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A new method to simulate soil-structure interaction effects in shaking table tests has been presented recently
by the authors. In the method, analog circuits or digital signal processors are used to produce soil-foundation
interaction motions in real time. Their expressions of interaction motions are based on published rigorous
formulations of impulse response functions of foundations on or in layered soils of semi-infinite extents.
This paper introduces in its first half a method for simulating soil-structure interaction effects in shaking
table tests along with some pieces of equipment contrived for better control of shaking tables. The latter half
then describes a simple example of soil-structure interaction simulations.
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1. INTRODUCTION

'Such devastating events as the Sounth-Hyogo
Earthquake of 1995 seem to have stimulated a sharp
rise in the demand for huge shaking tables that allow
models weighing more than a thousand tons for
example to be tested. Shaking tables are usually
driven by servo-hydraulic actuators so that they
follow closely input seismic motions. However, a
shaking table, when heavily loaded with a structure
model to be tested, interacts with the model, and this
interaction often causes the table’s motion to deviate
from the intended time history. Recent advances in
adaptive control theory have certainly enhanced the
controllability of shaking tables to a great extent"?,

! This paper is translated into English from the Japanese
paper, which originally appeared on J. Struct. Mech.
Earthquake Eng., JSCE, No. 598/1-44, pp. 203-210,
1998. 7.
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and yet, the motions of a table often have to be
adjusted, through iterative trials, to the intended base
motions by modifying the input time histories.
Generally, the larger a table is, the more difficult it is
for the table to be controlled at will.

A large table with improved performance is
certainly a necessity in a lot of earthquake-related
research. However, faithful reproduction of free-
field ground motions on the table may not
necessarily be adequate, because actual structures
interact with their foundations and the surrounding
soils in real earthquakes, causing the ground motions
at the structures’ bases to deviate from the free-field
ground motions. This dynamic interaction is a
phenomenon associated with the influx and efflux of
energy which is generated by the earthquake
excitation and transmitted through the soil-structure
interface. It is noted that the difference between the
influx and efflux is exactly the energy stored up



Fig. 1 Seismic soil-structure interaction with sub-
structure method

within a structure, and thus, is closely related to the
extent of damage to the structure. If these interaction
effects are rationally simulated in shaking table tests,
one will obtain the necessary pieces of information
for interpreting the failure processes of prototype
structures in terms of energy.

Konagai and Nogami** * have recently developed
a method to produce soil-structure interaction effects
in a shaking table test on a structure model, without
using a physical ground model. In their method,
soil-structure interaction effects are simulated by
adding appropriate soil-structure interaction motions
to the free-field ground motions on the shaking table.
Their expressions of soil-structure interaction
motions are based on published rigorous
formulations of flexibility functions and/or impulse
response functions of foundations resting on or
embedded in homogeneous or layered soils of semi-
infinite extents. In general, radiation damping will
cause the total damping of a soil-structure system to
be greater than that of the structure itself. Thus,
incorporation of soil-structure interaction effects in a
shaking table test will lead to a reduction in the
demands on the capacity of the table, and the
structure model may not necessarily be shaken too
forcibly. However, real-time adjustment of the
shaking table’s motion is definitely a prerequisite for
the present method, and one cannot do it through
iterative trials.

This paper introduces in its first half a method for
simulating soil-structure interaction effects in
shaking table tests, in addition to some pieces of
equipment contrived for better control of shaking
tables. The latter half then describes a simple
example of soil-structure interaction simulations
using the present method.

2. APPROXIMATION OF SOIL-~
STRUCTURE INTERACTION MOTIONS

A soil-structure system is divided into two
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Fig. 2 System for soil-structure interaction simulation

substructures, the super-structure and the unbounded
soil extending to infinity; the latter includes an
embedded foundation as illustrated in Fig. 1. In the
lower substructure of soil, an earthquake will cause
soil displacements, {uf } . The foundation embedded
in this soil deposit, however, will not follow the
free-field deformation pattern. This deviation of the
displacements from the free-field soil displacements,
{u-/ } , is denoted by {u"} . The mass of the super-
structure then causes it to respond dynamically, and
the forces, {p}, transmitted to the lower substructure
of soil and foundation will produce further
deformation of soil, {u} (inertia interaction), that
would not occur in a fixed base structure. Thus, the
displacements of soil, {u}, are eventually expressed
by the following equation as:
fuf = o/} + o+ fu') M
Consider the case that a foundation has two degrees

of freedom in sway and rocking (x, @) at the base of
its super-structure as illustrated in Fig, 1. The

interaction forces, {p} (={p, pg}T ), from the
super-structure cause the inertia interaction motions,
{u"} , in the frequency domain to be:

