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In the conventional studies on the seismic behavior of bridge piers, it is common to use an in-plane
modeling where the real behavior of frames subjected to the three-dimensional seismic loading is ignored.
Herein, we present a three-dimensional nonlinear dynamic analysis for frames, where the panel zone
deformation is also considered. In this analysis, geometrical nonlinearity is precisely taken into account
by using the co-rotational method, whilst the member plastification is analyzed by the plastic-zone
method. With the numerical method, the three-dimensional seismic behavior is examined for bridge piers
of single post-type and portal frame-type in which effect of panel-zone deformation is also discussed.
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1. INTRODUCTION

In the conventional seismic design and analysis
of steel bridge piers, it is common to adopt in-plane
modeling. However, the validity of the in-plane
modeling is not necessarily confirmed, because the
three-dimensional seismic behavior of steel bridge
piers has not been studied enough. Furthermore, the
analysis model for the portal-frame type bridge piers
mostly ignores the panel zone deformation and
adopts the centerline-to-centerline geometry. This
implies that neither the deformation nor the size of
beam-to-column connections is considered in the
analysis. However, the results of experiments have
shown that beam-to-column joint deformation
(panel zone) can significantly affect the overall
behavior of frames V29,

Some papers focused on the effect of panel zone
deformation on the behavior of entire frames. Kato
et al ¥ presented a finite element model that took
into account the shear deformation of panel zone
and compared the results with those obtained for the
frames with rigid beam-to-column connections or
centerline-to-centerline geometry. They showed that
in the elastic range, the solution based on the
centerline-to-centerline modeling gave a good
approximation to the exact solution considering the
panel zone shear deformation. In the plastic range,
however, the difference becomes remarkable. Lui

and Chen® showed a finite element model for panel
zones that consists of one web element and two
flange elements in order to consider both shear and
bending deformations. Based on their research,
Liew and Chen ” showed two criteria for the design
of beam-column panel zones. Leger et al® used a
joint element to consider the rigid kinematic motion,
elastic shear, and bending deformations of beam-
column panel zone regions. A parametric analysis
was carried out on the seismic response of in-plane
frames. Without introducing an additional degree of
freedom, Tsai and Popov®” presented an approximate
method which considered the drift of elastic frames
due to panel zone deformation. In their method,
however, the axial force and P-delta effect were not
included. They also confirmed that the centerline
modeling of frames well approximates the behavior
of frames with the shear panel zone deformation in
the elastic range. More recently, Miki et al '
employed a shear model to represent the panel zone
deformation and examined its effect on the seismic
behavior of portal frame-type bridge piers. All the
above studies, however, were restricted to the in-
plane behavior.

The purpose of this paper is to present a three-
dimensional nonlinear dynamic analysis method for
frames, where both geometric and material
nonlinearities are considered. Furthermore, the shear
deformation of panel zones is taken into account.
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With the proposed numerical method, the three-
dimensional seismic behavior is examined for the
bridge piers of single-post type and the portal-frame
type. In this investigation, the effect of panel zone
deformation is also discussed.

2. NUMERICAL METHOD FOR GEO-
METRIC AND MATERIAL NON-
LINEAR ANALYSIS OF SPACE
FRAMES

(1) General

We have shown a rigorous numerical method for
the geometrically nonlinear analysis of elastic space
frames' where the finite rotations in three-
dimensional space was precisely taken into account
by the co-rotational technique. Here we extend it to
the elasto-plastic dynamic analysis. To consider the
material nonlinearity, a mixed strain-hardening bi-
linear model is employed based on the von Mises
yield criterion. In addition to the Saint-Venant’s
torsional  deformation, the transverse shear
deformation is taken into account in view of the fact
that the stocky beams and columns are often used
for bridge piers. To represent the transverse shear
deformation, we adopt the Timoshenko beam model.
In the finite element approximation for a beam
element, displacement functions are chosen such
that both normal and shear strains become constant
along the length of an element in order to avoid the
numerical integration over the element length and
enhance the computational efficiency.

The basic assumptions adopted in the present
analysis are (1) strains are small although rotations
and displacements are large; (2) plane normal to the
beam axis before deformation remains plane but not
normal to the beam axis after deformation; (3) cross
section is thin-walled doubly symmetric for elasto-
plastic analysis.

(2) Geometric nonlinearity

In the present method, the geometric nonlinearity
is considered by the co-rotational method. The
details of the co-rotational method have been shown
by Goto et al '?. Therefore, we here briefly explain
the method.

