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According to elastic beam theory, in this paper the energy release rate is derived and calculated without
the need of a detailed analysis of the crack-tip stress and displacement fields and it is then successfully
partitioned into two parts which can reflect the mode I and modeIl components. The partitioning of
this total value is especially significant because there is considerable ambiguity regarding the values of
the energy release rate components at the tip of a crack lying along the interface between two dissimilar
isotropic media. An application of the basic solution for concrete structures strengthened with steel or

FRP plates is made to illustrate its utility.
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1. INTRODUCTION

The use of steel and fibre reinforced polymer
(FRP) materials in the form of plate bonded to the
tension face of reinforced concrete is becoming an
increasing attractive solution to the strengthening of
existing structures. Central to the performance of
the strengthened concrete structures is the transfer
of stresses from concrete to the steel or FRP plates
through a thin adhesive layer. An important failure
is the
delaminations or debondings due to the unstable

mode for such composite laminates

propagation of interfacial cracking initiating from
of defects. Such
delaminations lead to a loss of stiffness and load-

various kinds interlaminar
carrying capacity in a sudden manner. Therefore,
the fracture based energy
consideration is considered to be very powerful for

mechanics on
evaluating the
composite structures. And a suitable method to
calculate the energy release rate, ( , is necessary.

load-carrying capacity of the

There is a considerable literature of numerical

1s

analyses to calculate the energy release rate. Most
use finite elements and then compute the energy
release rate by various schemes based on node
forces’™ ?. The results are rather complex to
interpret and it seems there is scope for exploring
analytical methods which can give a clearer insight
into this problem. In the theoretical investigation of
the delamination of laminated beams, simple beam
theory has been found to be effective. A general
method is given by Williams® for calculating the
energy release rate from the local value of bending
moments and loads in a cracked laminate. This total
value is then partitioned into mode I and II
components. But the research is only restricted to
laminated beam composed of the same material.
Triantafillon and Gibson® calculate the energy
release rate for structural sandwich beams with
isotropic faces and a foam core. Suo and
Hutchinson® give the expression of energy release
rate for the split beam with a unit width subjected to
general stretching and bending. But the shear
deformation is not included in their discussion.



Toya® obtains mode 1 and II components of the
energy release rate which are expressed in terms of
the functions of the length of the incremental crack
extension Aa. It is found that values of G, /Aa
Gy [Aa Aa

approaches zero and that, hence, in contrast with the

and oscillate violently when
case for homogeneous materials, each energy
release rate should be defined as G,/Aa and
G, /Aa for an actual crack growth step size. Toya
et al.” analyze asymmetric three-point bending of a
layered beam with an interface crack by regarding
the cracked part as two lapped beams hinged at both
ends. The compliance and the total energy release
rate are then derived.

The paper studies layered composite laminate
with dissimilar materials by developing the general
method given by Williams®. The energy release rate
is calculated from the local values of bending
moments, shear and axial loads. This total value is
then partitioned into mode I and II components.
Examples are given of the analysis of several
geometry specimens including both variable and
constant ratio mixed mode tests. There is some
discussion of specimen compliance and stability
criteria for fixed load and fixed displacement.
Finally, some numerical results are given for simply
supported beams strengthened with steel and FRP
plates.

2. FORMULAS OF CALCULATION

In what follows we will consider a delamination
as shown in Fig. 1. The model beam is formed by
bonding two isotropic and linearly elastic
rectangular beams having the same width 5.
Thicknesses of the two layers are /4, and A, for
the upper and lower strip, respectively. Poisson’s
ratios and Young’s moduli of the two layers are v,
and E, for the upper strip and v, and E, for the
lower strip, respectively.

From elastic beam theory and plane section
assumption, we can easily obtain stress distribution
in the laminated beam
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Fig. 1 Loads at crack tip
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where D' = E,I, + E,I, is the flexural rigidity of
the composite beam. I, and I, are the second
moment of inertia of the upper and lower beam with
respect to the neutral axis of the composite beam,
with /' being the distance of the neutral axis from
interface
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Assume that the crack growth is da, then G
may be defined as
1 (dUe au s)

G=—
b

)

28



where U, is the external work performed and U,
is the strain energy. According to the bending
moments M, and M,, axial loads P, and P,,
and shear forces (J, and (), applied to the upper
and lower sections at the crack tip respectively, and
using the similar derivation as in 3), we may write
the expression for G as
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3. MODE PARTITIONING

This analysis is concerned with the calculation of
G and not with criteria of fracture, however, when
these are examined there is considerable evidence
that the critical values of G are different for the
opening mode I and the sliding mode I ®. It is
therefore necessary to separate, or partition, the
total G calculated in the previous section into the
opening component G, and the sliding, or shear,
component G, .

