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A technique based on the principles of finite element method incorporating the contact element,
called discrete finite element method (DFEM), to model masonry structures consisting of blocks
of arbitrary shapes is developed and adopted in the static and dynamic analyses of masonry
structures. The DFEM considers blocks as sub-domains and represents them by solid elements.
Contact elements, which are far-superior to joint or interface elements, are used to model the block
interactions such as sliding or separation. The applicability of the DFEM to static and dynamic
analyses of structures such as towers, walls and arches of masonry type are checked and discussed.
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1. INTRODUCTION

Masonry structures, consisting of interacting
distinct blocks, have been constructed since the
earliest days of civilization. They are still com-
monly practiced in many countries all over the
world and constitute a significant percentage of
the current civil engineering structures stock.
Many of these structures are located in seismic
regions and were built before the establishment
of any design-code requirements for earthquake
resistant construction. Compared with modern
structures built of materials with well under-
stood constitutive laws, the mechanics of ma-
sonry structures are still not clearly understood
in spite of their long use in civil engineering his-
tory. The failures and damages reported in re-
cent earthquakes attest to the need for efficient
strengthening procedures and therefore an effi-
cient analytical method for analysis of masonry
structures.

The analyses of masonry structures has been
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receiving a particular interest among civil engi-
neers. In recent years, several techniques have -
been developed to analyze rock masses consist-
ing of distinct blocks in the field of rock me-
chanics. The limiting equilibrium analysis)2)
and some numerical analysis methods such as
the finite element method (FEM) with joint or
interface element®~%, distinct element method
(DEM)®), and discontinuities deformation anal-
ysis (DDA)?) can be accounted for. In spite of
all these techniques, it is difficult to say that a
unique technique, that guarantees satisfactory re-
sults, is developed. Although DEM and DDA
can be used for static and dynamic analyses
of masonry structures, the treatment of rate-
dependent behavior of materials in these methods
is nothing to do with the actual ones. For exam-
ple, DEM introduces a forced damping to sup-
press oscillations. DDA adopts very large time
steps so that artificial damping occurs as a re-
sults of numerical integration.



Mamaghani and Aydan proposed the discrete
finite element method (DFEM) for blocky sys-
tems under static loading which is based on the
principles of the finite element method®—12). In
this study, the DFEM is extended and applied
to the analyses of masonry structures under dy-
namic loading. It consists of a mechanical model
to represent the deformable blocks and contact
models that specify the interaction among them.
In the DFEM, a visco-elastic constitutive law for
linear behavior and a visco-elasto-plastic consti-
tutive law for nonlinear behavior of blocks and
contacts are used together with the updated La-
grangian scheme. The DFEM can handle with
large block motions within the framework of the
finite element method. In this paper, first the
modeling of block contact discontinuities and
DFEM formulation are presented. Then, the
DFEM is used to analyze static and dynamic re-
sponses of some typical masonry structures, such
as, one block on an incline, arches, pyramids,
walls, and towers. Some of the results are com-
pared with those obtained from other techniques
and the applicability of the DFEM to static and
dynamic analyses of such structures are checked
and discussed.

MODELING OF BLOCK
CONTACT DISCONTINUITIES

2.

Discontinuum is distinguished from continuum
by the existence of discontinuities at contacts be-
tween the discrete bodies that comprise the sys-
tem. The actual geometry of contacts are never
smooth and has asperities of varying amplitude
and wave length®!3)-15)  Relative sliding or
separational movements in such localized zones
present an extremely difficult problem in me-
chanical modeling and numerical analysis. The
formulation for representing contacts is very im-
portant when a system of interacting blocks is
considered, and it has been receiving a consider-
able interest among researchers.

There are two fundamental theoretical models,
namely Hertz’s model and Mindlin’s model'6), for
modeling contacts. However, these models are re-
stricted to a very simple geometry and the elastic
behavior of adjacent materials. Since the config-
uration of contacts and the mechanical behavior
of adjacent materials are generally coniplex, the
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experimental techniques is probably the only way
to deal with contact problems. In this respect,
the direct shear test technique is one of the most
suitable techniques to characterize the behavior
of contacts.

