Structural Eng./Earthquake Eng., JSCE, Vol. 16, No. 1, 21s—30s, 1999 April

(J. Struct. Mech. Earthquake Eng., JSCE, No. 619/ I —47)

FORMULATION OF IDENTIFYING MATERIAL
PROPERTY DISTRIBUTION BASED ON
EQUIVALENT INCLUSION METHOD

Muneo HORI! Toshihiro KAMEDA?and Naoyuki HOSOKAWAS3

!Earthquake Research Institute, University of Tokyo (Yayoi, Bunkyo, Tokyo 113-0032, Japan)
*Institute of Engineering Mechanics, University of Tsukuba
(Tenoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan)
3Tokyo Gas Company (Kaigan 1-5-20, Minato, Tokyo 105-8527, Japan)

A new formulation of an inverse problem of identifying a material property distribution is pro-
posed. The formulation is based on the equivalent inclusion method which solves a heterogeneous
body problem using a homogeneous body. Two linear inverse problems are obtained, and, due to
the linearity, the limitation of identifying the distribution is clearly seen. Two illustrative problems
are studied. For the first problem, quantities which can be identified and those which cannot be
determined are clarified. For the second problem, the stress distribution is obtained by measuring
strain distribution, even though the constitutive relation is not known.

Key Words : inversion, inverse problem formulation, equivalent inclusion method

1. INTRODUCTION

It is a challenging problem to identify a material
property distribution in a heterogeneous body using
data of limited quality and quantity regarding to its
responses. This is an inverse problem, and a huge
amount of researches have been carried out in vari-
ous fields of engineering and science; see Tanaka and
Bui? and Bui® for a concise list of related refer-
ences; see also Kubo?). In particular, the identifica-
tion of the material property distribution from data
measured on the boundary is practically important.
In civil engineering, typical examples are the identi-
fication of the permeability distribution, the velocity
structure, and the damaged area?:?); see also related
references®:7)+8). While the difficulty in solving these
inverse problems is pointed out on a mathematical
point of view, it is not fully understood how much
information can be obtained from the measured data.
Such information is required in order to increase the
available data by further measurement, and to identify
the unknown properties more accurately even though
the full identification is not possible.

In general, the formulation! of identifying a mate-
rial property distribution is straightforward. As re-
sponses of a heterogeneous body are given as a solu-
tion of a boundary value problem, the identification is
formulated as an optimization problem, i.e., the ma-
terial property distribution is determined as the one

! In this paper, the formulation means just to pose a
mathematical problem. Solving the posed problem is
called the analysis, even though we need to formulate
some equations for the analysis. The formulation and
the analysis are thus distinguished.

that minimizes a suitable error, which is defined as
the difference of the responses computed by assuming
a certain distribution of material property from the
corresponding data that were actually measured. In
this formulation, however, it is not easy to see the ac-
curacy of the identification, since the dependence of
the responses on the material property distribution is
complicated. Furthermore, the difference between the
computed responses and the measured data does not
yield a sensitive measure to tell the accuracy; a large
error in predicting the material property distribution
far from the measured point may result in a small dif-
ference.

In this paper, we propose a new formulation of iden-
tifying material property distribution, based on the
equivalent inclusion method? such that the limitation
of the identification is clearly seen. The equivalent in-
clusion method replaces a heterogeneous body with a
homogeneous body containing fictitiously introduced
field variables, and solves the boundary value prob-
lem for the heterogeneous body using the solution of
the homogeneous body problem. According to this
method, a set of two inverse problems are formulated;
the fictitious field variables in the homogeneous body
are first identified from the boundary data, and then
the material property distribution is determined from
the identified field variables. These two inverse prob-
lems are linear to the unknown field variables and
the unknown material property distribution, respec-

2 The equivalent inclusion method was originally pro-
posed by Eshelbylo) to solve an ellipsoidal inclusion
problem in an elegant manner; see Nemat-Nasser and

Hori!?) for related references.



tively. Due to the linearity, it becomes transparent
to distinguish quantities which can be identified from
given data from those which cannot be determined,
and hence the limitation of the identification is clari-
fied.

