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The dynamic instability of local vibration of hinged thin-walled members under periodic axial forces is
investigated by applying the finite strip method. Firstly, local buckling and free vibration of the members are
analyzed and their characteristics are discussed. Secondly, the regions of instability of local vibration of the
members under various geometrical parameters are calculated and the effects of some factors which control
the dynamic instability phenomena are clarified. Based on the results, the most efficient arrangements of

diaphragm or stiffener are described.
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1. INTRODUCTION

When thin-walled members of a steel truss struc-
ture are subjected to dynamic load, periodic axial
stresses are generated. In such members, not only over-
all member bending vibrations but also out-of-plane
bending vibrations in component plates of a thin-
walled member are generated as parametric resonance
vibration. These local vibrations in the members of a
truss structure contribute to noise radiation and fatigue
failure at the welded joint connecting the web and
flange plates. Therefore, it is necessary to investigate
the instability of local vibrations for the members of a
steel truss structure.

Many studies on the problems associated with in-
stability of local vibration of thin-walled members
have been performed.

For example, Yamaki and Nagai investigated the
dynamic instability problems of rectangular plates un-
der periodic compressive forces. They clarified that
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the principal region of instability is of importance when
the loading sides are simply supported and that com-
bined resonances are also produced when the loading
sides are fixed.

Takahashi and his colleagues?~ and Kuranishi,
Fukaya and Shima® studied the instability of out-of-
plane bending vibration in the web of plate girders
subjected to periodic bending moment and clarified
some of the characteristics. However, they assumed
that the horizontal sides of the web plate connecting
to flange plates are hinged or fixed. Few reports have
been published on the analysis of the instability of lo-
cal vibration taking into account the coupled vibra-
tion of component plates of plate girders.

This study clarifies the characteristics of the insta-
bility of local vibrations of thin-walled members un-
der periodic axial forces. Box section and H-section
members, which are typical members of a truss struc-
ture, are analyzed by using the finite strip method.
Firstly, local buckling and free local vibration are ana-
lyzed, and their characteristics are investigated. Sec-
ondly, the regions of instability of local vibration of
the members with various geometrical parameters are
calculated and the effects of some factors which con-
trol the instability phenomena are clarified. Lastly,
based on the results, the most efficient arrangements
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of diaphragm or stiffener are discussed.

2. ANALYTICAL METHOD

A typical strip i with nodal lines 1 and 2 is shown in
Fig. 1. If it is assumed that the longitudinal ends of
the strip are hinged, the displacement functions of
components, u, v and w, in directions x, y and z are
written as
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where r is the number of terms of series in the longi-
tudinal direction. (N p) and ( N b) are shape functions
in the transverse direction, which have the form
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where n=y/d, C_and S are the m-th terms of the har-
monic functions in the longitudinal direction, which
are given by
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and {v, m 1, {v.,.} and {w,,} are the vectors of nodal
line displacements corresponding to the m-th term of
longitudinal series, which have the forms

I o A S
{%,,H<T>}={:;”:(<§)>} @
ey
8,,(T)

W =170 ®)
6, ,.(T)

where T is the variable for time.
Substituting the displacement functions of Eq. (1)
into the equation of virtual work, the equations of mo-
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Fig. 1 Finite strip and local coordinates
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Fig. 2 Thin-walled member subjected to periodic axial stress

tion for a strip are derived. Transforming the matrices
in the local coordinate system for strips into the glo-
bal coordinate system and rearranging them accord-
ing to the compatibility of displacements and the equi-
libriums of forces, the equations of motion for a thin-
walled member are obtained.

When the longitudinal ends are hinged, the equa-
tions of motion can be broken down into independent
separate equations because of the orthogonal property
of the longitudinal series. Therefore, the equation of
motion of the m-th term of longitudinal series for the
hinged member, which is subjected to uniformly dis-
tributed compressive stress shown in Fig. 2, is written

as

[, 1.} +([&,]-00[Ks.]
-0, cosHT[KGm D{dm} = {0} ©®

where 0 is the static stress, O, is the amplitude of the
periodic stress and 6 is the circular frequency of the
periodic stress. [M,, |, [K,, ], [K¢,] and {4} are the
mass matrix, stiffness matrix, geometric stiffness ma-
trix and the displacement vector for the m-th term of
longitudinal series, respectively.