There have been mainly three kinds of model-
ing to interpret and to utilize the responses mea-
sured in direct shear tests:

1. Force-displacement type modeling®:17),

2. Stress-displacement type modeling®, and

3. Stress-strain type modeling (band type

modeling)®5):13),

In Force-displacement type modeling, contacts are
assumed to have a zero thickness without an ex-
plicit definition of contact area A.. The responses
measured in direct shear tests are directly used in
numerical representations. As the responses are
likely to differ depending upon the size of speci-
mens in tests, it is not a universal and objective
approach.

The second type modeling is probably the most
widely used approach in numerical analyses. The
contacts are again assumed to have a zero thick-
ness. Although it is much better than the first
type modeling, the test results are likely to be
influenced by the sample size and it is still a sub-
jective one.

The most suitable and mechanically sound ap-
proach is the band type modeling. Contacts are
considered as bands with a finite thickness. The
thickness of the bands is related to the thick-
ness of shear-bands observed in tests or in na-
ture, and if exists, the height of asperities along
the plane®-13):14) For an idealized contact shown
in Fig. 1, the average normal and shear stresses
and strains are defined as follow:
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where A and h are the area and the thickness
of the band; F, and F, stand for the normal
and tangential forces; and é,, and §, denote the
normal and tangential deformations, respectively
(see Fig. 1). Furthermore, it is also possible to
define the average strain rates €, and 7. As are-
sult, this model also enables one to define stress-
strain rate dependent responses, objectively. The
problem is, then, to select a constitutive model
such as an elastic, elasto-plastic or elasto-visco-



Fig. 1 Mechanical model of a contact as a band

plastic type constitutive law which is appropriate
for modeling the mechanical behavior of contacts.

3. DISCRETE FINITE ELEMENT
METHOD (DFEM)

The DFEM suggested in this study, in assess-
ing the stability of rock block systems, is based
on the finite element method. It consists of a
mechanical model to represent the deformable
blocks and contact models that specify the inter-
action among them. The deformation of blocks
is assumed to be small unless they are allowed to
rupture. Small displacement theory is applied to
the deformable blocks while blocks can take finite
displacement. The large deformation of blocky
systems is associated with the separation, trans-
lation and rotation of blocks. Blocks are poly-
gons with an arbitrary number of sides which are
in contact with the neighboring blocks, and are
idealized as a single or multiple finite elements.
Block contacts are represented by a contact ele-
ment.
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(1) Mechanical modeling
The general equation of motion is given by

V-o+b=pi (2)

where o, b, p, ,’'u are stress tensor, body force,
density and acceleration respectively.

The following presentation is restricted to the
framework of the small-strain theory. The strain-
displacement relations are:

1
€= §(Vu+(Vu)T) (3)
The strain rate-velocity relations are:
E= %(Vv+(Vv)T) (4)

where v = 1.
The following constitutive relationship among
stresses and strains and strain rates holds:

o = D.e+ D,é (5)

where D, and D, are elasticity and viscosity
tensors'®). However, they can be replaced by
elasto-plastic and visco-plastic tensors if neces-
sary. This type constitutive law allows us to
model intact blocks as well as contacts, interfaces
or rock discontinuities.
The boundary conditions are

w=@ on Iy, t=o-m on I
where # is the surface traction in the n direction
on boundary I'y and @& is the displacement on
boundary I',. While initial conditions are

Uo, ug at t=0
(2) Finite element modeling

In the followings, the finite element form of the
equation of motion is derived. Taking a variation
on 6u, the following integral form of the Eq. (2)
can be written as

/ (Vo). udQ+ / b-buds =
Q Q

/ pu-bud  (6)
Q

With the use of the Gauss divergence theorem
and the boundary conditions, the weak form of
the governing equation takes the following form:

/ £-5udl + / b-Sud) —
Ty Q

/Q o-(V6u)d + /Q pi-bud  (7)

Eq. (7) is discretized in space domain by as-
suming displacements are approximated by the



following expression

u = NU(1) 8)
where N is the shape function. Using the above
approximate form and the constitutive law the

following expressions in a condensed form are ob-
tained for a typical finite element®

MU +CU +KU =F (9)
where
M= | pNTNdQ,C= | BTD,BdQ,
Qe Qe
K= | BTD.BdQ,
Qe
F= / NTBIQ + NTtdr
Qe Tie

(8) Finite element modeling of block
contacts

The contact element is used to model block
contacts. Let us now consider a two-nodded
element (I,m) in a two-dimensional space and
take two coordinate systems (ozy) and (o'z'y’)
as shown in Fig. 2.