{u%}ZI:HXX(S) HXH(S)}{px} (2)
Uy Hy () Hgy(s) || Ps

H xx (S) H x@ (S)
- 3
e |- Ga)

is the flexibility (compliance) at the top of the
foundation, and
s=i-w

where,

(3b),
in which i=+/-1 and o is the excitement circular
frequency. In the present method, a shaking table’s




motion is controlled directly following the above-
mentioned process of soil-structure interaction. Fig.
2 shows a schematic view of the set-up in a shaking
table test for earthquake simulation, in which a
superstructure model is placed directly on the table
without a physical ground model. The soil-structure
interaction effects are simulated by adding
appropriate soil-structure interaction motions to the
free-field ground motions at the shaking table. In the
simulation, first, the transducers at the base of the
foundation pick up the signals of the base forces, p,

and p, in sway and rocking motions, respectively.

These two amplified signals are then applied to the
circuits H,., H,, H, and H, to produce the

outputs corresponding to the soil-structure
interaction motions, u, and uj. The output signals
are then added to the signals of the base input
motions, «/ +u and u] +u}, to produce the signals

of foundation motions, «/ +u +u, and u) +uj +uj.
The method is, thus, based on the premise that
u/ +u} and u +u; are known beforehand as the

base input motions. The signals of the foundation
motions are finally translated into the shaking table
motions by the shaking table controller.

This method, therefore, requires a device that can
generate signals identical to the transient motion of
its base on a soil medium of infinite extent. Rigorous
and approximate expressions of unit-impulse
response functions for lateral, vertical and rotational
vibration modes of a foundation have been presented
by a number of researchers (Meek and Wolf> ¥,
Nogami and Konagai® ). Reviewing these
expressions, Konagai and Nogami®* ® showed that
they are closely approximated by summing up
exponential and/or exponentially decaying sine and
cosine functions of time #, the functions being easily
produced by simple analog circuits and/or digital
signal processors, namely,

h(t) = A;h, (1) )
0
where, 4, are unknown constants, and
hi(t)=e " cos(w,t—¢,) 5)

with @, = time constant, @, =circular frequency
that can be zero, and ¢, =phase lag. Applying the

Laplace transform to equation (5) leads to:
(st+a;)-cosg, +w; sing,

H,(s) = (6)

(s+a,) +0,
From equation (6), it is found that the Laplace
transform of equation (4) eventually has a rational

47s

s exact (Kanya and Kausel, 1982)
- quo —O0—m=2 g,=03,06
x 3 # m=4 a,=0204,0608
2 & real part
& [s/r,=3 S s eonsactiobEannes
g \v{?% P e YN
E Al N%@@@@ imaginary part
E | Sy
-2 L

0.2 0.4 1.0

dimensionless frequency a,=2r, /v
i

0.6 0.8

Fig. 3 Dynamic flexibility of 3 X3 pile group
for harmonic loading

form that is described as:
a,s" +a, s"" +-+a,s+ H(0)

H(S): m m-1
b,s" +b, 8" +-+bs+1

(7

where, a, and b, (j=1,2,--,m ) are unknown
constants, and m<2n. The constant, a
zero as far as

> must be
the Laplace transforms, H,(s),

(equation (6)) for different values of j are added up.
However, the constant, q,,, is intentionally left in
equation (7) for a more general expansion of the
present method. Equation (7) is rewritten as:

{S}a} = H(0)- H(s) (8)
where,
{s}:{—s’” ~s s"H(s) sH(s)},(9a)
and
{al={a, - a b, b} (b
The 2m unknown constants included in the

coefficient vector {a} are determined in such a way
that {a} allows the approximate expression of
H(s) described in equation (7) to best-fit its rigorous
values in a desired frequency range. Since equation
(8) should be satisfied for both its real and imaginary
parts, m values of s are first taken within this
frequency range. Then, m pairs of equation (8) (real
and imaginary parts) at these particular points of s
eventually make up a set of 2m simultaneous
equations, and solving the linear simultaneous
equations, one obtains all the coefficients in {a} .

