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Flutter and buffeting of the Akashi-Kaikyo Bridge were analyzed using a newly developed analytical
tool, which is able to consider fully aeroelastic and aerodynamic coupling effects among modes. The
analysis well demonstrated the behavior of a wind-tunnel model and particularly could capture the mode-
coupling effects. Six primary modes dominated the flutter of the Akashi-Kaikyo Bridge where significant
mode couplings of the 1* torsional mode with three vertical modes were observed. The multi-mode
analysis also provided insights into the coupling mechanism in buffeting in which strong aeroelastic and
aerodynamic interactions between vertical and torsional modes were observed.
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1. INTRODUCTION

Wind-resistant design is one of the key factors in
the realization of long-span bridges. As the span
length increases, aeroelastic phenomena (vortex
shedding, galloping, divergence, flutter and
buffeting) must be carefully considered in the
design stage. Wind-tunnel testing has been widely
used for that purpose since the Tacoma Narrows
Bridge collapse in 1940.

Recently, analytical prediction methods aided by
progress in computer technology are more
commonly used. These methods are typically
represented as flutter and buffeting analyses in
which parameters in the analysis are experimentally
obtained. The analytical methods have great
advantages of flexibility, saving time and cost, and
of yielding a great deal of insight into the physics of
the aeroelastic phenomena.

Multi-mode-analysis approaches”” have been
proposed in the last decade by several researchers.
These predicted the possible mode coupling in the
flutter and buffeting of long-span bridges, in
particular, Jain et al.” presented several examples of
the possibility of aeroelastic and aerodynamic

coupling among modes. Further, the Honshu-
Shikoku Bridge Authority performed a wind-tunnel
test using a 40-meter-long aeroelastic model of the
Akashi-Kaikyo Bridge, and observed significant
mode coupling in the flutter state”.

This paper first analytically demonstrates the
flutter and buffeting of the wind-tunnel model of the
Akashi-Kaikyo Bridge, then discusses mode-
coupling effects, and finally provides insights into
the mechanisms of mode coupling in the flutter and
buffeting.

Miyata et al.” investigated the fact that six
primary modes were coupled in the flutter of the
Akashi-Kaikyo  Bridge, and lateral flutter
derivatives P;" (i = 2, 3, S and 6) played a significant
role in the flutter onset. However, there still seem to
remain issues to be investigated, e.g., to what extent
each of the six modes participated in the flutter, and
what is the nature of the coupling mechanism at
flutter? In addition, buffeting analysis has been
usually performed in Japan neglecting aerodynamic
and aeroelastic mode coupling for analytical brevity.
However, since significant mode coupling was
experimentally observed in the flutter of the
Akashi-Kaikyo Bridge, mode coupling in buffeting
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must also be expected.

The analytical procedure used in this study was
developed by Jain et al.”®, implementing the theory
of Scanlan and Jones”, and is able to capture the
fully coupled aeroelastic and aerodynamic response
of long-span bridges to wind excitation.

Therefore, with this analytical tool, it is of great
interest to investigate the mode-coupling effects and
mechanisms in the flutter and buffeting of the
Akashi-Kaikyo Bridge, particularly buffeting,
which has not been fully analyzed in a multi-mode
sense before.

2. GENERAL FORMULATION

The analytical method used here is based on a
modal analysis in the frequency domain”. This is
summarized here for context. In a modal analysis,
the deflection components of the bridge deck are
represented in terms of the generalized coordinate

of the mode &(#) , the deck width B and the
dimensionless modal values of the i" mode along

the deck h(x), p(x) and o (x) as

vertical: h(x,t)= Y h;(x)BE, (1) (1a)
lateral: p(x,1)= 2 P, (OBE, (1) (1b)
torsion: o(x,) = Z(xi ()€, (1) (Ic)

where x is the coordinate along the deck span and ¢
is time.
The governing equation of motion of &; is

LIE +20,0& +0}E1=q,(1) )

where I; and g(t) are the generalized inertia and
force of the i" mode, and {; and @, are the damping
ratio-to-critical and the circular natural frequency of
the i™ mode, respectively.