Assuming that, the strain component gy, is
negligible, the remaining strain components take
the following form:

! £ y,

g‘z—,y Valy' = g;l,‘—/ (10)
Let us assume that the shape functions are linear
such that:

1 1
N ’2’(1_5)7 Ny = 5(1'*'5) (11)
where & = (=22’ + 2} + z},,)/L, L = (2] — z7,)-
Then, the relation between the strains and nodal
displacements becomes

Egtgl =

vl
Epg | 11 -1 0 10 v/
Yoy [ L| O =1 0 1]|) U
Vin

(12)

Thus, the stiffness matrix of contact element in
the local coordinate system is explicitly obtained
as

K0 -k 0
0 k! 0 —K
! — 8 8 1
K=l 4 o & o (8)
0 -k 0 K
in which

kZ:En'"";‘éc—‘i’ Ky = G- /AC 7

zh, — ) zl, — ]
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Fig. 2 Finite element modeling of a contact

where A, is the contact area, E,, and G are nor-
mal and shear elastic moduli of discontinuity, re-
spectively.

The stiffness matrix in the local coordinate sys-
tem is then transformed to the stiffness matrix in
the global coordinate system by the following re-
lationship

K =TTK'T (14)
where
cosf sind 0 0
e sinf cosf 0 0
0 0 cosf siné
0 0 —siné cosé

Ym — Y1

6 =tan™! (»»-——)
Ty — T

The viscosity (damping) matrix of contact el-
ement in local coordinate system can be also ob-

tained in a similar manner as given below

d, 0 —=d, 0
0 d 0 -
i} — 8 8 x4
¢ -d, 0 ¢ 0 (15)
0 —d, 0
in which
A A

CLZEZ';,—:C?> &=0 jm/

m 1 m 1

where E and G% are normal and shear viscos-
ity moduli of discontinuity, respectively. In the
above equations, the values of coefficients in the
stiffness and viscosity matrices, as well as the



value of § are affected by updating geometrical
changes of blocks and contacts.

It is worth noting that on the basis of simpli-
fication of the finite element modeling of block
contacts, using the small strain theory for mod-
eling of the large deformation, a small error is al-
ways present on the computed strains of contacts.
Nevertheless, such an error is quite negligible as
the geometry of the block system is incremen-
tally updated, which allows to take into account
the effect of higher order terms in the definition
of finite strain tensor.

NUMERICAL RESULTS AND
DISCUSSIONS

4,

In this section, some typical numerical results
of masonry structures obtained by the DFEM
will be presented and discussed. In the numer-
ical study, when the inertia term is considered,
contacts and blocks are assumed to behave as an
elasto-visco-plastic material or a visco-elastic ma-
terial. On the other hand, if the inertia term is
omitted, then the behavior of contacts and blocks
are assumed to be elasto-plastic or elastic.

In all analyses reported herein, tensile strength
of contact element was assumed to be zero.
Mohr-Coulomb yield criterion was implemented
in the present codes. Nevertheless, one can easily
implement any yield criterion, which is appropri-
ate for the plastic or visco-plastic behavior. Con-
tact area A, was assumed to be a half of the area
of the side of a block to which the contact ele-
ment is attached. The thickness of the bands was
taken as twice the weighted asperity height. Tak-
ing into account the results reported by Aydan
and Shimizu!®), the thickness of the bands was
selected as 10 mm. The secant stiffness method
together with updated Lagrangian Scheme was
employed to deal with non-linear behavior. The
constant strain triangular element with two de-
grees of freedoms at each node, formed by prop-
erly joining the corners and contact nodes of an
individual block, was adopted for finite element
meshing of the blocks®). "However, it must be
noted that the method is not restricted to the
use of such elements and one can easily imple-
ment finite elements of chosen nodes.

The flow chart for static analysis is shown in
Fig. 3. The analysis is a pseudo time stepping
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Load Increment

incremental procedure. First the initial config-
uration of the structural system, boundary con-
ditions and material properties are input. Then
iterations are carried out by forming the global
stiffness matrix and solving equilibrium equa-
tions of the system. Later the strains and stresses
of elements are computed. The no-tension con-
dition and Mohr-Coulomb’s yield criterion are
checked and the excess forces at contacts are ap-
plied to the updated configuration as the penalty
load in the subsequent iteration until the norm
of excess force vector converges to a very small
value of convergence tolerance. The computa-
tion is terminated when a stable configuration
is achieved or the global stiffness matrix be-
comes ill-conditioned as single or multiple blocks
tends to move without any interaction with each
other corresponding to the failure of the system.
The details of the numerical algorithm and com-
putational procedure are given in the work by
Mamaghani®).