This paper is organized as follows: Section 2
presents the formulation of the inverse problems based
on the equivalent inclusion method. Identifying an
elasticity moduli distribution is considered as a sim-
ple example, though the formulation can be easily ap-
plied to other material properties, such as permeabil-
ity, thermal conductivity, etc. Two illustrative prob-
lems are studied in Sections 3 and 4. The first problem
is a typical identification problem to find a permeabil-
ity distribution for a heterogeneous porous medium,
The second problem® is the identification of unknown
elasto-plastic constitutive relation. The formulation
of the inverse problems based on the equivalent inclu-
sion method is presented for the two examples, and
the limitation of the identification is discussed through
numerical simulation and theoretical analysis.

To simplify mathematical expressions, we use both
index and symbolic notations in this paper; for in-
stance, displacement is denoted by u or u;. In the in-
dex notation, the summation convention is employed
and the derivative with respect to an z; coordinate
is denoted by a comma followed by a suffix ¢. In the
symbolic notation, -, : and ® stand for the first and
second order contraction and the tensor product, re-
spectively, and V is the differentiation operator.

GENERAL FORMULATION OF
INVERSE PROBLEM

2.

As a simple example, we consider a linearly elastic?
heterogeneous body, V. The distribution of the elastic
moduli, a field of a fourth-order elasticity tensor (C),
is the target of the analysis.

We consider a case when both displacement and
traction are measured on some part of the boundary,
S, as uw = u and ¢ = t; see Fig. 1. The displacement
is fixed on T = &V — S. An inverse problem of iden-
tifying C' is usually formulated as the minimization
problem of the following functional:

J(C) = /S (t(@;C") - E(@)? dSz. (1)

Here, t is traction on S when C' is assumed, and
computed by solving the following problem:

(Chu@) ma@: ) =0V,
ui(@; C') =wi(x) ons, @
wi(z; C') =0 onT.

The dependence of t on C' is complicated, as the so-
lution w is not linear with respect to C'.

3 This inverse problem is also formulated in the same
manner as the above two problems, regarding un-
known plastic strain as unknown field variables.

4 The small deformation and the quasi-static state are
assumed, though the proposed formulation can be ap-
plied to a more general setting.
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Fig. 1 Heterogeneous Body V

The equivalent inclusion method solves Eq. (Eq.
(2)) using a homogeneous body, V°, of the same con-
figuration as V; see Fig. 2. Let the constant elastic-
1ty tensor of V° be C°, and define a fictitious stress as
o* = (C—-C°) : €°, where €° is a (yet- unknown) strain
field of V. This o* is calledeigenstress® or polarized
stress. Then, Eq. (2) is rewritten as

Ceiunii(z; o) + of(®)=0 inV°,
ui(z; o) = Ui(x) on S, 3)
wi(z;0%) =0 onT.

While o* is yet unknown, we can solve Eq. (3) for any
arbitrary o*. The associated strain field is formally
expressed as € = e(x;0*), and o* must satisfy

(Cz] kl (il)) (4)

This is an integral equation for o*, called consistency
condition. When o* is obtained by solving Eq. (4) the
strain and stress fields produced by this o* coincide
with those in V.

The equivalent inclusion method replaces (un-
known) C with (unknown) o*. Hence, we consider
the following two inverse problems:

1. determine o* from Eq. (3) with the traction

boundary data

2. identify C from Eq. (4) using o*.

Now, we can formulate a linear inverse problem for o*
instead of a minimizing problem similar to Eq. (1).
We decompose u = MW" + 419 and pose the follow-
ing boundary value problems in view of Eq. (3):

z]kl)ekl(m o ) - Ulj(w)

(Dh

C@]kluk li (Cl?) =0 in Vov
(l)h(m) =u(z) onb, (5)
M(x) =0 on OV° —
and
Cz]klulc ii Has0%) + o(®)=0 inVe,
L De " (6)
U; (mva ) 0 on V.