Two coordinate systems shown in Fig.1 are used
to derive the element stiffness equation. One is the
fixed rectangular Cartesian coordinate system
(x,y,z) with base vectors (g,,g,,g,) defined in
terms of the initial configuration of a beam element.
The other is the orthogonal co-rotational coordinate
system (X,y,Z) with base vectors (i,,I,,i,) and

the origin located at one end of the element. This

Figd Coordinate systems

coordinate system moves with the rigid body
rotation of the beam element. The directions of
(¥,y,z) are defined to coincide with the averaged
directions of the two sets of the deformed base
vectors (§,.£,,8,) at nodes 1 and 2. The

rotations of the deformed element are expressed by
(ix.‘ ’i Yi ’i z; )
normalizing (§,,.8,,,§,) -

The relations of the base vectors between the two
coordinate systems are expressed by using the
transformation matrices [R» ]pand [RG] as follows

1

the wunit - vectors obtained by

j‘ gx lj gx
Iy t= [Ri] 8yts b= [RG] 8y (1a,b)
i 8: L, 8.

where [R,.] and [RG] are expressed by Euler angles
(¢;, 6,,9;) and averaged Euler angles (¢, 6, )
of two nodes, respectively. Eq.(1b) implies that the
directions of the co-rotational coordinates (X, y,Zz)
are coincident with those of averaged Euler angles

A A ~

of @, ,ty,L,) and (.0, .0, ).

Then, with some manipulations, the relation of
incremental displacements between the member
coordinates  (x,y,z) and the co-rotational

coordinates (X,¥,Z) is obtained as

{ad }=[R]{aa} @

where [R] isa 6x12 transformation matrix.

Based on the virtual work principle'®, the
following relation holds

{r¥{aa}-{f} fna} @

Substituting Eq.(2) into Eq.(3) and taking the
increment lead to
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A\ sufaceg

Gyﬁ’\dc =(h +h,)dE"

(a) Initial and subsequent
yield surface

(b) One-dimension
illustration

Fig.2 mixed strain-hardening model

iof)- ([Rr[mz] (o] 8L {f}] fsd}

ad
- [a]{ad}

where [Ak] is the stiffness matrix of a Timoshenko

beam element defined in terms of the co-rotational
coordinate system. This stiffness matrix is obtained
based on the small displacement beam theory and
will be explained later. [Ak] is the tangent stiffness

matrix defined in terms of the member coordinate
system (x,y,z). It should be noted here that the
symmetry of [Ak] is recovered only at equilibrium
in state as pointed out by Simo and Vu-Quoc .

The transformation of stiffness equations from
the member coordinates to the global coordinates
fixed in space is the same as that of the usual finite
element method.

Q)

(3) Material nonlinearity

Elasto-plastic stress-strain relation used in the
present paper is based on von Mises yield criterion,
associated flow rule and a mixed strain-hardening
(kinematic and isotropic) rule as shown in Fig.2. For
a thin-walled member, the yield function can be
expressed as

£(0,0)=J(0-,)? +3(t-01,)’ )

where «; is a back stress; o is a normal stress due

to axial and bending deformations; T is a shear
stress due to Saint-Venant’s torsional deformation
and transverse shear deformation.
The incremental elasto-plastic
relation is expressed as follows

stress-strain

{do.}=[p,, e, }; EP =E* 10-E'/E)  (6a,1)

where

E O 1
[Dep}=[0 G}—Ef’g2+(o-a})2E+9(r—a2)2G
{(o—al)zEz 3EG(0-0o,) (t-a,)
96 (t-a, )

Sym.
(60)

where E and G are Young's elastic modulus and

shear modulus, respectively; EP and E' are
hardening modulus and elasto-plastic tangent
modulus, respectively. Here, a bi-linear strain-
hardening model is employed. Based on the mixed
strain-hardening rule, we have

dg=hde” ; g —h dz
d0;

1

(7a,b)

where 4, and £, are isotropic and kinematic
hardening moduli, respectively. E? is equal to the
sum of A, and h,. €7 is the equivalent plastic
strain. The increment of the back stress do; is

determined based on the Ziegler's kinematic
hardening rule as
b, %dq
{dai }= i {Oi - a’i} )
(h +h)g

The change of the stress state from elasticity to
plasticity or from plasticity to elasticity will lead to
the change of stress-strain relation. Furthermore,
loading will cause stresses to fall outside of the
yield surface. Therefore, a return mapping method
has to be employed to draw the stresses back to the
yield surface. The various methods for return
mapping have been presented'® . Herein, a
‘Backward Euler Return’ method summarized by
Crisfield ' is employed and extended to the mixed
strain-hardening model.

(4) Finite element approximation

In the present study, a Timoshenko beam model
based on the small displacement theory is used '” in
the co-rotational coordinate system (x,y,z). This
is because the displacement components defined in
the co-rotational coordinates can be considered
small from the assumption (1) stated in Section 2
.