(1) Analysis of masonry structures under
static loading

In the case of all numerical analysis under
static loading, the material properties of intact
blocks; Lame’s constants A = 56 GPa and p = 21
GPa, and unit weight p = 25 kN/m® and the
properties of contacts; normal stiffness E, = 50
GPa and shear stiffness G = 0.5 GPa are used.
a) Stability of one block on an incline

A very simple, yet meaningful problem ana-
lyzed by the DFEM is the stability of one block
on an incline. The theoretical kinematic condi-
tions for sliding and toppling of one block on an
incline, under gravity, have been given in a chart
by Hoek and Bray® (hereafter referred to as H-B
chart). The H-B chart with the friction angle be-
tween the block and the incline ¢ = 20° is shown
in Fig. 4. In the H-B chart, four modes of behav-
ior, namely, (a) stability, (b) sliding without top-
pling, (c) sliding and toppling, and (d) toppling
without sliding are delineated by four boundaries
I, II, III and IV. The DFEM is applied to study
the stability of one block on an incline, and the
results are compared with those predicted by the
H-B chart.

For a methodical comparison, the slope an-
gle, o, and the aspect ratio of the block, v =
arctan(b/d), (b = breadth; d = height of the
block, see Fig. 4) were varied systematically,
while friction angle, ¢, was fixed at 20°. Different
symbols representing different modes of behavior
obtained by the DFEM are plotted on the H-B
chart as shown in Fig. 4. As can be seen from
these plots, the results by the proposed method
are in complete agreement with the theoretical
results. Since the validity of the theoretical so-
lutions are also validated by experiments!)?), it
can be concluded that the DFEM is a promising
method for studying the mechanics of blocky me-
dia. It is worth noting that the results for total
behavior of a block or a pile of blocks on an in-
cline are given in the authors previous works?'2).
b) Masonry arch

As a second example, the stability analysis of
a masonry arch structure is considered. The di-
mension of the blocks perpendicular to the zy
plane is taken as w = 1.0 m , see Fig. 5. The
arch is stable under its own weight. It is still sta-
ble when the distributed uniform traction force
per unit horizontal area over the arch is less
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Fig. 5 Failure mode of a masonry arch

than 1.47 kN/m?. However, if the traction force
reaches that level, then the arch starts to be
unstable. Fig. 5 shows the configurations of
the arch at different iterations which may be re-
garded as fictitious time.
c¢) Masonry pyramid

In the next example, a masonry pyramid struc-
ture was analyzed. The dimension of the blocks
perpendicular to the zy plane is taken as w = 1.0
m, see Fig. 6. This structure is found to be sta-
ble under its own weight and for small values of
lateral loads Fy and F3 which are applied at a
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Fig. 6 Failure mode of a masonry pyramid

single step and are equally shared with two corner
nodes of the upper and lower blocks in contact
at the location of applied loads as shown in Fig.
6. However, the configuration becomes unstable
when the lateral loads are increased to F; = 4.9
kN and Fy = 127.4 kN. The failure mechanism is
shown in Fig. 6. As seen from the figure, blocks
slide and some of the contacts are separated with
the increasing number of iterations.

(2) Analysis of masonry structures under
dynamic loading

This section is concerned with several applica-

tions of the DFEM to dynamic analysis of ma-

sonry structures. In the analysis, the foundation

of the structures was subjected to two types of

lateral acceleration waves; Acc. No. 1 with a
large period:
Acc = 0.8te”%5sin(t) x 981 (16)

and Acc. No. 2 with a small period:
Ace = 0.8te™%%sin(3t) x 981 (17)

in which ¢ = time and Acc = lateral acceleration
in gal, as shown in Fig. 7. The assumed acceler-
ations are used to check the response of analyzed
masonry structures by DFEM under two differ-
ent wave forms. The material and mechanical
properties of blocks, foundations and contacts