The generalized force g,(1) is defined by

']
q,()= [[Lh B+ Dp, B+ Moy Jdx ©)

where [ is deck span length and L, D and M
represent the lift, drag and pitching moment per unit
span length . The lift, drag and pitching moment per
unit span are defined by

lift: L = L, + L, (4a)
drag: D = D, + D, (4b)
moment: M = M, + M, (4¢c)

where the subscripts ae and b refer to aeroelastic
and buffeting, respectively.

For purely sinusoidal motions of frequency @,
the aeroelastic forces can be expressed as

L =LpvB ku: My ki BE v k2
2 U U :

* h * 7 2 * P
+K?H, —+KH;—+K*H; - 5a
i g Sy 6 B] (Sa)
b, =Lours kPt Ly kp; B2 4 k2P
2 U U ;
+K2P*—+KP*—@—+K2P*£ (5b)
‘B0 U °B
1 .h  .Bd .
M, =—pU’B’| KA  —+ KA, —+ K Ajo
2 U U ‘

« h Ny «
+1<2A4-B—+1<A55+1<2A6 -I’ﬂ (50)
where p is the air density, U is the mean wind
speed, K(= BayU) is the reduced frequency and H,
P and A", i = 1 - 6 are the flutter derivatives of the
deck cross section.

Under assumed slowly varying gust action, the
buffeting forces are defined as

1 u , w
L, =5pUzB[CL(25) +(C, + CD)E]—]

1

= pU?BL, (x,1) (62)
1 9 , W
D, == U~B[CD(2%)+CDE]
= % pU?BD, (x,1) (6b)
1 u w
M, =—pU*B*|C,,2—)+C,, —
b ZP [ w ( U) MU}
:%pUzBZMb(x,t) (6¢)

where C;, Cp, and C,, are the static lift, drag and
pitching moment coefficients (referred to deck
width B) of a typical deck cross section,
respectively, C,' = dC,/da, Cp'= dCp/do and Gy
= dC,/de, and u = u(t), w = w(t) are the along-
wind and vertical velocity fluctuations of the wind,
respectively.

The multi-mode system of equations can be
expressed in matrix notation as

"+ AL +BE=Q,(s) Q)
where & = generalized coordinate vector, ()
represents a  derivative  with  respect to
dimensionless time s = U/B (which is introduced
for analytical convenience) I is an identity matrix, A,
B are the damping, stiffness matrices of the system,
respectively, and Q, is the generalized force vector.

At this point, if it is expected that the flutter
derivatives along a span vary due to the change of
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angle of attack and geometric condition of the deck,
the general terms of A, B and Q, are expressed as

B*IK
A (K)=2 K5, - P16 + G Gl
A P R A A3 A
+Gp:p/ +GP42 +G1’5h +Gav‘|h1 +Gai;1) +G’1:-[’/] (8)
B*IK?
B, (K)=K26, -E=—=—1G% +Gli +Gl

27, hiot; hip;

i

P P; R Ay A} Ag
+G P, +G, ), +G,,fh, +Ga4a1 +Ga,4hj +Ga,6p,] &)

Q, (s )— j{L (X, )h + D, (x,5)p,

d
+Mb(x,s)a,-}7x (10)
where §; (= 1 when i = j, otherwise = 0) is the
Kronecker delta, and K, = B, /U. The modal

integrals (GrT;"; ) are obtained by

/
- J‘OT;(x)r,(x)s ; (x)%’ﬁ (1
where T, = H,”, P,” or A, (m=1,.,6), r,= h;, p
or & , and s = h;, p; or o Note that the
spanwise coordinate x locates information about the
type of cross section and the angle of attack.

The diagonal terms (i = j) in (8) and (9) represent
the single-degree-of-freedom (and uncoupled)
equations while the off-diagonal terms introduce the
aeroelastic coupling through the flutter derivatives
and the mechanical coupling through the cross-
modal integrals among different modes.