According to the assumption (2), the rotations of
the transverse plane around the co-rotational
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coordinate x and y axes can be expressed as

e b, 0w - b
9X=V‘Z-’sz, 8 =U, "V

v (9a,b)

where (°),,denotes a partial differential with

respect to z. y” is the shear strain due to the
transverse  shear  deformation. The  axial
displacement and rotations are approximated by
linear functions, while the transverse displacements
are approximated by quadratic polynomials as

Y

— — -2 - — —

=ay+aZ; 0 =by+bZ+bZ%V =cy+eZ +¢,77;
6y =f0+flz

(10a~f)

With the assumption that transverse shear strain is
constant along the element length, the constants in
the displacement functions can be determined and
expressed by the nodal displacements as follows:

D

=d,+dz; -0,=¢,+¢7;

z

© =Nt +N, 0, +N,it, -N; 6, ;

V=NV, ~Ny0, +N,7, + N6, ;

— — — (11a~f)
z =‘Zvlez, +N2622;

6):" ngx, NZGxZ’

0, =N,6, +N, 6,

where

N =1-Z/1; N,=Z/l; Ny=2/2(1-%/I)
(12a~c)

Thus, the normal strain and shear strain of a finite
element can be given as

0..=[v Nt

where both [N.] and [N,,,] are independent of
axial coordinate Z ;thatis, ¢ and y are constants
over the element length; ®=2n for open cross
section; ©=2pn-— fh,:ds / fl/ tds for closed cross
section'. n is the normal distance from the
centerline of the thin wall and ¢ is the thickness of
the wall. A, is the distance from the shear center to
the centerline.

Assuming the absence of distributed loads, the
stiffness equation for a beam element in the co-
rotational coordinates (X,y,Z) can be derived,

based on the principle of virtual work as

fofael fack-saa} fy7<}-o

(14)

where {Af°} are the incremental nodal loads. By
substituting Egs.(6a), (13) into Eq.(14) and noting
that the transverse displacement components at node
1 are zero and the rotational displacement
components at nodes 1 and 2 have the same
quantities but opposite sign, an elasto-plastic
tangent stiffness equation expressed in terms of the
co-rotational coordinates is obtained. Since both
normal and shear strains are constants over the
element length because of the adopted displacement
functions, the numerical integration can be avoided
in Eq.(14). The cross sectional area of the beam
element is divided into elementary areas in order to
take into account the plastification, following the
customary procedures of the plastic zone method.
The internal nodal forces are evaluated by the
method shown in Reference 19) and 20). An
incremental stiffness equation so obtained is
expressed as

o7 = [k fad |

Finally, substitution of Eq.(15) into Eq.(4) yields
the elasto-plastic tangent stiffness matrix [Ak]
expressed in terms of the member coordinate system
fixed in space.

(15)

(5) Equations of motion

In the present analysis, the mass of the body is
assumed to be preserved so that the mass matrix can
be evaluated prior to the time integration by using
the initial configuration at time O as a reference state
(Bathe et al *" ). Similarly, a mass proportional
damping matrix is introduced. Thus, by
incorporating Eq.(4), the incremental equations of
motion for the member coordinates are expressed as

[ Rad}s [cHad s [ak]{ad}={ar}  (16)

where [M] is the lumped mass matrix; [C]=a[M]
is the damping matrix. In the present paper, o =0
is assumed in the following calculation.

To solve the overall incremental equations of
motion, we employ the Newmark’s f method
(B=0.25) combined with the Newton-Raphson
iterative procedures. This iterative procedure is
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continued until the equilibrium or the convergence
criterion || < B|P| is satisfied, where  is the

unbalanced force vector between internal nodal
force vector and external nodal force vector P, f

is a prescribed value of error tolerance and is set to
10 throughout this paper.

3. ANALYSIS OF BEAM-TO-COLUMN
PANEL ZONE

(1) Modeling of panel zone

Portal frame-type bridge piers generally have
quite large member dimensions so that the
deformations of beam-to-column connection may
not be neglected. As pointed out by some
researchers, the deformations, mainly due to the
shear deformation of panel zone, may have a
significant effect on frame lateral stiffness and
strength. To consider this effect, various models
have been shown and compared with experimental
results. Here, a three-dimensional modeling of panel
zone is developed and incorporated in the nonlinear
frame analysis explained in Section 2. In the present
model, only in-plane shear deformation of panel
zone is considered ', while the out-plane
deformation is ignored; that is, panel zone rotates as
a rigid body around x-axis.

The rotations of the cross sections of a beam and
a column that are connected to a panel zone are no
longer equal to each other due to shear deformation
of the panel zone as illustrated in Fig.3. In terms of
the co-rotational coordinate system, the geometric
relations between these rotations can be expressed
as follows:

[

@D

oy =5oy -y/2; éby =§oy +v/2;

— O T (17a~d)
0, =(0, +0,)/2; y=0,-0,

where é—ay is the rotation of panel zone center; 6Cy

and §by are the rotations of the ends of the column

and beam, respectively, connected to the outer
surfaces. vy is the shear strain of panel zone, which
is assumed to be uniformly distributed. Furthermore,
by considering the out-of-plane rigid body motion
of the panel zone, the total displacement relations
between the panel zone center and the ends of
columns and beams can be obtained as follows:

a . Panel zone center to column end relation:

I, = {pz., 65, 4,48, A8, A8, [

cy?