It will be worthwhile examining how closely the
expression in equation (7) approximates rigorous



solutions of flexibilities. Fig. 3 shows the variation
of flexibility, H_, at the cap of a 3x3 pile group

(Kanya and Kausel”) with respect to the
dimensionless frequency, a, (=2nw/v, =2rs/iv,).

The parameters, 5, and y_, are the radius of pile and

the shear wave velocity in the surrounding soil,
respectively. There are two numerical examples of
simulation shown in this figure; one with the number
of unknown constants 2m set at 4 (¢, = 0.3 and 0.6),

another with 2m =8 (4, =0.2,0.4, 0.6 and 0.8). The

larger the number of coefficients is, the more closely
the approximate expression fits the rigorous values.
It is, however, noted in this figure that even a small
number of coefficients (2m = 4) eventually allow the
close approximation to be realized over almost the
entire extent of the frequency range (0<q, <1) in

this figure. The number of coefficients for
approximation should be reduced to some allowable
minimum. Meek and Wolf» ¥ have developed
approximate expressions of flexibility functions for
vertical, sway and rocking motions of a rigid mat
foundation (radius =, ) on a homogeneous half-

space. Their expressions are interpreted in such a
way that the allowable minimum of the number of
coefficients is eight (2, =8) in order for a close
approximation to be obtained within the frequency
range, 0<a,<5. As for an embedded rigid

foundation, Konagai and Nogami” ¢ have

demonstrated that the same number of coefficients
allow the flexibility function to be closely
approximated for its rocking motion within the same
frequency range.

3. PRESENT SYSTEM

(1) Equivalent analog circuits

Electric signals can be controlled by using analog
circuits. The first-level units in the circuits are
operational amplifiers and passive elements
(resisters and capacitors).” These units form an
adder (Fig. 4a), an amplifier (Fig. 4b) and an
integrator (Fig. 4¢) which add several different input
signals (e,,e,,---e,) together, multiply an input
signal, e,, by a scale factor, g, and integrate a signal,
e,, respectively. The functions of both the adder and

the amplifier can actually be realized by one sole
circuit called a “scaled adder”. For the sake of simple
explanations, however, they are separately shown in
Figs. 4a and 4b.

Setting the number m at 2 in equation (7), for

[}
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Fig. 5 Analog circuit to generate

example, the input and output signals, e, and e, of

the circuit for producing the interaction motion u"
should satisfy:
ay +a,s+a,s’

H(s) = (10)

eO
by +b,s+bys* ¢
Introducing an unknown quantity ¢, the above
equation (19) can be separated into the following two

equations as:

eozao%+alg+a2q (11a)
N
e =by L 15, L1byq (11b)
5 N

With the expression in equations (11a) and (11b), the
circuit that is capable of generating e, to an arbitrary

input signal e, is designed as shown in Fig. Sa. The
input signal e; and two additional signals, which will

be shown later identical to —¢/s* and -b,-q/s,
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Fig. 6 Basic response functions generated by
the present analog circuit (0.1 s/div.)

are added together first by the adder (al) and then
multiplied by 1/5, by the linear amplifier (b1). The
output signal in the above process is g according to
equation (11b). Noting that integrating a signal is
equivalent, in the frequency domain, to dividing its
Fourier spectrum by s, integrators (e1) and (¢2)
produce signals ¢/s and g/s*, respectively. After
these two signals go through linear amplifiers (b2)
and (b3) with scale factors -4, and -1 respectively,
they become -5,-g/s and ~q/s*, and return to the
adder (al): whereas linear amplifiers (b4), (bS) and
(b6) produce H(0)-g/s*, aqg/s and aq
respectively, which are added together by the adder
(a2). It is now clear from equation (1la) that the
output of the adder (a2) is identical to the signal e, .

Fig. Sb shows a model for a test try of Fig. 5a-
equivalent circuit. Five pairs of knobs are for tuning
the five scale factors in Fig. Sa. In Figs. 6a-6¢
examples are shown for the transient response of the
circuit (@, =55 s ;=157 s to an impulse

(rectangular pulse of 5V, duration time = 10 ms).
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Fig. 7 Equivalent spring-damper system supporting a
rigid mat foundation

Only tuning the parameters to prescribed values
allows any of the basic response functions to be
generated.