As s seen, u(M4 is linear to o* in a sense of u(V4(a* +
o) = uDd(a*)+uM4(o*). Usingf instead of @, we

5 See also Sakurai® who seeks to identify inelastic
strain of a body with unknown inelastic properties.
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Fig. 2 Equivalent Inclusion Method

can derive another decomposition of u = (2" 4 4, (2)4
where w9 is linear to o*. Herc - *he first inverse
problem of o* is formulated as

uZ(l)d(w; o*) — u,(.z)d(m; o) = ——ugl)h(m) + uEQ)h(:c).
(7)
Appendix presents an explicit expression of Eq. (7)
using formal® Green functions of V°.

Once o* is determined, we can formulate the second
inverse problem of C as

Cisn(@)ely) (x;07) = O (z;0%) + 05 (@), (8)

where €1 is the strain determined from uM* 4+ (14,

The strategy of formulating a pair of inverse prob-
lems can be applied to other material properties in-
cluding non-linear cases, if suitable eigenfields and
(non-linear) consistency conditions are introduced.
The key is the replacement of the heterogeneity with
the eigenfield such that a boundary value problem is
posed for a suitable linear homogeneous body. We
can expect two advantages’ for the present formula-
tion (in particular Eq. (7)), even though eigenstress
is included as additional unknown field variables. The
first is the linearity. Such linearity clarifies the validity
as well as the limitation of analysis methods which are
applied to solve these inverse problems. The second
is that the data measured on the boundary are used
to identify a second-order tensor field o*, instead of a
fourth-order tensor field C.

5 The solution presented in Appendix uses formal Green
functions in a sense that they cannot be obtained un-
less numerically computed. In the subsequent sec-
tions, we apply the finite element method to solve the
inverse problem, not the boundary element method.

" It should be emphasized that the proposed formula-
tion does not change the nature of the problem, and
does not identify quantities which cannot be deter-
mined by using other formulations.
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EXAMPLE 1: PERMEABILITY
IDENTIFICATION

3.

Two illustrative problems of identifying a material
property distribution are studied in the present and
next sections. The main objective is to examine the
advantages of the formulation of the inverse problems
based on the equivalent inclusion method.

As the simplest example, we consider a two-
dimensional heterogeneous porous medium!? and
seek to identify the distribution of permeability, K,
using pressure and flow data on some part of the
boundary, p = p and v = ¥ on S. Note that the dis-
placement, strain and stress ((u,€,0) or (u;, €;,055))
and the elasticity tensor (C or Cjjr) in the elastic
body problem correspond to the pressure, pressure
gradient and velocity ((p, ¥, ¢) or (p,1;,¢;)) and the
permeability tensor (K or K;;) in the porous medium
problem.

First, we briefly summarize the equivalent inclu-
sion method applied to the porous medium problem.
When the pressure boundary data are used, the pres-
sure satisfies

(Kij(z)p,j(x)) ;=0 inV,
p(x) = p(zx) on S,
p(z)=0 on 8V — S.

The equivalent inclusion method introduces a homoge-
neous medium V'° with a constant permeability tensor,
K, and replaces the heterogeneity with the eigenve-
locity, ¢*, such that Eq. (9) becomes

9)

Kipij(®;0") + ¢7,(x) =0 in Ve,
p(x; ¢") = p(x) on S,
plz; ") =0 on 8V° — S.
(10)
The eigenvelocity satisfies its definition,
(Kij (®) — K3);(z;¢") = ¢ (). (11)

We formulate a set of two inverse problems to iden-
tify unknown K from measured  and 7. Since Eq.
(10) and Eq. (11) correspond to Eq. (3) and Eq.
(11), we transform Eq. (7) and Eq. (8) to the inverse
problem of ¢* and K. That is,

pM(z; ¢*) — pP (a5 9%) = —pWh () + pP (),
(12)

Kig(@)gf (@;6") = Ky (@:0°) + 9 (@). (13)
Here, pM" and p®* are due to 5 and © on S in the
absence of ¢*, p{V¢ and p(®¢ are due to ¢* for zero
pressure and flux on S, and z/)(l) is the pressure gradi-
ent associated with p* 4 p(4: see Appendix A for
a more explicit expression of Eq. (12). It should be
emphasized that both p()? and p®)? are linear to ¢*.