(A )
100 0 -h/2 0 -h/4] |,
010H/72 0 0 0 AT,
001 O 0 0

= «AGOX>
000 1 0 0 0 _
000 o 1 o -12||*%
000 O 0 1 0 AB,,

A av

-]}

(18a)

b. Panel zone center to left beam relation:

(a3, }-{sz,, A%, A, A6, 48,48, |
(A7)
10 00 0 0 0 1|a5
VO
0100 0 h/2 0 Z
010 -h/2 0 h/4 A%,
0 - —
= ¢ ¢ A60x>
0001 0 0 0 -
0000 1 0 1/2 A?_oy
0000 O 1 0 | |AB:
I Hay
=[Tbl]{ —o}
(18b)

c. Panel zone center to right beam relation:
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{Ac?,, }—_- {ALT,, A, , AW, AB,,, A8, AB,, }T

) [az, ]
1000 0 0 A7,
0100 0 =-h/2 0 Z
Aw,
0010 h/2 0 -h/4]| -
= lag, L
0001 O 0 0 _
0000 1 0 1/2 Afoy
0000 0 1 0 |46,
i Hay
-I:Tbr]{Awo}
(18¢c)

where {Ad,} are the incremental displacements of

panel zone center; {Al—i—c} and {AJ,,} are the
incremental displacements of the column end and
beam end, respectively; A, and A, are the depths of
cross sections of the column and beam.

(2) Transformation of coordinates

Similar to those discussed in Ref. 11),
transformation relations of displacements between
the co-rotational coordinate system (X, y,z) and

the member coordinate system (x, y, z) are derived

for the panel zone element. Here, {i}={i_,i yl i)’

and {g}= {gx,g},,gz} are used to express the base

vectors of the co-rotational coordinates and the

member coordinates, respectively;
2 A > N &

{lc} ={lcx ’lcy ’lcz)T and {lb} ={lbx ’lby ’lbl) are

defined as base vectors of cross sections ¢ and b,

respectively.

For simplicity of
{AB,} ={AB,,AD,,A8,}", {AB}={AB,,AS,
and {A6,} ={A8,,A8,,A6,}"
the incremental rotational components of the center
of the panel zone, the connected column end and
beam end, respectively, defined in terms of the co-
rotational coordinates. Similarly,
{A8,} ={A6,,,A0, ,A8,, Y, {AB,}={A6,,,A0_,A8_}"
and {A8,}={A6,,A6, ,AB,}" are the incremental
rotational components defined in terms of the

member coordinates. The translational components
are also expressed as {Au,}={AZ, AV, AW},

{Aﬁar} = {AIZ’A‘Z’AWC} and {A‘Tdb} = {AED’AVb?AWb}
in terms of the co-rotational coordinates;
{Au,}={Au, ,Av,,Aw }, {Au,}={Au_,Av_,Aw } and
{Au,} ={Au,,Av,,Aw,} in terms of the member
coordinates.

notations
A8}

are used to express

cy?

h
e
=
v
C

Left panel zone

Fig4 Shear modeling of panel zone in

co-rotational coordinate system

For the left panel zone, the displacements due to
shear deformation are shown in Fig.4. Here, the
origin of the co-rotational coordinates is taken at the
center of panel zone. The directions of the
coordinates are determined such that they coincide
with the averaged rotations of nodes ¢ and b
expressed by the Euler angles (¢,,6,,9,.) and
(95,6,,0,) . The relations between the co-rotational

coordinate system and the member coordinate
system are expressed as

fl=R ) B[R )46} {}=[Ro e}

(19a~c)

by assuming that the shear deformation of panel
zone is relatively small. The relations of rotational
components between the two coordinate systems are
expressed as

(20a~c)

{6.} and {A6,}are expressed by the Euler angles .
as

{0, }=[r.]" [BR®..0.) {20, 20,09, }";
{Aeb }= [Rb ]T [BR(eb sy )] {Ad)b > Aeb A, }T
(21a,b)

where [BR(0,¢)] is a transient matrix 2.
Eqgs.(18), (20) and (21), we have

{88, }- 148, }+ 0,172, 0 v =R, a0, }+ {1y
{88, }- 6, }- 0,172, o) av =& {ao, }- {1 Jay

(22a,b)

From

and
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{86, }={a0, }+[R, I {1}y
{86, }= {80, }-[r; I {1 Jawy
Furthermore, from Egs.(18), the

displacements due to the panel
deformation are expressed as

(23a, b)

translational
zone shear

{8z, }=~lh, 14,0, 0] &y = 1., Jowy;