Setting the periodic stress of Eq.(9) to o, =0, the
eigen equation for free local vibration of the member
subjected to the uniformly distributed static stress g

is given by

[Mm ]{dm} +([K:»z]_6()[KGrn]){dtn} ={O} (10)

Ignoring the term of inertia and setting the periodic

stress in Eq.(9) to ¢, =0, the local buckling equation
is given by

(%,]-00[Ks.]){a,} = (0} an
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When the displacement functions of Eqs.(1) are used,
the mass matrix [, , | and the geometric stiffness ma-
trix [kg , | for the m-th term of longitudinal series for
strip { are written as
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(12)
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In Egs.(14) and (15), the integrations are
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Eqs.(16) produce the result that the mass matrix coin-
cides with the geometric stiffness matrix except for
the constant coefficient. Therefore, the local vibration
modes derived from Eq.(10) are the same as the local
buckling modes derived from Eq.(11), and Eq.(9) can
be transformed into the uncoupled equation of mo-
tion for each mode by the orthogonal property of the
eigen vectors.

Introducing the eigen vector {:pm ,s} (s=1,2,..,n)
and normal coordinate £, the displacement vector
{dm} is written as

{a,} = Z{cbm}ém—[fb l{z.} (17

in which
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By substitution of Eq. (17) into Eq. (9) and front mul-
tiplication of Eq.(9) by [®,]", the matrices [M,,],
[K m ] and [K Gm] are simultaneously transformed into
the diagonal form. Then, Eq. (9) is simplified into a
series of independent separate equations, each of which
depends on the number s of the mode of cross-sec-

tional deformation.

é;,s+wm_f[1~-"-‘%;MJém,s=o (18)
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Introducing the damping constant i to Eq.(18),

authors obtain
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Introducing the natural circular frequency of the
member under static stress o,

Q,, = =
m,s T om,s O.m or (25)
and the excitation parameter
Lo
K, s 2 c, - -0, (26)

Eq.(24) is rewritten as

£, +2h, 0,60, +Q,  (1-24,, cosfT )&, =0

@7
This is the equation of motion on normal coordi-
nates & _for the m-th term of longitudinal series and
the s-th mode of cross-sectional deformation. Eq.(27)
is a well-known Mathieu equation and is the equation
of dynamic instability of lateral motion of a bar which
was presented by Bolotin”.
Based on Eq.(27), the equations of boundary fre-
quencies of regions of instability for local vibrations
of thin-walled members under periodic axial stress are
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Box section H-section
Fig. 3 Models for analyses

derived approximately as follows?.
principal regions:
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(28)
secondary regions:
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3. CHARACTERISTICS OF LOCAL BUCK-
LING AND LOCAL VIBRATION

(1) Outline of Analysis

The models used in this study, which are typical
cross-sections of the component members of truss
structures, are shown in Fig. 3. It is assumed that the
members are elastic and the longitudinal ends are
hinged. The dimensions of the cross-sections and the
material values adopted here are as follows:

h=50.0cm, t.=2.5cm
Young's modulus  E=206Gpa
Poisson's ratio v=0.3

density p=7850kg/m?

To investigate the effect of the difference of plate
thickness on the characteristics of local buckling and
local vibration, three thickness ratios of web to flange
are studied for each cross-sectional shape:

t/1=04, 06, 0.8

Flange and web plates of these members are divided
into ten strip elements, respectively.

The problems of buckling and free vibration of the
members shown in Fig. 3 are analyzed by using
Eqs.(10) and (11), and the characteristics are investi-
gated. Moreover, in order to clarify the effect of cou-
pling of flange and web plates, web plates are mod-
eled into rectangular plates and are analyzed. There
are two types of boundary conditions of the rectangu-
lar plate: hinged along all edges,; and hinged along

s o= 1 2 3 4 5

o, /E=0002740 0002742 0.008027 0.008064 001395

© = 3370 371 5767 5781 7603
(@)l/h=05

s o= 1 2 3 4 5

o, JE = 0.002870 0.002960 0.008787 0.009518 0.01662

o = 1724 1751 3017 3140 4150
(b)yl/h=1.0

s 2 3 4 5

o, /B =002016 0.02658 0.02882 0.04719 0.08818

o = 7617 874.6 9107 1165 1593
©)1/h=6.0
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Fig. 4 Mode shapes of buckling and free vibration for
box section members (twlt/ =0.4)

the loaded edges and fixed along the other edges.