(2) Controller of shaking table

It is noted that the system illustrated in Fig. 2 is
realized on condition that a shaking table loses no
time in producing faithfully its input motion, {u}
(= {u/} + {u"‘ }_Jr{“r}). The motion produced by the

shaking table, however, is not exactly identical to the
intended time history because the ratio of output-to-
input amplitude of the shaking table system does not
remain the same over the desired frequency range.
The performance of the system’s transfer function is
also affected by the presence of models on the
shaking table; this fact may cause the motion of the
table to further deviate from the intended time
history. A controller with the transfer function T
normally performs like a low pass filter, and
experiments on the table are conducted below its
cut-off frequency. Below this frequency yet, there
remains a time delay Ar between the produced
motion and the input signal. The effect of the time
delay, described in the frequency domain as
T=e ', could be canceled by multiplying the
flexibility function H by T7'. Assuming that the
performance of a soil-foundation system is
approximated by that of a simple-damped oscillator
with a spring X, a dashpot C and a mass M (Fig. 6),
the flexibility function A, is expressed as:
! (12)
K-a*M +ioC
Thus, the cancellation of the time-delay effects is
made by

H_ =

xx

eiwAt

K-o*M +ioC
For smaller values of @Af, equation (13a) is

H.T (13a)

xx

1N

rewritten as:



Fig. 8 Servo-amplifier

1

H.T = (13b)
= K = (M = AM) +io(C - AC)
where,
AM =C-At (14a)
AC=K-At (14b)

Equation (13b) shows that the equivalent mass and
the viscous damping coefficient are reduced by CAr
and K-Ar , respectively. The reduced mass M - AM
and the damping coefficient C —~ AC must be positive,
calling for:

% (152)
M 0
AC _Ar_ (15b)
c 1,

with
1,=C/K (16a)
1, =2nIMIK (16b)

The above conditions (equations (15a) and (15b)) are
usually satisfied in reality for many cases of soil-
structure interaction, because radiation of waves
from a foundation leads the motion of the structure to
be noticeably damped.

It is, however, necessary for the time delay to be
minimized when equations (15a) and (15b) are not
satisfied. One possible measure for reducing the time
delay is to increase the feedback gain of a servo-
amplifier of the shaking table (Fig. 8). In Fig. 8, u,,
and u,, are the input signal and the signal of the
motion produced by the shaking table, respectively.
The deviation of the produced motion from the input
signal, u,,, —u,,, is multiplied by a negative factor
— B, and is added to the input signal u,,. The
following relationship between u;, and u,,, is then

satisfied with the original transfer function of the
controller itself ( g=0) denoted by G:
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Fig. 9 Effect of feed-back gain on shaking-table
transfer function

Uy = G(uin + ﬁ(uin = U )) (17)
From equation (17), the overall transfer function T
is described as:

7= Yo _

G+Gp (18)
uw, 1+Gp
It is noted in equation (18) that 7 comes closer to 1
as the feedback gain, g, increases. The servo-

amplifier shown in Fig. 8 was built in a one-
dimensional shaking table system to check its
performance. Fig. 9 shows that a servo-amplifier
with a larger value of g offers more significant

improvement in expanding the frequency range in
which the ratio of output-to-input amplitude remains
almost constant with little phase-shift. The increase
of g, however, leads to a decrease in the margin for

unstable clattering of the table that is caused by the
noise echoing through the closed circuit of the
servo-amplifier.

4. EXPERIMENT

In order to provide a proper perspective on the
usefulness of the present method, a simple example



Fig. 10 Upright beam on shaking table

Table 1 Parameters of cantilever

width | height | thickness Bending density
(m) (m) (m) stiffness £/ P
MNm?) | (kg/em®)
0.3 1.8 0.008 2132.5 0.00801
Table 2 Soil properties
Density p, shear wave Poisson’s ratio
(kg/cm3) velocity v, (m/s) v
0.0016 4.8 0.5
Table 3 Parameters for foundation
Radius r, thickness d density p,
(m) () (kg/em’)
0.8 0.1 0.0025