Defining the Fourier transform of f{s) to be

FUEO=]" f(9)e ™ ds (12)
and taking the Fourier transform of (7) yields the

new system of equations in the reduced
frequency(K) domain such that
EE=Q, (13)
where
E; =—K? 8, +iKA,; (K)+ B (K) (14)

andizx/:—l_.

(1) Identification of flutter condition
The flutter condition is identified by solving the
aeroelastically influenced eigenvalue problem
EE=0 (15)
In order to obtain a nontrivial solution for (15),
the determinant of matrix E must vanish.
Additionally, since the matrix E is complex, the
condition of detE = 0 must be satisfied requiring
that both the real and imaginary parts of the
determinant are simultaneously zero'”. This can be

accomplished by fixing a value of K and seeking a
value of @, in the frequency range of interest, for
which the determinant is zero; and then repeating
this process, changing the value of K, until both
determinants are zero at the same . At this point,
the flutter frequency is obtained from @ and the
flutter speed can be calculated from K (= @B/U)
and @.

For a multi-mode problem, the same procedures
are required as many times as the number of
modes and the highest solution of K of all solutions
gives the flutter-critical condition. The mode
corresponding to the solution of @ is the dominant
mode in the flutter condition. Moreover, the
eigenvector & at the flutter condition gives the
"flutter mode shape" which indicates the relative
participation of each structural mode in flutter.

(2) Analytical procedure for buffeting
The vector of buffeting forces on the right hand
side of (13) is

J'Fb[
@rpfl b F'” (16)
1 = d
ZLIF” -

where the integrands in the vector above are

F, (x, K) =Ly (x, K)h,(x) + Dy (x, K) p, (x)
+ M, (x, K)et, (x) an
Substituting for the terms above from

appropriately transformed (6a) - (6¢) at span
location x, leads to

F (xA,Io%nzqh,-(xmzcbpi(xn
+ ZCMai(xA)}i(K)+{(C£ +CD)hi (xA)
+C)py () + Clyt (x) (K] (18)

A complex conjugation operation (denoted by the
asterisk) for Q, gives the following equation as

R pB4l ’
Q,Q, =[ 5 ]

Lj’j’f,,_f; dxy

[ (19)

from which the power spectral density (PSD) matrix
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can be developed.
A general term of the PSD matrix is

pB*l ’
Sar0, <K>=[————w ]

1 ¢l 5
X}TT;LL{ G (x4)q,;(xp)S,, (x4,x5,K)

7 (5, )7 (x5)S,,,, (x4, X5, K) +1G,;(x,)7; (xp)
+7(x, )aj (xp)IC,, (x,, x5, K) +i[q; (x,, )7,' (x5)
dxA dxg

=7 (x4)q, (xp)]10,, (x4, x5, K)}—= ] (20)
where
G, (x)=2[C h(x)+Cpp,(0)+Cya,(x)] (21

7j(x):(C2 +CD)hj(x)+C,;pj(x)+C,'waj(x) (22)

S.. and S, are spanwise cross-spectral densities of
u and w components, respectively, and C,, and Q,,
are spanwise uw-cospectral- and quadrature-spectral
densities, respectively.

The spanwise auto- and cross-spectral densities of
the wind components are defined here referring to
Roberts and Surry'” and the measurement in the
wind-tunnel testing'? as

Suu (XAVXB’K):Suu(K)Ruu(xA’xB’K)

- / KL
=S, (K)exp ~52§7E‘—IXA—L’1| +70. 8( : ;] (23)
3

Sow(Xp, x5, K)=8, (KR, (x4,xp,K)

_ 2
=SW(K)exp{—£21~9ﬂ]——lfiL—xB—,‘/l + 70.8(%) } (24)
4

Cooxg, x5, K)=C, (K)R, (x4,x5,K)

=Cpy (K)yRyy (x4, 35, K) Ry (x4, %5, K) (25)
where S, (K) and S,,.(K) are auto-power spectral
densities of u- and w-velocity fluctuations,
respectively, C,.(K) is a co-spectral density of the
uw-cross spectrum, ¢ (= 8) is the decay factor, and
equivalent turbulence scales L; (= 70 m) and L, (=
40 m) are determined based on the measurements'”
in the wind-tunnel testing. Q,,, was not included in
this analysis because there was no quantitative
assessment available and its contribution is
considered to be relatively small.

