct layers; 2)
generate a solution satisfying the compatibility
across the boundaries of the layers; and 3) re-
peat the second procedure until the solution con-
verges. In this way, the sub-structure method can
fasten the convergence of the solution. It should
be noted that memories required to save matrix
and vector components are reduced as the matrix
equation in each layer is separately computed.
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