For convenience, the analytical results are arranged
by using the longitudinal half-wavelength [ (=L/m)
instead of span L and the number m of the longitudi-
nal half-waves of buckling modes or free vibration
modes.

(2) Box Section Members

For the box section members, the buckling and free
vibration analyses are carried out with varying longi-
tudinal wavelength.

For the case of [/h=0.5, 1.0 and 6.0, the mode shapes
of buckling and free vibration of the members with
1,/1,=0.4 are shown in Fig. 4. The buckling stresses
and the natural circular frequencies are also shown.
As described in Section 2, the mode shapes of buck-
ling are the same as those of free vibration. As the
wavelength increases, the modes change from the out-
of-plane deformation of component plates to the over-
all deformation. Natural circular frequencies decrease
as the longitudinal half-wavelength increases. Buck-
ling stresses of the members with //A=0.5 and 1.0,
which are dominated by local deformation, are lower
than those of the members with //h=6.0, which are
dominated by overall deformation.

The lowest buckling stresses of the box section
members have been calculated with varying longitu-
dinal half-wavelength. The results for the box sec-
tions with zw/tf=0.4, 0.6 and 0.8 are shown in Fig. 5 as
aseries of curves of 6 /E versus l/h. The ordinate G,
/E and the abscissa I/ respectively denote the ratio of
buckling stress o for Young's modulus £ and the lon-
gitudinal half-wavelength normalized with the height
h of the member, and are indicated on logarithmic
scales. The curves for all thickness ratios exhibit the
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Fig. 5 Buckling stress versus longitudinal half-wavelength
for box section members
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Fig. 6 Comparison of buckling strength for box section member
with webs which are modeled as rectangular plates

same tendency, which have a minimum value at I/
nearly equal to 1 and a maximum value at [/ =4. Re-
ferring to Fig. 4, it is found that the curves at I//h be-
low 4 correspond to the local buckling. As the thick-
ness ratio 7, /1, decreases, the local buckling stress de-
creases and I/h for minimum local buckling stress de-
creases.

Figure 6 compares the lowest buckling stresses for
the box section members with those of the webs which
are modeled as rectangular plates. The curves for the
thickness ratio tw/tf=0.4 and 0.8 are shown there. The
rectangular plates have two types of boundary condi-
tions: hinged along all edges,; and hinged along the
loaded edges and fixed along the other edges. The
curves of the box section members at //4 under 0.4
approximately agree with those of the webs and the
difference of the buckling stress between the box sec-
tion member and the web increases as I//h increases.
The range of I/h where the buckling stress is almost
the same as those of webs becomes narrow as ¢ /¢, in-
creases. The minimum buckling stress for the box sec-
tion member with ¢ /t =0.4 approximately coincides
with that for the fixed web and the minimum buckling
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Fig. 7 Mode shapes of buckling and free vibration for
H-section members (tw/tl= 0.4)
stress for the box section member with 7 /1,=0.8 is ap-
proximated to that for the hinged web.

(3) H-Section Members

In the same way as the box section members, buck-
ling and free vibration analyses for the H-section mem-
bers are carried out. Some of the results are shown in
Fig. 7-9.

Figure 7 shows the mode shapes of buckling and
free vibration for the members with ¢ /t =0.4 for the
case of I/h=0.5, 1.0 and 6.0. Some of the mode shapes
of [/h=0.5 and 1.0 are predominated by local defor-
mation of the web or flange. Mode shapes of //A=6.0
show the coupled deformation of web and flange.
These results show that the mode shapes change from
local deformation to overall deformation as //h in-
creases.

The relations between the lowest buckling stress and
I/h are shown in Fig. 8. The curves have different ten-
dencies depending on the value of 7, /z, and the curve
of ¢ /.=0.8 has a minimum value at [/h=1.7. Refer-
ring to Fig. 7, it is found that the mode shapes for the
lowest buckling stress of the H-section member change
from web buckling to coupled buckling of component
plates as I/h increases. Moreover, it is estimated that
the mode shapes for the minimum local buckling stress
change from web buckling to coupled buckling of
flanges and web as tw/tf increases.