An aerodynamic admittance, a function of K
defining the correlation between the section wind
speed fluctuation and the developed wind force, was
taken as the Davenport formula for drag and unity
for lift and pitching moment based on the
measurements',

At xm X H

drag: }XD(K)F = —2—2[CK'~1+exp(~cK')] (26)
(cK”)
lift and pitching moment:
O =l () =1

where K' = DK/27B, D is the deck height.

There is an argument in buffeting analysis that the
spanwise coherence of buffeting forces is larger
than that of wind-speed fluctuations. In this study,
both were assumed to be same. That is, the
spanwise coherence of wind-speed fluctuations was
defined based on measurements in the wind-tunnel
test, and that of buffeting forces was given via
aerodynamic admittance. Ultimately, it is desirable
that this issue should be dealt with along with
aerodynamic admittance in order to elucidate
buffeting mechanisms in long-span bridges.

Using the following expression as

o (K= [ [ 00008, (5 R (1055, KOS

@7

dxA de
l
(28)
where r;and s; = h, p;or O, mand n = u or w, and
T = C or S according to mn, the ij" term of the
buffeting force matrix can be expressed as

pBY 1
S K)=|—
Qb,th( ) [ 2U ) I ]

+Y0 (K)S,, (K)+ Y, (K)Cuw(K)J

where

L s 08, (0

(29)

Y (K)=Q2C, |2, )2 H +(2CD]xD!> Hm

+(2Cy xm)? H w +4C,C NIy ;b
+XDXL uu )+4C C (XLZMHS““ +XMXLHS"“ )

+4Cp CM GoxuH s + X xpH ) (30)

Yﬁw (K)=(C, +C) )[beZH N

H St +(CL+CD)CD(ZLXD h[’

+xDxLHf, >+<C +Cp)Cly uityH
"")+C C, (XDXMHSW +XMZDHSW)

31)
Y (K) = 2{2<CL+C ol Hy

wy ’ Ciw 4
- +2Cy Cy [w |’ H = +(C,Ch
H(CL+Cp)CH L ApH ™ + 2o X H % )+IC,Cy
+(CL+Cp)Cy ](ZLZ;{H::Z +XMXZH5:S )+(CpCy

+ChCu )Xo X M + X ApH 7)) (32)
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and the asterisks denote complex conjugates.

For the Akashi-Kaikyo Bridge, S,.(K) and S,,.(K)
were modeled using the Hino spectrum and Bush
and Panofsky spectrum, respectively, based on the
measurements'” in the wind-tunnel testing.

) 21516
2 KU
K)=04751% 14| 22
S, (K) ﬁ{{znﬂzs)}

oK U z (2m-3)a~1
=0.01718—12| = 33
p = [10} (33)

Z/fmax
Ul +1.5(Kz 1 27Bf ., )>' ]

S0 (K)=0.632w72

(34)

where o (= 1/8) is the exponent of wind velocity
profile, K, (= 0.0025) is the surface friction
coefficient, m is a modification factor for the
spectrum shape associated with turbulence scale,
Uy, (= 46.0 m/s) is the design reference wind speed
at 10 m above sea level and z is the elevation. The
modification factor m in the analysis was set to 3
and f,,, = 0.4 based on the measurements'” in the
wind tunnel.

Since there are no measurements for the actual
Akashi-Kaikyo Bridge as yet, an empirical formula
for C,,, was used'?.