Table 1 Material properties of rock blocks and contacts

Rock Blocks Contacts
Parameter Value Parameter value
\ (MPa) 30 E, (MPa) 5.0
u (M Pa) 30 Gs (MPa) 2.5
X (MPa.s) 30 E! (MPa.ss) 5.0
w (MPa.s) 30 E! (MPa.s) 2.5
p (kN/m?) 25 h (mm) 5.0
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Fig. 7 Imposed lateral acceleration waves on foundation

are given in Table 1, where A and p denote
Lame’s constants, and p, E,, Gs, h and ¢ indi-
cate unit weight of rock mass, elastic modulus,
shear modulus, band width of contact elements
and friction angle, respectively. In all examples,
the time step was chosen as 0.2 second.



a) Masonry tower
Figs. 8(a), 8(b) and 8(c) show the initial
and deformed configurations of a masonry tower
at the time steps of 22 (4.4 seconds) and 50 (10
seconds) corresponding to the Acc. No. 1 and
Acc. No. 2, respectively. For plotting the initial
and deformed configurations (see Fig. 8(a)), in
this example and all examples reported hereafter,
the displacement in the deformed configurations
is amplified by 50 times to make more visible the
mode of failure (deformed configuration) from
the initial configuration. Fig. 8(b) shows that
when the tower is subjected to Acc. No. 1, there
is a sliding at the base of the tower at time step 22
and the most upper blocks start to detach at the
top of the tower. At time step 50, relative sliding
and separation occurs along block contacts and
the two most upper blocks tend to topple in two
opposite directions. Fig. 8(c) shows that, un-
der Acc. No. 2, there is no sliding of the tower
at the base while the most upper blocks of the
tower are separated and tends to topple at time
step 22. At time step 50, there is a relative slide
at the base of the tower and blocks are slid and
detached along block contacts. Fig. 9 shows the
displacement response versus the number of time
step for a nodal point at the top most right cor-
ner of the tower (monitoring node) corresponding
with both of the imposed acceleration waves. As
shown in Fig. 9, the toppling of the top most-
right block of the tower is more severe under Acc.
No. 1 as compared with the Acc. No. 2.

Comparison of the responses in Figs. 8 and 9
also show that the failure mode of the tower de-
pends to the nature of the imposed acceleration
wave. The tower shows relatively stable behavior
under Acc. No. 2 with a small period as com-
pared with that of the Acc. No. 1 with a large
period at the time step 22. However, the tower
does not return to its original position and ceases
to be stable at the end of shaking under both of
_the imposed form of the acceleration waves, see
Fig. 8 for time step 50. It is worth noting that,
as shown in Fig. 8, the response of the tower is
quite similar to those may be expected in actual
earthquakes.
b) Masonry wall

Figs. 10(a), 10(b) and 10(c) show the initial
and deformed configurations of a masonry wall
subjected to the Acc. No. 1 at time steps of 22

82s

SCALE (4m)
—

(a) Initial Configuration

[

A

) P A/ LZ
Time step 22 Time step 50
(b) Ace.No. 1

\
[T

FY ya)
Time step 50

Time step 22
(¢) Ace. No.2

Fig. 8 Initial and deformed configurations of the masonry

tower
3~

Acc. No. 1
o W Acc. No. 2

U

Displacement (cm)

Number of time step

Fig. 9 Displacement response with time at the top most-

right corner of the tower



SCALE (4m)
i

(a) Initial configuration

| |
[ [ [ ] ]

A A JAY

(c) Time step 50 (10 seconds)

A A A A A

(b) Time step 22 (4.4 seconds)

— b

g |

?)4_ Acc. No. 1

g

Q@

3

Z2r

2
O ] i ]
0 0 20 30 40 50

Number of time step
(d) Response of the top most-right corner

Fig. 10 Initial and deformed configurations and displacement response with time of the masonry wall under

Acc. No. 1

(4.4 seconds) and 50 (10 seconds), respectively.
The displacement response for a nodal point at
the top most-right corner of the wall with time is
shown in Fig. 10(d). As shown in Fig. 10(b),
there is a sliding at the base of the wall at time
step 22 and detaching of the blocks occurs start-
ing from the top of the wall. At the time step of
50 (10 seconds), there is a relative sliding at the
base of the wall and separation and rotation of
blocks occur within the wall, see Figs. 10(c) and
10(d). The blocks within the wall are separated
along the vertical discontinuities and are formed
columns which tend to topple in two opposite di-
rections. The tendency of toppling is more severe
for the most outer columns as compared with the
inner columns, as shown in Fig. 10(c) .
c) Masonry arch