Figure 9 compares the lowest buckling stress for
the H-section members with those of the webs which
are modeled as rectangular plates. The rectangular
plates have two types of boundary conditions which
are also used in Fig. 6. In the range where /4 is small,
the buckling curves of the H-section member approxi-
mately agree with those of the webs. The minimum
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Fig. 8 Buckling stress versus longitudinal half-wavelength for
H-section members
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Fig. 9 Comparison of buckling strength of H-section members
with the webs which are modeled as rectangular plates

value of the member with tw/tf=0.4 coincides with those
of the fixed web. The minimum value of the H-sec-
tion member with ¢ /r =0.8 is less than that of the
hinged web. It is found that the minimum buckling
stress of the H-section member with 7, /t =0.8 depends
on the coupled buckling of component plates

4. CHARACTERISTICS OF INSTABILITY
OF LOCAL VIBRATION

In this section, the characteristics of instability of
local vibration for the models illustrated in Fig. 3 will
be described. Based on the results, the period of peri-
odic force which easily yields dynamic instability and
the most efficient arrangements of diaphragm or stiff-
ener will be investigated.

Referring to Section 2, the boundary frequencies of
principal and secondary regions of instability for the
m-th x s-th mode are determined by Eq.(28) and (29),
where m and s respectively mean the number of terms
of longitudinal series and the number of modes of
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Fig. 10 Regions of dynamic instability

cross-sectional deformation. The result is shown in
Fig. 10. The ordinate y denotes the excitation pa-
rameter and @ and Q 0f the abscissa respectively
denote the circular frequency of the periodic stress and
the natural circular frequency of the m-th x s-th mode
for the member. The solid lines and the dotted lines
respectively denote the boundary frequencies for
damping constant 2 = 0.03 and 0.00 and the cross-
hatched area denote the regions of instability for
h, =0.03.

"This is the well-known graph of regions of instabil-
ity for simple parametric resonances. As shown in
Section 2, the regions of instability for each local vi-
bration can be illustrated as shown in Fig. 10 by using
the non-dimensional ordinate and abscissa for the case
where the mode shapes of free vibration for the mem-
ber are the same as those of buckling. This property
does not depend on the shape and dimensions of a
cross-section nor the order of local vibration mode.

Although Fig. 10 shows the regions of instability
for each local vibration mode, it does not present the
differences in the characteristics of instability among
them. Thus, authors clarify them by comparing the
changes of the regions of instability with the longitu-
dinal half-wavelength for the cases where the number
of modes of cross-sectional deformation and the load-
ing conditions are fixed.

Figure 11 shows the changes of the principal re-
gions of instability for the first mode of cross-sectional
deformation with the number of longitudinal half-
waves. The conditions of the members are as follows:
L/h=5.0, ;=0.0, 0,/E =0.001 and h =0.0. The I/h of
the absmssa denotes the longltudlnal ha]f~wavelength
(=L /m) normalized with the height of the members.
The marks @ , 8 , A respectively denote the bound-
ary frequencies of the regions for the members with
tw/tf=0.4, 0.6 and 0.8, and the widths between the two
same marks plotted on the same longitudinal half-
wavelength show the regions of instability.

The values of I/ at the widest regions of instability
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(b) H-section members
Fig. 11 Change of principal regions of instability with
number of longitudinal half-waves
L/h=5.0, 5,/E=0.001, 4=0.0, h, =0.0)

for the box section members are under 1.0 (m>5).
However, for H-section members, they change from
0.7 to 2.0 with the value of 7 /1. By comparing Fig. 11
with Figs. 5 and 8, it is found that the width of the
regions of instability increases as the buckling stress
decreases.

In Fig. 11, the width of the region of instability de-
notes the range of circular frequency of the axial force
which causes parametric resonance vibration. Local
vibration easily occurs at the longitudinal half-wave-
length at which the region of instability is wide. There-
fore, it is possible to control the occurrence of local
vibrations by considering these values when the ar-
rangement of the diaphragms and stiffeners is deter-
mined.