Considering the moment case first, we may note

that pure mode Il is obtained when the curvature in
the two arms is the same so that if we take notation
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and we have M on the upper arm and y, M
on the lower , then pure mode II is obtained. The
opening mode only requires moments in opposite
senses so we have M, on the upper arm and
—~M, on the lower beam so that the applied
moments may be resolved as

M, =M, +M,
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Axial forces from the uniform strain situation
give only mode I and modell arise solely from
the opposite axial forces. We may write
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Shear forces from the uniform strain situation
give rise to mode II only and opposite shear
forces give mode 1, so
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Substitute the expressions of M, and M,, P,
and P,, O, and Q, into (5). We have

G=G, +G, ®

where G, and G, are mode I and TI
components of energy release rate, respectively.
G, is components
M,, Q,, P, only and G, is associated with mode

IO components M, Q,, P,

related with mode I
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When the lower beam is very thin, for example,
the FRP sheet, then A, <<h, 1+, =1,

1+, =1, 1+¢, =1, and (10) can be
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4. MODE TEST EXAMPLES

(1) DCB Tests

The most common test of a double cantilever
beam is shown in Fig. 2. For a centrally cracked
section and for symmetrical loading, as shown in
Fig. 2(a), we have M, =Pa, M,=-Pa,
Q,=-0, =P, gving M, =Pa M, =0,

Q,=P,0,=0,50
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For the lower beam with very thin thickness, (12)
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b) mixed mode

Fig. 2 Double cantilever beam (DCB) test
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For mixed mode shown in Fig. 2(b), assuming
that the upper and lower beams contact each other
only at free end, then we have the force between the
two beams
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and neglecting the shear correction, we have pure
mode II. In this case the expressions of G are
largely simplified
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For the lower beam with very thin thickness, (15)
reduces to
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(2) A Variable Ratio Mixed Test

The test shown in Fig. 3 gives continuously
varying ratio mixed mode testing. For O<a </
we have
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Fig. 3 Variable ratio mixed mode test

with

and G, =0, ie., puremode II.

For [ <a = L, the force between the two beams
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Fig. 4 Fixed ratio mixed mode tests
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For FRP sheet strengthened beam, we obtain
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pure mode I so a complete variation in ratio is
obtained on one specimen. We can also notice that

G, increases as a increases and G, decreases as

a increases.

(3) Fixed Ratio Mixed Mode Test

Fig. 4(a) shows a three point loaded edge cracked
beam test with an off-centre crack and a loading
system such that the moment on the upper arm is
zero. Thus

M, =0 and M, =—~;—Pa

giving



M =M -T2
S (PR
8bE, 1, 1+,
- =__._l___.__1‘BM__p2a2 _._lv_Plal (19)
8bE,I, 1+, 8bD

Thus the mixed mode ratio is
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ie,puremode I at A, — 0 and independent of
a . For FRP sheet strengthened beam, we obtain

Gy
=i . 20
G, 20)

- . 2a2

T 8BE,I,

1 (1 1
Gy =— | ——-= P2 21
LY (Ezlz D) 4 @D

Fig. 4(b) shows a cantilever version of this test
which is only a slight variation on the mode I
test in Fig. 2(b). Here M, =0 butM, = -Pa and
the results are four times those given in Fig. 4(a).

(4) Transverse Splitting From Notches

The general method developed here may be
applied to the situation illustrated in Fig, § in which
the crack ¢ runs normal to the notch. Such a
configuration occurs when the notches are normal
to the fibre direction in composites but the failure is
transverse splitting normal to the notch and is a
possible way of modeling damage.

For the case of tension a moment is induced on
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Fig. 5 Transverse splitting from notches
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For the three point bend configuration shown in
Fig. 5(b) the moments are M, =P(L-c)/4
andM, =0, so that
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5. COMPLIANCE AND STABILITY

Most delamination tests measure load, crack
length and load point displacement so the latter
provides a method of determining £/
independently or checking on the value of a if an
expression for the compliance is known. This may
be done using conventional beam theory directly
but a more convenient method is via dC/da and
the expression for G in terms of load
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where C, is the compliance with no crack present.
For the mode I DCB in Fig. 2(a) we have

1
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since C, =0 in this case. Here the shear

correction is neglected. For a uniform specimen in
which I, and 7, are constants we have
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Thus if EI is not known G, may be obtained
from P, & and a and, if it is, then a check on
the value of a used may bevia P and &.

Stability is an important factor in both testing and
design and is controlled by the rate of change of G,
ie., dG/da . Practical behavior will be determined
by material properties such as how G, varies with
a in resistance curve effects, but some special
specimen conditions are important in all cases. It is
often very convenient to have a test in which G
does not vary with a (dG/da = 0) so that for a
constant G, value a driven crack will run at

2/3
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constant load. For the DCBmode I case, this is

. a’ 1
achieved when —:| ——+
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) = constant.