(24a, b)

oy, }=[0,0.n /4] Ay = 1, by
On the other hand, the relations of the translational
displacements between the two coordinate systems
can also be expressed as follows:

u, u, ~u,

7 =[Re v -, L (259)
w, ~h, /2 w,-w,—h, /2

w, +h. /2 u, —u, +h, /2]

7, = (R Jiv, -v, (25b)
W Wp =Wo

Thus, by taking the increment of Egs.(25) and using
Eqs.(24), the relations of the translational
displacements in terms of the member coordinate
system are obtained as

{A”dc }= {Audo }" [RG ]T [CTa ]{AOO }_
[RG ]T ( {CTb}“ {Tcz})AY
{Audh } = {A“ do }_ [RG ]T [B Ta ]{Aeo }“
[RG ]T ( {BTb} + {sz } )ay
where [CTa], {CTb}, [BTa], {BTb} are transient
matrices. Eqs.(23) and (26) give the total

displacement relations in terms of the member
coordinate system as

(264, b)

{ad.}=[rT.]{ad,} 5 {ad, }=[R1T, [{ad,} @7ab)

where  [RT, Ji5u3,[RT, 123 are transformation

matrices of the column and the beam, respectively.
Similarly, the transformation relations can be
obtained for the right panel zone.

In order to ensure the compatibility of
deformations at the interfaces between the panel and
the beam and column ends during the direct stiffness
assembly procedure, the element stiffness matrix of
the beam or column connecting to panel zone, are
also transformed as

[Akoc(b)]= [RTc(b)]T [Akc(b)][RTc(b)] (28)

The incremental panel moment defined as the
moment acting on a joint panel is written as

AM |, = Ak, Ay 29)
where Ak, =2k htG, is shear stiffness of the

panel zone; ¢ and G, are thickness and tangent shear
modulus of the panel zone.

4. NUMERICAL EXAMPLES

(1) Seismic analysis of single post-type piers

Analytical models used in the present analysis
are shown in Fig.5, where W=mg is the weight of
the pier including the dead load from the
superstructure. The dimensions of these models are
summarized in Table 1. Two models, Pier A and
Pier B, with different column slenderness ratios are
selected. Pier A has a height of H=7740 mm and
constant cross section, while Pier B has a total
height of H=15645 mm and stepped cross sections.
Considering Bauschinger effect of steel under cyclic
loading, the kinematic strain-hardening model with
a constant hardening modulus is employed. Thirty
elements with a lumped mass are used to discretize
both Pier A and Pier B. The number of elements is
determined by considering the convergence of
solutions. The cross section is divided into 40
elementary areas in order to consider the
plastification.

In the present calculation, the seismic behavior
of the realistic three-dimensional modeling of bridge
piers is compared with that obtained by the
conventional in-plane modeling. The in-plane
seismic behavior of the bridge piers is calculated
under X-directional (weak axis) acceleration
component combined with or without Z-direction
(U-D) component, whereas the three-dimensional
behavior is calculated under both X and Y-
directional acceleration components combined with
or without Z-direction component. This implies that
the seismic loading conditions for each pier consist
of four types. In order to consider the dead load of
the superstructures, the dead load W=mg is first
applied and then the dynamic seismic response
analysis is carried out with the dead load kept
constant.

Two sets of ground accelerations recorded in the
Kobe earthquake are considered as seismic loads.
One is the acceleration recorded at the Japan
Meteorological Agency (JMA). The other is the
acceleration recorded at Japanese Railway Takatori
Station (JRT). In order to ensure the maximum peak
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Fig.5 Analytical models for single-post type piers

Table1 Dimensions of piers

Pier A Pier B
m 2,013,000 | 1,489,000
Bl 3100 2500
B2 3000 2500
H1 7740 5000
t1,12 30.5,30.5 | 34.6,57.6
H —_— 2200
t1,12 — | 273,371
H3 D — 8445
t1,t2 - | 228,266
Elastic X 0.369 1.050
Natural | Y 0.361 0.963
Period Z 0.090 0.198

unit: kg, mm, sec.

values of ground acceleration along X-direction to
be greatest for both JMA and JRT, N-S, E-W and U-
D components of JIMA are defined as the X, Y and
Z components, while E-W and N-S components of
JRT are defined as the X and Y components,
respectively. The period of the earthquake waves
considered for the present calculation is 30 seconds
which include the maximum peak values. The time
interval adopted in the numerical integration is
0.01sec. for Pier B and Frames A, B; 0.002sec. for
Pier A (See Appendix).

As a result of the numerical analysis, sway
response displacement histories of pier A subjected
to JMA and JRT are shown in Figs.6 and 7 for the
X-directional  component. The  X-directional
maximum sway response displacement and residual
displacement of both pier A and B calculated with
the respective combinations of the acceleration
components are shown in Table 2. In Table 2, the
values of the displacements are normalized by the
height H of the piers. Here, the residual deformation,
which reflects plastic deformation of piers, is
defined as a distance from the center of oscillation
to the original equilibrium position when the
response of the pier reaches a steady state, as show
in Fig.6.

u/H

0.012 —— Without U-D Wave
Maximum ~ ~ With U-D Wave
0.008 Displacement U,

| ] ,jt Mlahn U e

-0.004 Residual Deformation U,
0 5 10 15 20 25 30
Time (sec.)