Figure 12 shows the mode shape of vibration for
the box section member with ¢ / =0.8 at the widest
region of instability illustrated in Fig. 11(a). There
are out-of-plane deformations for each component
plate and five half-waves along the longitudinal di-
rection.
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Fig. 12 Mode shape of vibration for box section member at
the widest region of instability
(tJ1=08,0,/E=0.001, q=0.0)
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Fig. 13 Effect of damping on principal regions of instability
for box section member

Figure 13 shows the effects of damping on the prin-
cipal region of instability for the box section member
with z /t =0.4, 6,=0 and o, /E =0.001. The areas sur-
roundedl by the same lmes denote the region of insta-
bility. The ranges of circular frequency of axial force
and longitudinal half-wavelength for the regions of
instability narrow as the damping constant increases.

In order to clarify the effect of coupling vibration
of component plates, the instability of the web plate
modeled as a rectangular plate is investigated and com-
pared with results for the members. Figure 14 com-
pares the regions of instability for the web plates with
those of the box section and the H-section members
with 7 /t,=0.8. The members are subjected to static
stress 0,=0 and periodic stress 6, /E =0.002. The
boundary conditions of the web plates are as given in
Section 3. It is assumed that the mode number of cross-
sectional deformation s is equal to 1 and the damping
constant A, is equal to 0.0.

The boundary frequencies of the web plates agree
with those of the members at ! /hunder 0.5. Espe-
cially, for the H-section member, the maximum width
of the region of instability is wider than that of the
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Fig. 14 Comparison of instability regions for members with
web plates (0,/E = 0.002, 6,= 0.0, h,,=0.0)
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Fig. 1S Effects of static stress on principal instability
regions for H-section member
(6,/E=0.002, h, = 0.0)

hinged web and the longitudinal half-wavelength of
the widest region of instability is longer than that of
the hinged web. These properties are the same as the
results shown in Figs. 6 and 9. These results show
that the conventional estimations of the regions of in-
stability for the web plate, for which the boundary con-
ditions of the edges joined to the flange are assumed
to be simply supported or fixed, are not valid and it is
necessary to study the instability of local vibration for
the members by considering coupling vibration.

In truss structures, H-section members are used as
the tensile members. Therefore, the effect of static
stress on their regions of instability is investigated.
Figure 15 shows the regions of instability for the H-
section members with f,/r,=0.6 for the case where the
periodic stress ¢,/E =0.002 and variable static stress
(o, / E=0.000, —0.002, —0.005)are applied. The re-
gions of instability narrow and are independent of the
longitudinal half-wavelength as the static tensile stress
increases. Moreover, they yield even if the sum of the
static and periodic stress is tensile stress.

5. CONCLUSION

The instability of local vibration of the hinged box
section and H-section members was investigated by
applying the finite strip method in order to clarify the
instability of the members of a truss structure under
periodic axial forces. Firstly, local buckling and free
vibration of the members, which are fundamental fac-
tors of dynamic instability, were analyzed and the char-
acteristics were discussed. In addition, the regions of
instability of local vibration for the members under
various geometrical parameters were calculated and
the effects of some factors which control the dynamic
instability phenomena were clarified. The following
conclusions were drawn.

1) The mode shapes for the buckling and the free
vibration are the same and the equations of motion
for dynamic instability for all modes can be rewritten
as a Mathieu equation. Therefore, the instability re-
gions for the local vibrations can be shown in the same
figure by using suitable non-dimensional ordinate and
abscissa. This property is independent of the shape
and dimensions of the cross-section and the order of
local vibration mode.

2) The region of instability of local vibration is the
widest at the mode which has the minimum local buck-
ling strength. For box section members, the regions
of instability for the local vibrations become wider at
I/h between 0.7 to 1.0. For H-section members, they
depend on the plate thickness ratio and have the maxi-
mum value at I[/h over 1.7 in case of the member with
tw/tf over 0.6.

3) The analysis of dynamic instability of the web
plate modeled as a rectangular plate is adequate for
approximating the region of instability of local vibra-
tion for the members at /4 under 0.5. The region of
dynamic instability of the hinged web is overestimated
for box section members and is underestimated for
H-section members.
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