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A new extension for the Applied Element Method (AEM) is introduced. Using this method, the
structure is modeled as an assembly of distinct elements made by dividing the structural elements
virtually. These elements are connected by distributed springs in both normal and tangential directions.
This paper describes the applicability of the AEM for different fields of analysis and structure types and it
deals with the formulations used for RC structures under monotonic loading. It is proved in this paper that
the structural failure behavior including crack initiation and propagation can be simulated accurately with
reasonable CPU time and without any use of complicated material models.
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1. INTRODUCTION

The formulation of the Applied Element Method
(AEM) for elastic materials was introduced in Refs.
1) and 2). It was proved that displacements, internal
stresses and strains could be calculated accurately
assuming elastic material behavior. In addition, the
effects of Poisson's ratio could be considered. This
paper gives good indication that accurate results can
be also obtained in nonlinear cases.

Many numerical techniques exist for nonlinear
analysis of structures. The most famous one is the
Finite Element Method (FEM). FEM for nonlinear
case has been developed and used widely. Analysis
of continuum media, like steel structures, using the
FEM showed very high accuracy. Analysis of
cracked media, like reinforced concrete, is very
complicated because the FEM assumes that the
structure medium is continuum or uncracked. This
means that special techniques should be used to
consider the effects of cracks. Mainly two groups of
techniques that consider the effect exist. The first
group deals with mechanical behavior of cracks by
methods called "Smeared cracks®". These methods
consider cracks by adopting its effect on the
stiffness and  stress-strain  relations. These
techniques showed high accuracy in calculating
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displacements and failure loads. However, they have

four main disadvantages:

1. Models used are relatively complicated.

2. Fracture behavior cannot be accurately followed
in "smeared" crack zones.

3. Special elements should be used in the location
of dominant cracks, like interface cracks between
structural elements. Neglecting the effects of
interface cracks affects greatly the results®.
Modeling requires previous knowledge about the
location and direction of propagation of cracks.

4. Reinforcement data are input as average values
within a certain area. This means that stresses
and strains obtained by these methods are also
average values. Following stresses and strains of
a specific steel bar and/or concrete leads to many
complications in modeling before the analysis
and also leads to increase the CPU time required
for the analysis.

The other group is mainly for discrete crack
modeling® . With these methods, each crack is
taken into account as a discrete crack whose
location and propagation direction, in most of FEM
codes, should be defined before the analysis. They
are suitable only in case of few numbers of cracks.
Carrying out complicated failure behavior of
reinforced concrete elements using FEM is very
difficult. Because of limitations in representation of
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fracture behavior of the RC structures, analyses
using the FEM were mainly performed in small
deformation range and till the beginning of collapse
of the structure.

To deal with these problems, many other
methods were developed. The Rigid Body and
Spring Model, RBSM®, is one of them. The main
advantage of this method is that it simulates the
cracking process with relatively simple technique
compared to the FEM, while the main disadvantages
is that crack propagation depends mainly on the
shape, size and arrangement of the elements used” ®.
One of the recent methods to deal with fracture
analysis of concrete is the Modified or Extended
Distinct Element Method, MDEM® or EDEMY.
This method can follow the highly non-linear
geometric changes of the structure during failure,
however, the main disadvantages of this method are
that, in some cases, accuracy is not enmough for
quantitative discussion and it needs relatively long
CPU time compared with the FEM and RBSM. In
addition, the accuracy of the EDEM in small
deformation range is less than that of the FEM.

This paper introduces the numerical technique to
deal with nonlinear analysis of structures. To show
the strong points of the proposed method,
simulations are performed using RC structure
models and results are compared with those
obtained by other numerical techniques whenever it
is possible. Using the proposed method, highly
nonlinear behavior, i.e. crack initiation, crack
propagation till the beginning of collapse process of
the structure can be followed accurately with
reasonable CPU time. Behavior of total collapse
process of structure can also be followed by the
method with some additional considerations and the
formulations required for large deformation analysis.
They are introduced by other publications.
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2. ELEMENT FORMULATION &
MATERIAL MODELING