of simulation of soil-structure interaction effects is
introduced herein. Eight steel plates (2000 mm X
300mm X 1 mm) were fastened together with rivets
arranged in a grid to form a simple cantilever. The
cantilever was then fixed upright on a shaking table
with six degrees of freedom, as shown in Fig. 107,
because it was expected that the bending of the
cantilever would cause a rocking motion in its
foundation. The feedback gains, g, of the servo-
amplifier for this shaking table are set at 0.53 and
0.41 in respect to horizontal and rocking degrees of
freedom. Mechanical properties of the cantilever are
listed in Table 1. The cantilever is rather flexible,
with its natural frequency set approximately at 1Hz,
so that interaction forces (both shear force p, and
moment p,) are easily measured by bonding strain
gages to the lower end of the cantilever. This flexible
cantilever was assumed to be mounted virtually on a
circular rigid mat foundation (radius (ry) = 1.2 m,
thickness (d) = 0.2 m, Table 3) resting on a soft
semi-infinite half-space of soil (v, = 9m/s, Table 2).
Meek and Wolf? ¥ have developed a unified
approach for soil-structure interaction analysis by
using truncated semi-infinite cone models
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half space of soil

Fig. 11 Mat foundation and equivalent discrete
element model
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Fig. 12 Input base motion u7 + u)

representing an unbounded soil medium. According
to their approach, the soil supporting a rigid mat
foundation is idealized for each degree of freedom as
a truncated semi-infinite elastic cone with its own
apex height z; (Fig. 11). They also showed that the

stiffness parameters for sway and rocking motions
are approximated by those of discrete element
models illustrated in Fig. 11. The flexibility, H,,(s),
of the discrete-element model

direction is described as:
1

in horizontal x

Hyp(s) = ——— (19)
sC, +K,
where,
Py 2, 2
K=ttt 0 (20a)
Zy
C, = py, -y’ (20b)

and v, is the shear wave velocity propagating
through the cone that dominates the stiffness within
considerably high frequency range. The apex ratio
z,/7,, or the opening angle of the cone, is
determined by simply equating the static stiffness
coefficient of the disk on the semi-infinite soil half-

space to that of the corresponding cone, and is given
by:



2=22-v) (20¢)

o
As far as the rocking motion of the disk is concerned,
arotational cone should be discussed. The flexibility,
Hyy(s), of the equivalent-discrete-element model in

rocking motion is described as:

1 1
RS
H,,(s) =t g 21
R R s
Cé) MG
where,
2
K, =21 (22a)
Zg
CG = psv]O (22b)
My =pzol, (22¢)
with Iy =(x/4)r, (22d)

The velocity v is assumed to be identical to that of
the longitudinal wave traveling through the cone
when Poisson’s ratio of the soil is less than 1/3. For
larger values of Poisson’s ratio, v is setat2v,. The

apex ratio z, /r, of the rotational cone is:
Zo

2

9 v

20 22 - =
7, 32( v)(vs}

0

(22¢)

In actuality, the lateral and rocking motions of a
foundation are coupled, and the present method
illustrated in Fig. 2 allows the effect of the coupling
to be simulated. The coupling effect, however, is
ignored in this simulation. Equations (19) and (20)
indicate that the present example is described by
equation (7) with m set at 2.

As has been mentioned, electric-resistance strain
gages were used as a sensing device for both shear-
force and moment. A pair of strain gages were
bonded on both sides of the lower end of the
cantilever to sense the strain in the cantilever
resulting from the bending motion of the cantilever.
The outputs of strain gages are then connected to an
appropriate bridge circuit that produces a signal
proportional to the bending moment. Another pair of
strain gages were then pasted 10 cm above them, and
the measurement of moments at these two points
permitted a determination of the shear force at the
lower end of the cantilever. It is noted that the
moment and the shear force sensed by these strain
gages are not identical yet to the interaction forces,
p, and p,, on the soil-foundation interface. The
interaction forces are to be evaluated taking into
account the inertia forces of the foundation virtually
resting on the half-space of soil. For this evaluation,
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Fig. 13 Accerelation at the top end of upright beam

both lateral and rocking accelerations, i, and i,,
were measured on the shaking table, and the signals
of i, and i, were multiplied respectively by the
r’d), and the
moment of inertia, M, (=p . d+M
Mmzp

beneath the foundation, and is given by:
M., = 1.2(\/ - %)pxloro

A horizontal impulse shown in Fig, 12 was given to
the shaking table as an effective foundation input