14zu?
Ul +9.6(Kz/2nB)*

where u. is the surface friction velocity.
The power spectral density matrix for the

generalized coordinate ¢ is developed using (13) as

See (K)=E™'S g0, [E7]"

Cuw(K) == (35)

(36)

where E’is the complex conjugate transpose of
matrix E.

The PSD of the physical displacements for (1a) -
(1c) can be obtained from the PSD of the respective
generalized displacement components through

Sin(asxg, K)= 2, 3 B hi(x )k (x5)Se (K) (37)
P

S (a5 K)= 3, ¥ B2 pi(x3)p; (x5)Sz, (K) (38)
i

Sea (Xa x5 K) =20 D0 (x0)0t; (x5)Sge (K) (39)
i

where i and j represent the summation over the
number of modes being used in the analysis.

Evaluation of the spectral densities of the
displacements at combinations of discrete x, and x,
will result in a matrix. The mean-square values of
these displacements can be evaluated in terms of
their respective PSD functions

07 (o) = [ S Cepxy, A (40)

GIZI(XA,XB) = J.:Spp (‘XA’XB’f)df

0o (g Xp) = [ S (a5 £

(41
(42)

where fis the frequency. Covariance matrices for 4,
p and @ are thus obtained, from which statistics of
the displacement components s, p and « can be
calculated.

Neglecting any coupling terms among modes
results in a single-mode buffeting calculation. Based
on the formulations developed above, the PSD of
the physical displacements at a specific point x, for
the single-mode buffeting, S, (x,K), S, (x,K)

and Sai (x,K) can be obtained by the same

procedures as those in the multi-mode buffeting.

Then the mean-square values of these
displacements can be evaluated as
oo =[S, 0 Ndf 43)
0

where g;= h;, p;or ¢;.

For the purpose of evaluating the response in the
multi-mode sense from single-mode responses, the
square-root of the sum of square (SRSS) of single-
mode responses method is used, i.e.:

SRSS(x) = [0 (x) + G2 (x) ++- -+ 02 (x) (44)

where n is the number of modes.

3. FLUTTER ANALYSIS

(1) Description of analysis

Flutter derivatives of the deck used here, which
were measured'” by a forced vibration method in a
smooth flow, were components of H,"..., H,', A,",..,
A, Py, Py, Ps"and P,". P,” was estimated using
quasi-steady theory as'®

P = 2Cy/K (45)

The flutter derivatives in the analysis were given
as a function of angle of attack, which is also a
function of span location, since it is associated with
deck rotation due to the wind loading. In addition,
two different sets of flutter derivatives, which were
measured using deck-section models with different
main cable heights, were applied to the 340-meter-
long section at the span center where main cables
were close to the deck and affected deck stability
aerodynamically'”.

(2) Flutter analysis of wind-tunnel model
Flutter analyses predicted the behavior of the
wind-tunnel model of the Akashi-Kaikyo Bridge, as
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Table 1 Flutter speeds and frequencies of analysis and measurement

Cross Section & Flutter Speed (m/s) Flutter Frequency (Hz)
Flow Angle: o, (deg.) Analysis Measurement Analysis Measurement

Original, o, =0 79.1 [78.8] 84.0 0.146 0.135

Original, o, = +2.7 79.8 [82.0] 85.0 0.148 0.136

Modified, o, =0 81.3 [82.9] 90.0 0.148 0.140

Modified, &, = +2.7 91.9 [90.0] 96.0 0.146 N.A.

Partially Modified, ¢, = 0 80.0 [82.8] 90.0 0.148 N.A.

Partially Modified, o, = +2.7 91.4 [91.6] N.A. 0.146 N.A.

Flutter speeds in [ ] were obtained by another analysis”. N.A.: not available
Table 2  Eigenvectors of E at flutter
(a) Magnitude: lf, )
Original Modified Partially Modified
o,=0 +2.7 deg. a,=0 +2.7 deg. o, =0 +2.7 deg.