In AEM, the structure is modeled as an assembly
of small elements which are made by dividing the
structure virtually, as shown in Fig. 1 (a). Two
elements shown in figure are assumed to be
connected by pairs of normal and shear springs set
at contact locations which are distributed around the
clement edges. Stresses and strains are defined
based on the displacements of the spring end points
which are located along the axis passing through
centroid of the element. Three degrees of freedom
are assumed for each element. In this formulation,
we just use plain concrete model and steel model
and the total behavior is the summation of both.
Simply, if reinforcement exists, it affects the
stiffness matrix of the element. Therefore, total




behavior of reinforced concrete with some
reinforcement ratio can be simulated automatically.
For other details like calculation of spring stiffness,
please refer to Ref. 1).

As a material modeling of concrete under
compression condition, Maekawa compression
model”, as shown in Fig. 2 (a), is adopted. In this
model, the initial Young's modulus, the fracture
parameter, representing the extent of the internal
damage to concrete, and the compressive plastic
strain are introduced to define the envelope for
compressive stresses and compressive strains.
Therefore unloading and reloading can be
conveniently described. For more details, refer to
Ref. 3). The tangent modulus is calculated according
to the strain at the spring location. To consider the
confinement effects in compression zones, Kupfer'”
biaxial failure function is adopted. A modified

compressive strength, feeq is calculated using Eq.
(1). This indicates that the compressive resistance
associated with each spring is variable and depends
mainly on the stress situation at the spring location.
To determine the principal stress components o, and
o,, refer to Sec. 3.

- 1+3.65(0'1/02)
(1+01/0y)

After peak stresses, spring stiffness is assumed as
0.1% of the original value. This small value is
assumed to avoid negative stiffness. This results in
difference between calculated stress and stress
corresponds to the spring strain. These residual
stresses are redistributed by applying the force in the
reverse direction. For concrete springs subjected to
tension, spring stiffness is assumed as the initial
stiffness till reaching the cracking point. After
cracking, stiffness of springs subjected to tension is
set to be zero. For reinforcement, bi-linear stress
strain relation is assumed. After yield of
reinforcement, steel spring stiffness is assumed as
1% of the initial stiffness as shown in Fig. 3. As the
range of this paper is nonlinear behavior of structure
in static condition, cut of reinforcement is not
modeled in this present formulation. Because the
behavior of the structure becomes mainly dynamic
and the static stiffness matrix becomes singular in
most of cases.
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3. FAILURE CRITERIA

One of the main problems associated with the
use of elements having three degrees of freedom is
the modeling of diagonal cracking. Applying Mohr-
Coulomb's failure criteria calculated from normal
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Fig. 5 Different strategies to deal with cracking

and shear springs, not based on principal stresses,
has some problems. When the structure is really
composed of individual elements, such as granular
material or brick masonry buildings, Mohr-
Coloumb’s failure criteria is reasonable. However,
when we use elements by dividing the structure
virtually, which is not really composed of elements,
for convenience of numerical simulation, adopting
Mohr-Coloumb’s failure criteria leads to inaccurate
simulation of fracture behavior of the structure.

In the AEM, it was proved in Ref. 2) that stresses
and strains around each element could be calculated
accurately. The idea of the proposed technique is
how to use the calculated stresses around each
element to detect the occurrence of cracks. To
determine the principal stresses at each spring
location, the following technique is used. Referring
to Fig. 4, the shear and normal stress components (t
and o) at point (A) are determined from the normal
and shear springs attached at the contact point
location. The secondary stress (o) can be calculated

by Eq. (2) from normal stresses at the points (B) and
(C), as shown in Fig. 4.
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The principal tension is calculated:
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The value of principal stress (op) is compared
with the tension resistance of the studied material.
When o, exceeds the critical value of tension
resistance, the normal and shear spring forces are
redistributed in the next increment by applying the
normal and shear spring forces in the reverse
direction. These redistributed forces are transferred
to the element center as a force and moment, and
then these redistributed forces are applied to the
structure in the next increment.