motion, u; +uj, and the acceleration response at

foundation mass, M, (=p, -7
), where

trap

is the contribution of the soil mass caught

(23)

the top end of the cantilever was measured. The
dotted line in Fig. 13a shows the acceleration time

history without the interaction motions, %, and u,,

being added; whereas the dotted line in Fig. 13b
shows the response affected by the interaction
motions. Thick lines in these figures show the
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Fig. 15 Howling observed at the top end of upright beam

computed responses of the discrete element model in
Fig. 11. In this numerical simulation, the finite
difference method was utilized to obtain the
solutions in the time domain. The thick and dotted
lines are in good agreement in both figures; this fact
clearly demonstrates that, for the simulation of soil-
structure interaction motions, the present method
works properly as expected. These figures show that
incorporating the effect of the interaction motion
leads to the increase of damping and to the slight
decrease of natural frequency as well. Although only
horizontal base motion was given to the shaking
table, bending motion of the cantilever eventually
caused the shaking table (the virtual foundation) to
rock as shown in Fig. 14. The observed rocking

motion, #,, is also in good agreement with the

numerical simulation (thick line).

The present system is conditionally stable as is
often the case with feed-back control systems.
Especially when a structure model with low damping
ratio is shaken, the motion of the shaking table
sometimes echoes through the circuit causing a
serious clattering (howling) of the table. Fig, 15
shows one example of clattering that happened
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before the table was properly heated up and
stabilized. The predominant frequency of the noise is
11 Hz, and is about identical to the fourth natural
circular frequency of the model. When the
predominant frequency is higher than the frequency
range in which the desired signal exists, a low-pass
filter may be used to reduce the noise. It is however
noted that the use of a low-pass filter causes the
response of the table to be more delayed. Some
built-in device such as an adaptive echo canceller'”
would be useful for further improving its
performance. Detailed study on this improvement
will be addressed in a later publication.

5. CONCLUSIONS

A new method for a model experiment on a shaking
table has been presented. The present method allows
soil-structure interaction to be simulated. The
conclusions of this study are summarized as follows:
(1) In the present method, soil-structure interaction
effects are simulated by adding appropriate soil-
structure interaction motions to the free-field ground
motions at the shaking table. A variety of unit-
impulse response functions of bases or soil mediums
overlaid with structures are closely approximated by
summing up basic functions which can be generated
by simple analog circuits and/or digital signal
processors. This method thus has the potential to be
applied to a variety of experiments of soil-structure
interaction without preparing any physical soil
model.

(2) The present system is realized on condition thata
shaking table produces faithfully its input motion.
The motion produced by the shaking table, however,
is not exactly identical to the intended time history
because the ratio of output-to-input amplitude of the
system does not remain the same over the frequency
range desired. The performance of the system’s
transfer function is also affected by the presence of a
model on the shaking table, a fact that may cause the
motion of the table to further deviate from the input.
This effect will be canceled by multiplying the
flexibility function, H , of a soil-foundation system

by the inverse transfer function, 7' 1 of the shaking
table system. This manipulation, however, leads to
reducing both the mass, M, and the viscous damping
coefficient, C, making up the discrete element model
equivalent in mechanical properties to the soil-
foundation system. Needless to say, the reduced
mass, M —AM, and the damping coefficient,
C—AC, must be positive. The conditions are



usually satisfied in reality for many cases of soil-
structure interaction because wave radiation from a
foundation leads the motion of the structure to be
noticeably damped. If not, it would be necessary for
the time delay to be minimized. One possible
measure for reducing the time delay is to increase the
feedback gain of a servo-amplifier of the shaking
table. It is, however, noted that the increase of
feedback gain leads to a decrease in the margin for
unstable clattering of the table that is caused by the
noise echoing through the closed circuit of the
servo-amplifier.

(3) In order to provide a proper perspective on the
usefulness of the present method, a simple upright
2,000 mm long steel cantilever was shaken on a
shaking table. The observed responses of the beam
showed that incorporating the effect of the
interaction motion leads to the increase of damping
and to the slight decrease of natural frequency as
well. The numerical simulations were in good
agreement with  the  observed  responses,
demonstrating that the present method for the
simulation of soil-structure interaction motions
works properly as expected. It is, however, noted that
unexpected noise amplification can cause serious
problem in operating the shaking table when a less-
damped structure model is tested on a shaking table.
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