We consider a square V' consisting of N? square re-
gions with distinct anisotropic permeability tensors.
The pressure and flow are measured at two horizon-
tal edges of V, and the flux is fixed on two vertical
edges. In the finite element analysis, we have 3N?2
unknown permeability tensor components and 2N — 1



Fig. 8 Squere V with Heterogeneous Permeability Tensor

measured quantities; see Appendix B. If, say, 2NV pres-
sure data are used to solve a boundary value prob-
lem for p, then, 2N — 1 independent flux data are
regarded as extra information. A homogeneous V°
is constructed with the same manner as V; see Fig.
3. Since In a discretized form, it is easier to use for
the pressure gradient than the pressure, we obtain
p0E — pOr) " _(p(h — p@R) ; from Eq. (12),
and express it in the following matrix form:

[Agrp][6p] = [A¢1],

where [Agrp] is a 2N% x 2N? square matrix, and [¢}]
and [Ay;] are 2N? vectors corresponding to ¢* and
—(p* — p@)h) .- see Appendix B for the brief expla-
nation of Eq. (14).

We consider a case of N = 3. The components of
the permeable tensors used for V' and V° are sum-
marized in Table 1. After solving a boundary value
problem of V, an 18 x 18 matrix [Ag;p] and 18 vec-
tor [Ayp] in Eq. (14) are computed by solving the
corresponding boundary value problems of V°. The
matrix [Agap] is not invertible and has the rank of
11, since the independent data are 7. Using eigenvec-
tors of non-zero eigenvalues of [Agap], we can obtain
a solution of Eq. (14) in the following form:

[67) = [o7] + 1951,

(14)

(15)

where [5:3] is a part of [¢}] which can be determined
from [Av4), and [¢}] is a part which cannot be de-
termined as they satisfy [Agrp] {5}] = [A¢y] and
[Agrp]l¢¥] = [0]. Figure 4 shows the distribution
of [:5;] It also shows [¢}] which is computed as the

difference of the exact eigenvelocity and [?j)—*p} While

[¢¥] is not determined, [a*p] produces almost the

same pressure gradient and velocity fields in the ho-
mogeneous body as those in the heterogeneous body;
see Fig. 5.

In the numerical computation shown above, the ref-
erence permeability tensor K° is chosen as the per-
meability tensors of elements of the top and bottom
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Table 1 Permeable Tensors

[type1 [ type2 | K° |

K| -] -2|-L
Ko | -1| -2|-2
K 0. 0.| o
[
o1 | ¢ T |
L
[o] - +
-
1]+ | ||
R

Fig. 4 Determined and Undetermined Eigenvelocity Compo-
nents
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Fig. 5 Comparison of Fields due to Eigenvelocity with Actual
Fields

rows, such that eigenvelocity vanishes there. As a
more general setting, we use different K° (K3, = 5)
to make all elements have eigenvelocity. As shown in
Fig. 6, eigenvelocities are distributed in all the ele-
ments, though there still exits [¢}3] which cannot be

determined by solving Eq. (12). However, [BE*P} de-

termined from the boundary data produces almost the
same pressure gradient and velocity fields in V', as in
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Fig. 6 Determined and Undetermined Eigenvelocity Compo-
nents (K35, = 5)

L I
R L]
1T

[ NN

[w]due to["] [oldueto[p’]
N i . / T \
| | ! ! | 1
. 1 N \ T /

[y]due to[¢™] [o]due to[o™]

Fig. 7 Comparison of Fields due to Eigenvelocity with Actual
Fields (K3, = 5)

the previous case; see Fig. 7. The field variables in-
side V' can be estimated by using the data measured
on the boundary, although the eigenvelocities which
replace the heterogeneity are not fully identified.