The redistribution of spring forces at the crack
location is very important for following the proper
crack propagation. For the normal spring, the whole
force is redistributed to have zero tension stress at
the crack faces. Although shear springs at the
location of tension cracking might have some
resistance after cracking due to the effect of friction
and interlocking between the crack faces, the shear
stiffness is assumed zero after crack occurrence. To
consider the effects of friction and interlocking, a
redistributed value (RV), shown in Fig. 2 (b), is
adopted. For springs subjected to compression,
Mohr-Coulomb's failure criterion is used for
compression shear failure. When the spring reaches
the compression shear failure, the shear force is
redistributed and shear stiffness is assumed zero in
later increments. It should be emphasized that
adopting the "RV" factor is an approximation and
research is still needed to cover accurately the post-
cracking shear behavior. The value of RV adopted
in the analyses is 0.5.

Referring to Fig. 4, local crack inclination angle
(B) to the element edge direction can be calculated
as follows:

tan(2B)=(—-2-T——J @

G +0)

Having zero shear stress means that the crack
direction is coincident with the element edge
direction. In shear dominant zones, the crack
direction is dominant by shear stress value. To
represent the occurrence of the cracks, two main
techniques can be used. The first one is to break the
element into two segments, as shown in Fig. 5 (a),
and each of them has three degrees of freedom.
Redistribution of tension stresses is made at the
principal tension stress plane and zero shear plane.
Although this solution has four advantages which
are listed below, it has many complications.

1. The redistribution of tension stress is accurate.
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|
|
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Fig. 6 Flow of analysis

2. Crack direction inside the element can be
represented accurately.

3. Crack width can be calculated accurately and
hence, shear transfer and shear softening process
can be simulated.

4. Compression shear type of failure can be also
simulated accurately.

Complications are:

1. The number of elements increases too much,
especially if the elements used are small and the
number of cracks becomes large.

2. Time of analysis increases after cracking because
the number of elements increases.

3. The stiffness of springs at the cracked elements
cannot be calculated accurately as before
cracking. The reason is simply because each
spring cannot simulate a certain area like before
cracking?. ;

4. In case of cyclic loading, successive cracking of
the same elements leads to drastic decrease in the
accuracy of solution.

5. Numerical errors arise if the elements after
cracking have small aspect ratio.

The technique above requires some extensive
research to overcome these problems. The
alternative, refer to Fig. 5 (b), does not have the
previous complications. The idea is simple by
assuming that failure inside the element is
represented by failure of attached springs. This
means that if a spring fulfills the failure criterion,
the following steps are adopted:

1. Make redistribution of spring force.
2. Set failed springs stiffness equal to zero.
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Table 1 Brazilian test results of specimens

Fracture Criterion Case (1) Case (2) Case (3)
Number of elements 2500 3280
e e 2 IR S ‘.Lm‘ﬁ
AEM i
(Principal Stress) :
T : f i . :ﬁt B
Failure Load 125 kN
i e et
RBSM or DEM type : i
(Normal and Shear Stresses) S
Failure Load 125 kN
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(a) Normal stress in X-direction (b) Normal stress in Y-direction (c) Shear stress distribution
Fig. 7 Stress contours for a concrete cube subjected to concentrated loads (Dimensions are in meters and stresses, x 10kN/m?)
(All contours are draw at load-level 120 kN in Case (1), before cracking occurrence)

This technique is simple and has the advantage

that no special treatment is required to represent the Froposed model

cracking. In cases when the shear stresses are not 0 RESh DM

dominant, like case of slender frames, the angle (3) 2001 Ceed

tends to be zero. This indicates that the crack is 5ol \@

parallel to the element edge and hence, high z £

accuracy is expected. However, the main Ely

disadvantage of this technique is that the crack s RESM/DEM

width cannot be calculated accurately. This , (Casc2) |
indicates that post fracture behavior parameters that 0 0000 00001 000015 00002 000025 00003
depends on the crack width, like shear transfer and Displacement (m)

shear softening, can not be simulated accurately. Fig. 8 Load-displacement relation for a concrete specimen

Compression shear failure also cannot be simulated using different techniques

accurately if the fracture plane is not parallel to
element edges.
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Fig. 9 Relation between load and wall rotation

4. FLOW OF THE METHOD

The flow chart of the numerical technique is
shown in Fig. 6. This figure shows the
modifications made to the program in elastic
material case to consider nonlinear material effects.
For more details about the flow of the analysis in
elastic case, refer to Ref. 1). In each increment,
stresses and strains are calculated for reinforcement
and concrete springs. In case of springs subjected to
tension, the failure criterion is checked, refer to Sec.
3). For springs subjected to compression, new
tangent stiffness is calculated using the model
illustrated in Sec. 2. For steel springs, tangent
stiffness is determined from the bi-linear stress-
strain relation, shown in Fig. 3. The spring stiffness
matrices are constructed and assembled in the global
matrix at each increment.