Mode 1 6.847E-02 2.884E-02 5.649E-02 4.636E-02 5.457E-02 4.306E-02
Mode 2 2.447E-01 2.238E-01 2.020E-01 2.449E-01 1.987E-01 2.593E-01
Mode 10 2.241E-01 1.816E-01 1.713E-01 1.546E-01 1.587E-01 1.540E-01
Mode 11 6.383E-02 5.604E-02 7.754E-02 1.069E-01 7.483E-02 1.005E-01
Mode 12 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00
Mode 13 2.438E-01 2.238E-01 1.770E-01 1.844E-01 1.653E-01 1.894E-01

(b) Phase: tan''({,/R,) where R, and I,, are the real and imaginary part of f ; vector, respectively.

Original Modified Partially Modified
o,=0 +2.7 deg. a,=0 +2.7 deg. a,=0 +2.7 deg.

Mode 1 -172.0 -178.1 -166.7 -167.7 -166.8 -167.8
Mode 2 18.0 24.0 22.6 24.5 23.2 25.0
Mode 10 -162.5 -157.9 -160.7 -153.6 -162.9 -153.1
Mode 11 17.4 -6.9 6.0 8.1 5.0 6.6
Mode 12 0.0 0.0 0.0 0.0 0.0 0.0
Mode 13 -17.1 -7.6 -5.3 -53 -8.3 -1.2

shown in Tables 1 and 2, and Fig. 1. Flutter
stability of the Akashi-Kaikyo Bridge was secured
by installing a stabilizing device just below an open
slot on the road deck center, which is a vertical thin
plate enhancing air stream through the slot,
consequently diminishing the difference in air
pressure between locations above and below the
deck. The modified cross section includes this
device while the original does not. The partially
modified case consists of the modified section in the
center span and the original section in both side
spans. Flutter derivatives in each case were chosen
accordingly.

Based on a previous study", six primary
symmetric modes; 1* lateral (mode 1), 1" vertical
(mode 2), 2™ vertical (mode 10), 2™ lateral (mode
11), 1* torsion (mode 12) and 3™ vertical (mode 13)
were used in all the analyses. Fig. 1 shows the real
and imaginary roots of detE = 0 for the original and

‘modified cross sections with o, = 0 deg. The

intersection of the real and imaginary roots gives
flutter onset and the corresponding mode to the
intersection is a dominant mode to flutter. Mode 12
(1* symmetric torsion) was the leading mode in all
six cases in Tables 1 and 2.

All of the flutter speeds calculated in this study
are lower (4% - 11%) than those measured in the
wind-tunnel testing, but are in good agreement with
those analyzed in the previous study", as seen in
Table 1. This suggests that the analysis in this study
appears reliable and consistent. One reason for these
differences in the flutter speeds between the
analysis and measurement may be due to an existing
effective reduction in the spatial correlation of
flutter derivatives (aeroelastic forces) in the
physical model. Its effect can be taken'® ' into (11)
in the same manner as the spanwise coherence of
buffeting forces in (28), however it was not
considered in this analysis.

The analyses showed that the flutter of the Akashi-
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Original Cross Section, ay = 0 deg. Modified Cross Section, «, = 0 deg.
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Fig. 1 Real and imaginary roots of detE = 0 in flutter analysis
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Fig. 2 Comparison of mode participation between 25- and 6-mode analyses

&

Table3 Mode participation (

) of six primary modes to flutter

Mode Flutter Speed
Case 1 2 10 11 12 13 (m/s)
1 0.0685 0.2447 0.2241 0.0638 1.0 0.2438 79.1
2 — 0.2558 0.2173 0.0686 1.0 0.2340 80.4
3 0.1461 —_— 0.3416 0.1650 1.0 0.2785 96.1
4 0.0848 0.2818 — 0.0862 1.0 0.2467 84.2
5 0.0733 0.2577 02174 — 1.0 0.2353 81.0
6 N.D. N.D. N.D. N.D. — N.D. > 135
7 0.0540 0.2142 0.1734 0.0480 1.0 — 73.9
8 — 0.2699 —_ — 1.0 — 82.0
9 — 0.2328 0.1914 —_ 1.0 — 76.3
10 — 0.2233 0.1827 0.0497 1.0 — 74.9
N.D.: not determined.