Since [¢}] is not known, we rewrite the second in-
verse problem, Eq. (13), assuming that [¢3*] cor-
responds to an eigenvelocity field ¢** which satisfies
(g — g®)(V - ¢™)dV = 0. The resulting inverse
problem is expressed in the following discretized form
for each element:

(Kat) = [K2D) [002] (65 + K] ] - [67)
= Kzl i) + [3] (16)

where suffices @ and b range from 1 to 2, but suf-
fices P range from 1 to 2N? = 18, and [gfit),] yields a

pressure gradient in the a-th direction of the element
due to the P-th eigenvelicity. As is seen, Eq. (16) is
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Table 2 Convergence of Eigenvelocities

|_element | comp. | initial | converged | exact
(1,1) K11 ~1.076 —0.886 ~1.
Koy -0.945 -0.971 -1

Ky —0.023 —0.049 0.

@02 | Ku | —1280 | —0671| =L
Ko —-1.350 —0.653 ~1.

Ky ~0.017 0.083 0.

1,3) | Ku || =110 | —0925 | —1.
Ko -0.962 —1.035 -1.

Ky ~0.008 0.123 0.

@1 | Ku || —1804 | —1209 | -2,
Ky ~1.793 —2.722 ~2.

Ko ~0.063 0.037 0.

22 | Ku || 1279 -197.1] —2.
Kas —-1.035 -192.8 -2.

Ko —0.029 -180.8 0.

(2,3) Ky ~1.804 —1.299 -2.
Ky ~1.793 -2.722 —-2.

Ky —0.063 0.037 0.

G | Eu || =1110] —0925| —1.
Ko -0.962 -1.035 -1.

Ko —-0.008 0.123 0.

(3,2) Ky —1.289 -0.671 -1
Koy -1.350 —0.653 -1.

Ky -0.017 0.083 0.

(B3) | Ku | —1076| —0886 | —1.
K —0.945 -0.971 -1

Kis ~0.023 0.049 0.

v=0

p=0

Fig. 8 Other Boundary Conditions Used in Inversion

no longer® linear with respect to unknown K,; and
. Applying the standard Newton-Raphson method
to solve this non-linear equations with a condition of
[Agap][¢7] = [0], we can obtain a converged solution.
However, the resulting eigenvelocities nor permeabil-
ity tensors are far from the exact solutions; see Table
2 for the comparison of the initial and converged val-
ues of the eigenvelocities with the exact values in all
nine elements. The prediction is not improved even if
data of several boundary conditions are used as shown
in Fig. 8.
The results obtained in the above analysis show the

8 Since ¢~ produces the field variables which are almost
the same as the exact ones, we may omit [gilp)] (7],

to obtain an approximate linear equation.



limitation of identifying a material property distribu-
tion only by using data measured at the boundary.
This is because the quantity of the data is insuffi-
cient as the rank of the square matrix is reduced, and
a certain part of the eigenvelocity cannot be identi-
fied from the first inverse problem; this eigenvelocity
corresponds® to [¢}], which satisfies [Agrp] [¢F] =
[0]. While [¢}] may not produce large flow, it is re-
quired to determine the final target, [Ko). Using data
of different boundary conditions does not resolve this
limitation. This is easily seen in the present formula-

tion; only [A¢§§’] changes depending on the bound-

ary conditions, and [Agyp] remains the same as Green
functions gV and g® are for fixed boundary condi-
tions of zero pressure and zero flux. Hence, a common
matrix [Agyp] is used for other boundary data, and
there are parts of eigenvelocity which corresponds to
zero eigenvalue cannot be identified. This suggests
that it is difficult to determine [K,3] in the second in-
verse problem, even when different boundary data are
used.

4. EXAMPLE 2: PLASTIC PROP-
ERTY IDENTIFICATION

The results of the preceding section show that the
limitation of identifying material property distribu-
tion comes from the failure in solving the first inverse
problem. In this section, we assume plane strain con-
dition to more accurately identify the eigenfield, and
then examine the limitation of solving the second in-
verse problem. To this end, we consider a case when
V consists of an linearly elasto and ideally plastic
material with unknown plastic property. The incre-
mental behavior of V is determined by instantaneous
elasto-plastic moduli which vary spatially and change
as loading proceeds. The two inverse problems are
for the eigenstress rate corresponding to plastic strain
rate and the non-linear elasto-plastic constitutive re-
lations. The strategy of the formulation remains the
same, although the final form of the inverse problems
will be slightly different from the previous one.