Fig.6 Response displacement of Pier A
under in-plane loading (JMA)

u/H
0.012
0.008
0.004
ol
v p | —— Without U-D Wave
-0.004 — — With U-D Wave
0 5 10 15 20 25 30
Time (sec.)

Fig.7 Response displacement of Pier A
under in-plane loading (JRT)

First, we discuss the effect of U-D acceleration
component based on Table 3, where the ratios of the
maximum and residual displacements obtained with
U-D wave to those without U-D wave are
summarized from Table 2. The effect on the
maximum response displacement is small regardless
of the types of bridge piers and the difference of the
input accelerograms. The difference of the
maximum displacements caused by the vertical
acceleration component is less than 14% when N-S
and /Jor E-W acceleration components are
considered. In contrast, the residual displacement is
much influenced by the wvertical acceleration.
Especially, the increase of residual displacement
caused by the vertical acceleration amounts to 47%
for Pier A subjected to X-component wave of JRT.
The tendency of the effect induced by the vertical
acceleration is, however, not definite. The vertical
acceleration component can either increase or
decrease the maximum sway response displacement
and the residual  displacement. Thisis probably
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under different combinations of earthquake waves

Table 2 Maximum displacements u,,/H and residual displacements u,, /H of Pier A and Pier B

Earthquake Waves U-D Wave In-Plane (without Y-wave) 3-D (with Y-wave)
U2 | H Uy op | H Z—1 Uypesp | H
Pier A X 0.01298 0.00186 0.01580 0.00210
TMA @) 0.01305 0.00174 0.01566 0.00216
Pier B X 0.02169 0.00634 0.01534 0.00607
O 0.02005 0.00436 0.01428 0.00435
Pier A X 0.01056 0.00430 0.00997 0.00433
IRT O 0.01203 0.00630 0.01026 0.00467
Pier B X 0.03098 0.01097 0.03169 0.02048
o 0.03152 0.01340 0.03214 0.02225
Remarks: O (x)= U-D wave is (not) considered; (subscripts) 2D=in-plane; 3D=three-dimensional
Table 3  Effect of U-D component on maximum and residual displacements
(. 7.
Earthquake o In-Plane 3D Earthquake o In-Plane 3D
Wave Uy Wave ey
U 1.01 0.99 7 0.92 0.93
Pier A IMA i, 0.94 103 | PierB IMA i, 0.69 0.72
U 1.14 1.03 U 1.02 1.01
IRT i, 147 1.08 JRT i, 1.22 1.09
Remarks: &, = Uit v-p /Mmassitions -n+ Brey = s vith =D | Ures sithout U-D
Table 4 Effect of coupling of horizontal waves on maximum and residual displacements
Earthquake U-D Ymsxin Yressn Earthquake U-D Yiaxip Yressn
Wave Wave Wmax2p Uresan Wave Wave Ymax2p Uresap
Pier A TMA X 1.22 1.13 Pier B IMA X 0.71 1.04
O 1.20 1.24 ©) 0.71 1.00
X 0.94 1.01 X 1.02 1.87
JRT JRT
®) 0.85 0.74 ®) 1.02 1.66

because at some special point of time, such as, the
point at which the sway displacement reaches its
maximum value, the vertical acceleration does not
necessarily produce a compressive inertia force that
leads to the increase of the sway displacement by
P — A effect. The up-ward inertia force results in a

tensile force that leads to the decrease of the sway
displacement.

Next, we examine the coupling effect of N-S and
E-W acceleration components on the seismic
behavior of the piers based on Table 4, where the
ratios of the maximum and residual displacements
obtained with both X- and Y-wave to those without
Y-wave are summarized from Table 2. The
consideration on Y acceleration component in
addition to X-component can either increase or
decrease the maximum response displacement and
the residual displacement. The maximum increase
caused by Y-component is 22% for the maximum
response displacement and 87% for the residual
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displacement. This implies that the customary in-
plane modeling of bridge piers may sometimes
underestimate the effect of the seismic waves on
their ultimate behavior. From these results, it can be
said that the coupling effect of the horizontal
acceleration components is more significant than
that of the vertical acceleration component.