Kaikyo Bridge was multi-mode coupled flutter in
which one torsional (mode 12), three vertical modes
(modes 2, 10 and 13) with the relatively small
participation of two lateral modes (modes 1 and 11)
were coupled. However, there are no significant
differences among the eigenvectors at flutter among
the analytical cases.

(3) Modal contributions

In order to investigate the possibility that any
other modes than the six modes identified above
participated in the flutter, a flutter analysis with the
first 25 modes of the Akashi-Kaikyo Bridge was
performed. The flutter speed in the 25-mode
analysis drops by about 2% from that of the six-
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Fig. 3 Evolution ratio of components in G-integral terms between flutter onset and 48 m/s

mode analysis and the six primary modes are
dominant in the 25-mode analysis, as shown in
Fig. 2. Modes 8 and 24 with relatively large
contributions are a longitudinal and a cable lateral
mode, respectively.

In addition, the extent to which each of the six
modes contributed to flutter was investigated.
Flutter analyses with different combinations of the
six modes were performed as shown in Table 3. The
contribution of modes 1 and 11 are small and mode
12 is essential for the flutter, that is, flutter did not
occur in a case in which mode 12 was excluded.
However flutter ultimately occurred otherwise even
when mode 2 was excluded.

Concerning the flutter speed, it is noteworthy that
even the two-mode (modes 2 and 12) case (classical
theory) gave a result very close to the six-mode case.
However, flutter mode in the two-mode case was
considerably different, in particular in vertical and
lateral components, from that in the six-mode case.
Modes 10 and 11 played a destabilizing role (low
flutter speed) while mode 13 stabilized the system
(high flutter speed), which is consistent with the
buffeting analysis presented later. It is also
noteworthy that no significant differences in the
eigenvectors can be seen among different mode
combinations except Case 3.
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(4) Coupling mechanism

It has been determined so far that several modes
were coupled in the flutter of the Akashi-Kaikyo
Bridge. In this Section, the underlying mechanism
of the multi-mode coupled flutter of the Akashi-
Kaikyo Bridge is investigated.

The coupling among modes is achieved through
aerodynamic and aeroelastic interactions, both of
which depend on flutter derivatives and on vibration
mode shapes. These interactions are taken into
account in the flutter analysis by (8) and (9).
Therefore, observation of the values of the G-
integral terms defined by (11) before and after
flutter onset will provide the information on the
coupling mechanism among modes. In this study,
using the six-mode analysis for the original cross
section with ¢, = 0 deg., the G-integral term values
were obtained at flutter condition onset and at a
wind speed of 48 m/s, which was far from flutter.

Fig. 3 shows the ratio of these values between the
flutter speed and 48 m/s. Shown are G-integral
terms whose components changed significantly
(magnitude changed by more than factor of two).
No significant components were observed in other
G-integral terms. Since the effect of modes 1 and 11
on flutter was small as described in the previous
section, and so was that of P, *”, omitting
components associated with these modes and the
flutter derivative from Fig. 3 will provide the
essential information. Then, dividing the significant
components  remaining into  two  groups
corresponding to A; and B; will conclude that

HY H{ HY HY H3 P

Gh.’Zth ’ hohyy Gh}ohz ’ Pyshy 2 hyayy P1a0> and
0o H; H; H; A

Ghls“}: n AU’ and Ghzau i thoalz ’ Ghlohn ? Go’lzalz ’
Py Hy Hj ;

G paten * tham and G,Wlz in B; evolved

significantly between flutter and 48 m/s.