Let V be given as {(z1,%2,%3)|(z1,22) on S} with
S being a traction-free boundary. This setting leads
to the plane stress state in regions close to S. The
displacement and traction on the boundary of S, de-
noted by 85, are measured. Furthermore, we assume
that displacement data'® on S, (W;,dz), are available.
They are denoted by w(z,7), with ¢ = (21,22) and 7
being a load parameter.

An associated flow rule is assumed, with an un-

known yield function, f(o). This f determines in-
stantaneous elasto-plastic moduli, C°?, as

doij = C:fkldekl (17)

9 A vector [¢2"] includes a part of ¢* which satisfies
¢pp =0.
10 Such a displacement field can be measured through
13)
the image analysis of the surface deformation
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where

. (C VF)is( Cvf)kl
ep gkl Vi Cv
Ciju = f:Oand df =0, (18
Cijri f<0ordf <0.

Here, C is a constant elasticity tensor and (Vf)i;
stands for 8f/80;;. The governing equation for the
displacement rate is now expressed in terms of C** as

(Cfﬁd(d(m))duk,z(% T))‘i = (19)

where o in the argument of C°? emphasizes that C*?
changes depending on the stress state.

In order to formulate'’ the two inverse problems,,
we replace the elasto-plastic constitutive relations, Eq.
(17) and Eq. (18), in the form which is readily used
in the equivalent inclusion method, i.e.,

(20)

doy; = Cyjra(den — defy),

where deP is a plastic strain increment, defined as
de:C(vy)
(V1): (Vf)( Pis

f=0anddf =0,
0 f<00rdf<0

P _
deij =

(21)

If —C : de? is replaced by do* in Eq. (20), the gov-
erning equation of Eq. (19) becomes
C@jk[dukﬁ(l’) + do;j,i(a}) =0. (22)
The first inverse problem for do* can be formulated
in the same manner as in Eq. (7), by using data on
8S only. The identification of do*, however, will be
limited. When & on S are available, we can deter-
mine do* more accurately; for instance, we determine
do;; using Eq. (22) and integrate to obtain de*, or,
decomposing du = du” + du? in the same manner as
shown in Section 2, we have
dud(z; do*) = Uz, 7)dr — dul(z).  (23)
Recall that du? is linear to do*; see Appendix A.
Once do* is determined, plastlc stram rate and stress
are determined as de? = —C™! 1 do* and 0 = C :
€+ [ do*. Hence, the second inverse problem is

determine f from relation between de? and o. (24)

Note that the relation between de? and o should be
checked point-wisely.

Assuming a von Mieses yield function, f = J; — oy
with J, being the second invariant of the deviatoric
stress (0i; — 6:5(0pp/3)), and oy, being unknown yield
stress, we carry out a numerical simulation!? of iden-
tifying this f. We consider a rectangular S subjected
to concentrated forces; see Fig. 9.

1 Unknown f can be determined by minimizing an error
of a trial yield function. However, this is unrealistic,
in particular when no information of f is available.

2 The simulation 48 x 42 x 1 three-dimensional eight-
node-elements; the element is specially tuned for the
elasto-plastic analysis as it is implemented with the
Ruhnge-Kutta algorithm of up to the sixth order.
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Fig. 9 Rectangular S

Since plastic strain increment does not have vol-
umetric part (def;, = 0), we solve Eq. (23) assuming
deo}; = 0. Figure 10 shows the comparison of do™* ob-
tained from Eq. (23) with the exact value, —C : deP.
The distribution and the contour map of do* and
—C : de? are plotted for small and large plastic defor-
mations with the maximum shear strain being 0.0063
and 0.0374, respectively. As is seen, do* is in good
agreement with the exact values. The distribution and
the contour map of o computed by using Eq. (24) is
also plotted in Fig. 11. The exact distribution of &
is also shown in these figures for the comparison. The
stress distribution obtained by the inversion coincides
well with the exact stress distribution. Therefore, the
form of f and the unknown o, can be determined by
plotting —C : do* in the principle stress space. Fig-
ure 12 shows the principle plastic strain increment
in the principle stress plane; a line corresponds to a
plastic strain increment, (de} —def, de§ —de}), starting
from a point of (o1 —03, 02 —03). In the exact solution,
large plastic strain increments are initiated along an
ellipse which corresponds to a yield surface. Due to
errors in the inversion of the plastic strain increments
and the stress state, a yield surface cannot be recog-
nized as clearly as in the exact solution. However, the
surface fairly tells the exact value of g, = 0.001.