5. VERIFICATION WITH
EXPERIMENTS AND OTHER
NUMERICAL TECHNIQUES

The main objective of this section is to verify the
accuracy of the proposed method in monotonic
static loading condition. The results are compared
also with other numerical techniques whenever
possible. Those simulations using different types of
2-D models show the strong and weak points of the
proposed technique.

(1) Effect of element arrangement

To verify the accuracy of the proposed method in
comparison with other numerical techniques using
rigid elements, such as RBSM and DEM, Brazilian
test simulation is performed using square shaped
concrete specimens subjected to concentrated loads.
Three different mesh configurations are used. In
Case (1), the elements are set parallel to the
specimen edges, while in the second case, the
elements are 45 degrees inclined to the specimen
edges. In the third case, the load is applied to the
diagonal of the square and the elements are parallel
to the specimen edges. The distance between
loading points is 20 cm in all cases and 10 springs
were set between each two adjacent faces. The
specimen thickness is assumed as 20 cm. Tension
resistance is assumed as 2000 kN/cm®. The results
are summarized in Table 1. Theoretical failure load
calculated by using the formula P =

o, xZxDxL/2.0 is 125 kN in Cases (1) and (2).

Assumed material property is same in all the
numerical models. In this simulation, compression
failure under the applied load is not permitted. This
effect can be seen after the failure load.

From the results, it can be noticed easily that the
obtained failure load by the proposed model does
not change for different element arrangement, while
failure load can not be calculated by RBSM or DEM
for 45° element discretization of Case (2). Although
the normal and shear stress as applying to elements
are different in Cases (1) and (2), the principal
stresses, which dominate the occurrence of cracking,

1428




do not change with the AEM. This means that
results obtained by RBSM or DEM depend mainly
on the element discretization®. This is mainly due to
the use of Mohr-Coloumb’s failure criterion based
on two components of stresses (not based on
principal stresses). This makes the results depend
mainly on element shape and arrangement.
Application of Mohr-Coloumb’s failure criterion is
suitable only for brick masonry type of structures
but not suitable for continuum materials whose
cracking behavior is dominant by the principal
stresses. ’

Stress contours, o,, Oy Ty for Case (1) before
cracking are shown in Fig. 7. It is obvious that
stresses in x-direction in the middle of the specimen
are tension while the stresses are mainly
compression under the load. Stresses (o,) are the
maximum under the applied load and stress contours
diverge till reaching the middle of the specimen.
Shear stresses are the maximum under the loading
point and it has almost no effect away from the
applied concentrated load.

(2) Two storied RC wall structure

The simulation results are compared with the
experimental results of a two-storied RC wall
structure. The size and shape of the wall,

reinforcement and loading location are shown in Fig.

9. For more details about the experiment, refer to
Ref. 12). The wall is modeled using 1,845 square
shaped elements. The number of springs between
each two adjacent faces is 10. The material
properties used are decided by following Ref. 12) as

follows: o, (for D6)=3,740 x 9.81 N/cm® while oy
(for D13)=3,240 x 9.81 N/cm?, 6.~233 x 9.81

N/em?, 6=21.3 x 9.81 N/em? and E,=1940 kN/cm?.
The wall is loaded by two permanent vertical
weight (W) together with a horizontal load "P".
Each vertical weight is equal to 187.5 kN. These
loads are kept constant during the experiment.
Figure 9 shows a comparison between measured
and calculated load-rotation relations. First, to
discuss the effects of load increment in failure
process, three models of different load increments,
calculated by dividing the estimated failure (700
kN) load by 50, 250 and 500, with the constant
number (10) of springs were used. Next, to study the
effects of the number of connecting springs between
faces, additional simulations were carried out using
the case of 250 load increment with 5 and 2 springs
between faces and the results are compared with
those obtained with 10 springs. The failure loads
calculated in all cases are within the range of 640 to
700 kN while the measured one was 670 kN. The
calculated failure load using the FEM was 640 kN2,
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-t 20000