Figs. 11(a), 11(b) and 11(c) show the initial
and deformed configurations of a masonry arch at
the time steps of 23 (4.6 seconds) and 50 (10
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seconds) subjected to the Acc. No. 1 and Acc.
No. 2, respectively. Fig. 11(b) shows that the
arch is slid at the base at the time step 23 under
Acc. No. 1 and the crown blocks of the arch
starts to fall apart while the side columns are
still stable. Fig. 11(b) shows that, under Acc.
No. 1 at the time step 50, the arching action
disappears and the crown blocks fall apart. The
columus slide relative to the base and they tend
to topple in two opposite directions. The blocks
tend to separate within the side columns, see Fig.
11(b) for the time step 50.

Fig. 11(c) shows that, under Acc. No. 2 at
the time step 23, there is no slide at the base
of the arch while the crown blocks are separated
and tend to fall apart. At the time step 23, the
side columns of the arch exhibit relatively stable
behavior under Acc. No. 2 as compared with
the Acc. No. 1, see Figs. 11(b) and 11(c).
However, under Acc. No. 2 at the time step 50
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Fig. 11 Initial and deformed configurations and displacement response with time of the arch

(10 seconds), the side columns of the arch slide at
the base and the arching action disappears while
the blocks start to fall apart. As expected, the
toppling (failure) modes of the side columns of
the arch differ depending on the nature of the
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imposed form of acceleration waves, as shown in
Figs. 11(b) and 11(c) for the time step 50.
Fig. 11(d) shows the displacement responses
with time of a nodal point at the top most-right
corner of the arch corresponding to the Acc. No.



1 and Acc. No. 2. The results in Fig. 11(d)
indicates that, as expected, the displacement of
the side column of the arch with time is much
severe under the Acc. No. 1 as compared with
the Acc. No. 2, specially in the early stage of
loading.

Figs. 11 (b) and 11(c) show that, under
both of the imposed acceleration waves, the re-
action of the toppled columns forces the crown
block to move upward. This is because of the ge-
ometrically symmetric configuration of the struc-
ture and outward inclination of the crown block
contact interfaces at the center of symmetry, see
Fig. 11(a). As can be realized by examining
the displacement response curves in Fig. 11(d),
the real value of the upward displacement is very
small as compared with the dimension of the
crown block. It should be noticed that in Figs.
11(b) and 11{c), the displacement is amplified
using the illustration scale factor (50 times the
actual scale) to make the failure mode of the
whole structure more visible.

Although the examples discussed above are
very simple structures, they illustrate the fun-
damental features of the developed DFEM. It is
also possible to consider and analyze more com-
plicated masonry structures by the DFEM. Nev-
ertheless, more experimental information is re-
quired on the constitutive parameters of blocks
and contacts before conducting the analysis of
such structures.

5. CONCLUSIONS

The present paper contains some computa-
tional results of a research program aiming at de-
velopment of rational and robust numerical tech-
niques for the analysis of masonry structures. At
this stage, a technique based on the finite ele-
ment method incorporating the contact element
to model block interactions, called discrete finite
element method (DFEM), is considered. The
DFEM was applied to study the response of ma-
sonry structures under static and dynamic load-
ing conditions. It is found that the DFEM is
a promising method for studying the mechanism
of masonry structures. The following conclusions
have been drawn from this study:

e The suggested scheme calculates displace-
ments at the joints as well as deformation
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within the blocks, which can be used to fol-
low the processes of the failure mechanism
of blocky structures under static as well as
dynamic loading.

The scheme is entirely based on the finite ele-
ment method and it has been shown that the
proposed method is capable of simulating
large displacement of blocky systems, such
as masonry walls, arches and towers.

The proposed hyperbolic scheme is still in
its formative phase for which both exper-
iments on viscous characteristics of blocks
and contacts as well as numerically stable
time-discretisation scheme are felt to be nec-
essary.

Although the examples given here are very sim-
ple structures, they demonstrate the fundamen-
tal features of the DFEM. It is also possible to
consider and analyze more complicated masonry
structures by this method. However, more exper-
imental data are necessary on the constitutive pa-
rameters of blocks and contacts before perform-
ing the analysis of such structures. The authors
believe that the DFEM could be of some help to
researchers and engineers as an engineering com-
putational tool to understand the mechanism of
masonry structures as well as to develop meth-
ods for the earthquake resistant design of such
structures.
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