(2) Seismic analysis of portal frame

Portal frame-type bridge pier models presented
by Miki et al'” are used in our analysis. The details
of these models are shown in Fig.8. The dimensions
and material properties are summarized in Table 5.
Frame B has the same material properties and
dimensions as Frame A except for the beam section
(Sec.4). As a constitutive law, the kinematic
hardening model with a constant hardening modulus
is used for beams, columns and panel zones. After

yielding, E’ =0.05E is assumed for panel zones



Panel zone h h P

- [ 4
#h v - Beam~ ;- ®--© - @ m,
L _ 1Sec.3 ! ® K-—Bw-x
= \Sec. 4 |
o mi’ b
Sec. 2 ® A
Hih, Column ! hdb); K
v Up=EL
nt 7 %CJ : N
[V X a, ®  Cross section
>
L2 a, ?az
Fig.8 Portal frame type models
Table 5 Dimensions of frames
Frame A (Frame B)
Sec. h; t; (mm) t,; (mm) %y
i (mm) (MPa)
1 3,744 320 25.6 383
2 10,051 26.0 20.8 281
3 605 36.0 28.8 270
4 11,520 | 36.0(30.0) | 28.8(20.0) | 270(235.2)
H=15.0m, L[=24.0m, h=096m, h,=1.2m, B=1.2m,
m,=3.168x10°kg, T, =1.12s; T, =1.012s

Remarks: data in parenthesis are for Frame B; m =concentrated
mass located at the center of panel zone; mass density of steel
p=7.85x10kg/m’; T,,T, : the natural periods of Frame
A and B along X-direction; panel zone web thickness
1,,=28.8mm.

(Kato et al V), while E' =0.01E is adopted for
columns and beams. Lumped masses are considered
for the respective nodes of beam, column and panel
zone elements. The seismic waves used in the
present analysis are those of JMA and JRT as
described in Section. 4 (1). In case of the in-plane
loading, only X-component of the seismic waves is
applied, whereas all the three components are
applied in the three-dimensional loading.

Sixty elements are used to discretize both Frame
A and B; that is, twenty-five elements for each
column and ten elements for the beam. The cross
section are divided into 40 elementary areas in order
to consider the plastification.

First, the difference between the present shear
panel zone modeling (P-Z model) and conventional
centerline-to-centerline modeling (C-C model) with
rigid beam-to-column connections is investigated.
Figure.9 shows the response displacement histories
of Frame A subjected to JMA and JRT waves. Here,
u is the averaged sway displacement at the tops of
two columns. As a result of the numerical analysis
under in-plane loading (JMA), the averaged
horizontal restoring force R; vs. sway displacement
u/H relations for Frames A and B are shown in

u/H
- /\f\f\f\/\AAAAAA

A

(=

-0.02

15
(a) In-plane loading

| — P-Z model
0.01 | /\ [\ . /\ o C-C model
(\\ [\ Nos A A

oI LA

<

-0.02

0 5 15
Time (sec.)

(b) Three-dimensional loading
Fig.9 Sway response displacement histories

of Frame A subjected to JMA waves

R, (MN) R; (MN)
2 . 2
1 ’ 1
0 0
-1 -1
/ — P-Z model :
2 ~C-Cmodel] -2| b=tz
-002 001 0 001 -0.02 001 0 0.01 0.02
u/H
(a) Frame A (b) Frame B

Fig.10 Restoring force vs. sway displacement curves

Fig.10. In order to obtain smooth hysteretic curves,
only the concentrated mass m, at the tops of the
columns is considered in calculating R, vs. u/H
relations.

From Fig.9, it can be seen that almost the same
results are obtained up to the maximum response
displacement, regardless of whether the panel zone
deformation is considered or not. After the
maximum response displacement is experienced, the
difference between the two models becomes
somewhat noticeable. The restoring force vs. sway
displacement curves also show that the C-C
modeling gives the same stiffness of the frames as
P-Z modeling in the elastic range. This is because
the C-C modeling results in greater member lengths
than actual ones, which reduces the frame’s stiffness
and compensates the error . However, in the plastic
range, the stiffness and strength of the P-Z models
are apparently smaller than those of the C-C models
as can be seen from Fig.10.
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Table 6 Maximum and residual sway displacement

Ul H , U, H (%)

F
Earthquake rame A Frame B
Umax Ures Umax UI‘ES
waves
2D 2.43 0.51 2.25 0.04
* *, *
IMA 1.01 0.84 1.00 *3.81
D 2.11 0.63 2.14 0.19
*1.00 *0.95 *1.00 *0.98
D 3.92 1.23 2.50 0.27
* * *
IRT 1.02 1.03 *1.04 136
D 3.60 1.37 2.86 1.22
*0.99 *0.94 *1.08 *1.33

Remarks: 2D, 3D are the same as those defined in Table 2; data
with * =u/u__; u,._, :obtained by the C-C modeling.

Finally, the seismic behavior of frames is
discussed in terms of the difference caused by the
loading patterns; that is, in-plane loading and three-
dimensional loading. In addition to the maximum
sway displacements and residual displacements
summarized in Table 6, we show the sway response
displacement histories and cumulative plastic strain
histories in Figs.11, 12 and 13. In Fig.12, the
cumulative plastic strains are shown for three
sections of columns as defined in Fig.8. In this case,
the cumulative plastic strain ¢, (or v,,) is the

averaged plastic strain for the respective sections
and is defined as ¢, (or v,,) = ([€°dA)/ A, where

€” is the equivalent plastic strain; 4 is the cross-
sectional area. The panel zone cumulative plastic
strain shown in Fig. 13 is averaged over the two
panel zones for each frame .