Specimens driven by stiff machines operate as
constant displacement systems if the crack moves
forward quickly. If dG/da is positive then this
will tend to be unstable since G increases with a.
(It may not necessarily be in practice, of course,
since dG, /da may also be positive). The
condition of whether dG/da is positive or
negative at constant §, is, however, of practical
interest and may be defined in general via
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where '=d/da etc. for case of b =const it can
be simplified
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For the DCB mode I case with a uniform
section
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ie, ['=1/3, and the fracture is stable. It is easy
to verify that fracture is again stable when shear

correction is considered.
For the mode I DCB test, Fig. 2(b)
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is
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For the fixed ratio mixed mode test shown in Fig.
4(b) we have
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For ao=z1 the growth is all unstable but for
o <1 there is a transition from unstable to stable
behavior as the crack grows.

Finally, for the transverse splitting cases
discussed in Section 4.4 we may note that in the
tension case (G is not a function of the crack
length sothat C

isa linear function of crack
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Fig.6 Debonding at the tip of a bonded reinforcement

length, I" =0 and the test is always stable. For the
constant load systems we have dG/da =0 and the
test is also always stable. In bending G decreases
as crack length grows and thus the test is stable for
both constant load and constant displacement cases.

6. ENERGY RELEASE RATES IN
BEAMS STRENGTHENED WITH FRP
OR STEEL PLATE

The practical utility of the proposed method is
illustrated by several examples of concrete beams
strengthened by FRP and steel plates. Although
FRP sheet is not isotropic, we conclude that the
method in this paper can be used to study FRP-
strengthened beam since the bending moment and
shear force in FRP are very small and can be
neglected. Materials chosen are concrete with
Young’s modulus of E, =3.25x10°kg/cm?, and
Poisson’s ratio of v, =0.16 for the upper beam
and FRP plate with E, =2.3x10°kg/cm® and
v, = 0.3 or high modulus type of FRP plate with
E, =545x10°kg/em® and v, =03 for the
lower beam. The thickness /A =15cm, width
b=10cm, and span / =75cm are chosen. The
unit load P =1kg is applied at the center of the
beam.

(1) Debonding at the Tip of a Bonded Reinforce-
ment
Using above method we obtain

. =%P(a+d), M,=0
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Fig. 8 A laminated beam containing an edge crack
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so that we obtain the total energy release rate of
FRP strengthened plate as shown in Fig. 7. Here the
thickness of FRP plate is 0.1cm. From Fig. 7 we
conclude that for a certain fixed value of a, energy
release rate increases as d increases, and so when
used to strengthening concrete beam, FRP should
be bonded on the whole tension face as possible.
Debonding is more likely to occur for a shorter FRP
length. The same conclusion can be obtained for
beam strengthened with steel plates.

(2) Laminated Beam Containing an Edge Crack

As is shown in Fig. 8, an edge local delamination
occurs. We have
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From these expressions and (10) we can easily

obtain the energy release rate components and the
total value as shown in Fig. 9.
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Fig.9 Variation of energy release rate with crack length
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It can be concluded from Fig. 9 that energy
release rates are almost the same for beams
strengthened with FRP and steel plates because of
similar Young’s moduli and Poisson’s ratios.
Energy release rates increase as the increase of FRP
thickness and crack length. It means that for thicker
FRP and steel plates or longer interfacial crack
debonding is easier to appear.

(3) Interface Crack Embedded in a Laminated
Beam
Using the expression of internal forces obtained
in reference”, we can compare the numerical result
of total energy release rate for FRP strengthened
beam here with” as shown in Fig. 11. It is obvious
that the curves are in good agreement. This
confirms the accuracy of the analyses in this paper.
Variations of energy release rate components and
total value with crack length for FRP strengthened
beam are shown in Fig. 12. It can also be seen that
energy release rates increase as the increase of FRP
thickness and crack length. However, further
confirmation by making comparison investigations
between the analysis and experimental findings is
considered to be necessary, especially for the case
of the structures strengthened with thin FRP sheets
or plates, because the stress field is considerably
localized.
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Fig.12 Variation of energy release rate with crack length

7. CONCLUSIONS

The examples given cover most of the test
geometry used in testing laminates and also suggest
some useful configurations for mixed mode tests. In
all cases the general method enables the G, and
G,; components to be found easily thus facilitating
test method development and the exploration of

I2s

mixed mode fracture criteria. Some insight into post
crack propagation behavior can be deduced by
considering the system compliance and associated
stability criteria. Finally three-point bending of a
simply supported layered beam with an internal
interface crack or edge interfacial crack was
analyzed. Concrete beam strengthened by FRP and
steel plates belongs to this category. Numerical
results show that the method in this paper possesses
high accuracy.
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