As is seen, the first inverse problem can be solved ac-
curately. An assumption'® of do}; = 0 may play a key
role; two components of do; ; are determined from Eq.
(22), and hence the two independent components** of
do* can be found by suitably integrating their gradi-
ents. The second inverse problem is also solved as ac-
curately as the first problem. This is quite reasonable
since solving the first problem is identical with deter-
mining field variables locally. While homogenous f
of the simplest form is used, we can expect that the
present formulation is applied even to heterogeneous
elastic or more complicated plastic constitutive rela-

3 Another condition can be used. Such a condition
should be derived from assumptions which are physi-
cally acceptable.

In numerical computation, it is easier to solve this
equation than Eq. (23). The eigenstress rate can be
obtained by applying the finite difference.

14

27s

tions, if the deformation process is followed at each
point and sufficient amount of local field variables are
accumulated; for instance, heterogeneous elastic mod-
uli can be readily determined when sufficient number
of stress and strain (or their rate) are obtained by
solving the first inverse problem. In the present for-
mulation, the key in identifying the material property
distribution is to solve the first problem as accurately
as possible.

5. CONCLUDING REMARKS

The numerical simulation of the two illustrative
problems shows the advantage of the formulation
based on the equivalent inclusion method. It is easy
to see quantities which can be determined from mea-
sured boundary data since a set of the formulated
inverse problems are linear with respect to unknown
functions. Therefore, the limit of identifying a mate-
rial property distribution is clarified for a given mea-
surement procedure or method. The following point
should be emphasized: the present formulation yields
a pair of linear inverse problems, and the analysis of
the problems is easier than conventional problems due
to the linearity.

As shown in Section 4, it is possible to identify in-
elastic material properties near a traction free surface,
assuming the plane stress state. The specific form of,
say, a yield function is not necessary as field variables
such as stress and strain are first determined. We are
applying the present formulation to various materials.
For instance, shear bands in a material sample are
one target. The deformation of regions surrounding
the shear bands is measured by applying the image
analysis. Inelastic heterogeneous properties as well as
stress distribution of Japan island are another target.
The GPS data are used to measure the surface defor-
mation of Japan.

Appendix A EXPRESSION IN
TERMS OF GREEN’S FUNCTIONS

Let gV = g(M(x,y) be a Green function of V° for
zero displacement on 8V. That is,

{

Suffices following the comma stands for the derivative
with respect to ’s coordinates. Since o7; ; is regarded

as distributed body forces, Eq. (6) is formally solved

as J

Similar Green’s function, g(®), can be determined for
zero traction on S and zero displacement on 9V — S.
Hence, Eq. (7) is more explicitly expressed as

1 2
/;/o(ggp) - gz(p

The first inverse problem for the eigenfield is ex-
pressed more explicitly if suitable Green’s functions

Cgi (@, y) + 0jp(@ —y) =0 in V°,
g](;) (z,y) =0 on aV°.

(1)

(1)d _
i R 9ip Tgp,q

K

U dv.

*

))aqp)q dV = —ugl)h + ugz)h.
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are used. For instance, denoting by ¢(*) and ¢®
two Green’s functions similar to g(¥) and g® for the

porous medium problem, we can rewrite Eq. (12)
/V (g — g5, AV = —pO" ",

Also, we can rewrite Eq. (23) as

[ oy a5 = = a1

30s

Appendix B WEAK FORM OF
BOUNDARY VALUE PROBLEM

Using a suitable virtual pressure, dp, we can obtain
a weak form of Eq. (10), as

/V —op(K2p s+ 63) AV
+~/6;V Jpni(Kfjp,j +¢;) dS = 0.

Hence, we can easily discretize this equation and apply
the finite element analysis.
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