It can be seen from Table 6 and Fig.11 that
although the coupling of earthquake waves
produced uncertain tendency for the maximum
response displacements of frames, the residual
deformations induced by the coupling are larger
than those by in-plane loading. Since the magnitude
of the residual displacement is influenced by the
plastification of frames, we examine some details of
the plastification patterns based on Figs.12 and 13.
From these figures, it is observed that the
plastification pattern is much influenced by the
loading patterns. That is, the in-plane loading results
in more plastification in the panel zone whilst the
three-dimensional loading causes more plastification
in columns. These results are consistent with the

experimental results obtained by Miki and
Kotoguchi'®. The increased plastification in
columns leads to a larger residual sway

displacement. This phenomenon shows that there
exits different failure mechanism according to
whether piers are subjected to in-plane loading or
three-dimensional loading.

0.02

ok el

-0.01

-0.02

0 5 10 15 20 25 30
(a) Subjected to IMA waves

— In-Plane

A

0 5 10 15 20 25 30
) Time (sec.)
(b) Subjected to JRT waves

Fig.11 Sway response displacement histories of Frame B

5. SUMMARY AND CONCLUDING
REMARKS

In this paper, a three-dimensional numerical
analysis method of space frames was presented. In
this method, both geometric and material
nonlinearity were included. Furthermore, a joint
element was introduced to consider the shear
deformation along with the rigid body motion of
beam-to-column panel zones. With this method the
seismic behaviors of single post-type and portal
frame-type steel bridge piers subjected to either in-
plane or three-dimensional ground motions were
investigated. The results obtained from the present
research are summarized in the following.

(1) The residual deformation of the single post-type
piers is somewhat affected by the wvertical
acceleration component, whilst the maximum
displacement is less affected.

(2) The coupling of the two horizontal acceleration
components affects both the maximum response
displacement and the residual displacement.
Therefore, it can be concluded that the in-plane
modeling of single post-type piers may result in an

inaccurate prediction for both the maximum
response  displacement and  the  residual
displacement.

(3) For portal frame-type piers, the conventional
centerline-to-centerline modeling may overestimate
the stiffness and strength of frames when the
structures reach elasto-plastic region.

(4) The plastification pattern of portal frame-type
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Fig.12 Time histories of cumulative plastic strain

in cross sections of Frame B (JRT)

bridge piers is much influenced by the loading
patterns. That is, the in-plane loading results in more
plastification in the panel zone whilst the three-
dimensional loading causes more plastification in
columns. The increased plastification in columns
leads to a larger residual sway displacement.

APPENDIX

In order to determine a suitable time interval Ar
for the numerical integration, the convergence of
numerical solutions is examined for Piers A , B and
Frame A with using different time intervals. For
simplicity, the convergence of solutions is not
examined for Frame B, since this frame has the
same dimensions as frame A except for its beam. In
Fig.A, the maximum sway response displacement
mx VS, time interval Ar is shown for these
structures. As seismic loads, N-S and U-D
components of JMA are applied to the X- and Z-
directions of Piers A and B, while N-S, E-W and U-
D components of JMA are applied to the X-, Y- and

u

1o

0.03 M{J e A 3D Frame B, 2D
0.02t ; Frame B, 3D
0.01
0
0 5 10 15 20 25 30
Time(sec.)
(a) Subjected to JMA waves
Yo
0.08 | Frame B, 2D
I Frame A, 2D
0.06 | _ FameA,3D |
0.04 Frame B, 3D
0.02¢
0
0 5 10 15 20 25 30
Time(sec.)

(b) Subjected to JRT waves
Fig.13 Time histories of cumulative plastic strain in panel zone

Ynax / U nax-0.001

1.1
10"—@*—5-——-—% _______
B
0.8 PierA ¢
PierB +
Frame A 2
0.6 ]
0.001  0.005 0.01 0.015 0.02
Ar (sec.)

Fig.A Convergence of solutions due to time intervals

Z-directions of Frame A. The time intervals
examined here are 0.001, 0.002, 0.0025, 0.005, 0.01
and 0.02 sec.. In Fig.A, the maximum sway
response displacement u,, is normalized by the

maximum response displacement u_, ., When

At is 0.001 sec.. From Fig.A, it can be seen that all
time intervals yields virtually the same solutions for
Pier B and Frame A. However, for Pier A, the
difference of solutions becomes larger than 4.5%
when At exceeds 0.01 sec. For this reason and
considering the computational efficiency, the time
interval 0.01sec is chosen for Pier B and Frames A,
B and 0.002sec for Pier A.
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