-

2 %
g £
.8 1200 (10 springs) &
g +---- Cumulative for 50 A s 3
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Fig. 10 Relation between load and the number of failed springs

700 kN

Fig. 11 Deformed shape and crack locations of 2-storied RC wall

structure (in case of 500 increments with 10 springs between
each two adjacent faces, illustration scale factor=30)

In general, the calculated failure loads are very close
to the measured one. The results of 50, 250 and 500
increments are almost congruent up to at least 95%
of failure load. As the CPU time is proportional to
the number of load increments, the CPU time in the
case of 500 increments is about 10 times longer than
that of 50 increments. To avoid long CPU time,
relatively large value of load increment can be used
till about 90% of expected failure load. From Fig. 7,
the agreement between experimental and numerical
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results is fairly good for 250 increments with 10 or 5
connecting springs.

Surprisingly, for the case of 250 increments with
only 2 springs connecting each two adjacent faces,
the results are also reliable till reaching failure of
the structure. It is also noted that using large sized
load increments results in slightly higher failure
load (700 kN) while using a few number of
connecting springs gives slightly lower one (640
kN). Although the number of connecting springs
affects directly the calculated rotational stiffness”, it
does not affect the result as the element size used in
the analysis is small compared to the structure size.
This means that the proposed model gives reliable
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results even when using a few number of connecting
springs or relatively large sized load increments.
Although increasing the number of springs leads to
increasing the calculation time required for
assembling the global stiffness matrix, the time
required for solving equations, which is dominant
when the number of elements is large, does not
change because the number of degrees of freedom is
independent of the number of springs used. This
means that larger number of springs between edges
can be used without significant change of the CPU
time. On the other hand, when the total number of
connecting springs used is large, computer memory
capacity required becomes large.




120
100 + x
P
FEM — e
= ®
Z 80 ° New model
>y
P 0.2m
R > 0.1m
3 60+ . T
'3 0.14m
Experiment
40 + ° A5=30.4 om® 0.6m
e
M '
20 + *
* 0 6m
0.8m
0 } } } } + + } !
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

Displacement (cm)

Fig. 14 Relation between load\and displacement under the constant rate loading for RC deep beam

Figure 10 shows the relation between load and
the number of failed springs for each increment.
Cumulative curves also show the total number of
failed springs till that increment. Excessive cracking
begins to appear when the applied load is about 280
kN. At the same load, behavior of the structure
begins to be highly nonlinear. In case of large value
of load increment, many springs reach the failure
criteria at the same increment and hence, the size of
the new fracture zone developed each increment
becomes larger. This indicates that the crack is not
localized at a certain line, but in a narrow zone.
Increasing the value of the applied load increment
leads to increase the width of the zone representing
the crack. This illustrates why the total number of
failed springs in case of 50 increments (load
increment is large) is greater than that of 500 load
increments when fracture process starts.

Figure 11 shows the deformed shape during the
application of load in case of 500 load increments
with 10 springs. The location of cracks and crack
propagation can be easily observed and they are
very similar to those obtained from the experiment.
The cracks are divided into three groups. The first
group is the diagonal tension cracks, which appears
mainly in the thin wall elements. It is obvious that
diagonal tension cracks in the lower wall elements
are wider than those in the upper wall. The second
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group of cracks is bending cracks in the columns
and at the beam-column connections. Before failure,
yield of column reinforcement occurs and hence, the
crack width in the lower portion of the left column
becomes wider. The third group is the crushing of
concrete at the lower elements of the right column.
Crushing of concrete can be noticed easily at the
locations of overlapping between elements.

The above mentioned discussions show that the
proposed model can be applied for fracture behavior
of RC structures, such as, failure load, deformations,
crack generation, crack location and propagation,
etc. It should be emphasized that although the shape
of elements used in the simulations is square, it does
not affect the crack generation or crack propagation
in the material. Diagonal cracks, as shown in Fig. 11,
coincide well with those obtained from the
experiment. In the simulation using rigid elements,
like RBSM?, shapes and distributions of elements
should be decided before the simulation based on
the assumption that crack locations and direction of
propagation are known.

(3) RC frame subjected to lateral loads

The dimensions, loading conditions and
reinforcement details' are shown in Fig. 12. The
material properties used in the simulation are

decided by Ref. 13) as follows: 6,~4,620 x 9.81
N/em?, 6,=186 x 9.81 N/em?, 5=15 x 9.81 N/em’
(o, is assumed to fit the crack initiation in the

experiment) and E:=2540 kN/cm’

The frame is modeled using 1,880 elements with
10 connecting springs. The load is applied at the
shown location in 200 increments. All
reinforcement details, including stirrups location
and diameters, are taken into account. Figure 12
shows the relation between load and deformation
calculated by the proposed model and measured by
the experiment. An excellent agreement between the
two results has been achieved. Figure 13 shows the
deformed shape and crack location at the final stage
of simulation and experiment. Good agreement
between the measured and calculated crack
locations, crack inclination and crack length can
also be obtained. In both experiment and numerical
simulation, failure occurs near the base and at
connections. The left connection is subjected to
opening moments while the right one subjected to
closing moments. In both cases, cracking obtained
from the model agrees well with that obtained from
the experiment. Also, the cracks of the left column,
subjected to tension, are wider than those of the
right one.
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(4) RC deep beam

The next verification example is an RC deep
beam™. Dimensions, loading conditions and
reinforcement details are shown in Fig. 14. The

material properties of the beam are the same as
those in Ref 14) as follows: o, =3,890 x 9.81 N/em?,
o, =666 x 9.81 N/em?, o, =30 x 9.81 N/em® and

E,=3000 kN/cm® (o, and E, are assumed to fit the
crack initiation and initial stiffness, repectively, in
the experiment).

Numerical analysis is performed for half of the
beam only because of symmetry. The model is
divided into 2,700 square elements. The number of
springs between each two adjacent element faces is
10. Analysis of such type of problems is relatively
difficult because reinforcement exists only in
tension area near the support. This means that
concrete behavior in most of the beam is almost like
plain concrete. ‘

Figure 14 shows the relation between load and
deformation under the applied load given from the
experiment and simulation by the proposed
technique and the FEM'¥ which is one of the most
advanced FEM programs. It can be noticed easily
that the proposed technique gives good agreement
with the experimental results in both deformations
and failure load. The results obtained by the
proposed technique are relatively better than those
by the FEM. The measured failure load was about
880 kN. The calculated failure load using the
proposed technique is 910 kN and that by FEM is
980 kN. Moreover, the deformations before failure
using the proposed technique are better than those
calculated by the FEM.

Figure 15 shows the deformed shape during
loading. The right-down corner of the figure shows
the location of cracks obtained by the exeperiment'®.
The followings can be noticed:

1. Simulated location of diagonal tension cracks is
very similar to that obtained from the experiment.

2. Locations of high compression stress
concentration at the loading points and supports
before failure are also obvious (overlapping
between elements).

6. CONCLUSIONS

A new simplified and accurate method for
nonlinear analysis of structures is proposed. The
accuracy of the method is verified by comparing
with experiments and other numerical techniques.
This method termed Applied Element Method, has
many advantages summarized in Table 2.




Although the shape of elements used in the
simulations is square, it does not affect the crack
generation or crack propagation in the material.
Diagonal cracks can be obtained even if the crack
direction is not parallel to the element edges. Unlike
RBSM and EDEM, it was proved that the results
obtained by the proposed model do not depend on
the shape and arrangement of the elements used.
This means that no need to guess the crack location
and propagation direction before the analysis.

Inspite of simple material models used in the
analysis, the obtained load-deformation relation and
crack locations agree well with the experimental
results. As the method is developed recently, there
are not enough results compared to other numerical
models. In addition, there are several issues to be
discussed, such as the effects of shear transfer, shear
softening and crack width. However, based on the
results introduced in this paper, it can be noted that
the AEM has lot of scope in following the complete
structural behavior.
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