It follows from above that mode combinations in
which significance was observed are (2-10), (2-12),
(2-13), (10-2), (12-12), (13-2) and (13-12) in A,
and (2-12), (10-12), (10-13), (12-12), (13-10) and
(13-12) in B;. It can also be said that these mode
combinations provide strong mode couplings at
flutter onset. Strong mode couplings are recognized
in a diagonal component of mode 12 (1* torsion)
and off-diagonal components between modes 2, 10
or 13 (1%, 2™ or 3" vertical, respectively) and mode
12. Strong mode couplings are also recognized in
off-diagonal components among these three vertical
modes. This may be related to the fact that the
flutter of the Akashi-Kaikyo Bridge was a bending-
torsion coupled type and mode 12 was a dominant
mode.

Flutter derivatives producing the strong mode
couplings are H,", H," and P," in A, and H,", H,",

ij>

Table 4  Static coefficients of deck cross sections

Cross C, Cp Cy

Section C,’ C, Cy'
Original 0.09418 0.38624 0.01038
=0 deg. 1.90460 0.0 0.27174
Modified 0.02465 0.42050 0.01317
a=0deg. 1.19175 0.0 0.30653

P;" and A;" in By In particular, H," and P," in A,
and H," and P;"in B, are coupled terms. It is thought
that these terms played an important role in the
coupled flutter of the Akashi-Kaikyo Bridge.
Actually, it was pointed out’® that P,” and P5’
greatly contributed to flutter onset and destabilized
the system. In addition, Matsumoto’”’ concluded
that H,” was one of the components significantly
contributing to coupled flutter of long-span bridges.

4. BUFFETING ANALYSIS

(1) Description of analysis

The first 17 vibration modes, with the exception
of very low-contribution modes such as cable
modes and longitudinal modes, were used here in
the buffeting analysis. They were modes 1 to 7, 10
to 14, 22, 23 and 25 to 27. The components of the
flutter derivatives used in the buffeting analysis
were the same as those in the flutter analysis, that is,
H'., H' A'., A, Py, P;, P" and Py’ The
flutter derivatives were interpolated well enough to
capture the peaks associated with natural
frequencies and were also carefully extrapolated so
as to cover the frequency range which effectively
contributes to the response’®. P,” was estimated by
quasi-steady theory from (45). Static coefficients of
the deck cross section used in the buffeting analysis
are listed in Table 4.

(2) Multi- and single-mode analysis

Single-mode RMS responses, which were
represented as SRSS responses, and multi-mode
RMS responses for the original and modified cross
sections were calculated at wind speeds of 30 my/s,
60 m/s and 78 m/s, then compared with
measurements'” in the wind-tunnel testing. The
wind speeds of 60 m/s and 78 m/s are the design
wind speed of the deck and the minimum required
flutter speed of the Akashi-Kaikyo Bridge,
respectively. Figs. 4 and 5 shows the comparisons
of the RMS responses in the middle of the center
span between the analyses and the measurements.
The measurement data were evaluated as the
average value of 15 sets of measurements. Their
maximum and minimum values are also shown in
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Fig. 4 Comparisons of RMS responses in original cross
section between analyses and measurements

the figures.

Good agreement can been seen between the
multi-mode responses and the measurements in the
vertical and torsional directions. In particular, the
multi-mode analysis could well simulate the notable
features of the measurements that the torsional
response rapidly increased after 70 nv/s, and that the
difference of the torsional RMS between the multi-
mode and single-mode analyses (and hence the
coupling effects in the multi-mode calculation)
become significant as the wind speed increased.

On the other hand, a difference of a factor of
around 2 persisted in the lateral responses between
the analyses; multi-mode and single-mode, and the
measurement. In addition, no coupling effect can be
seen in the lateral response of the multi-mode
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Fig. 5 Comparisons of RMS responses in modified cross
section between analyses and measurements

calculation. The analysis used all measurement data
available such as PSD and spatial correlation of
wind-speed fluctuations, static coefficients, and
flutter derivatives. Besides, the effects of static
deflection, lateral flutter derivatives (P,", i =2, 3, 5
and 6), both of which greatly affected flutter
instability, and uw cospectrum C,,, on the buffeting
were investigated, however those were not a
possible solution for the discrepancy in the lateral
buffeting®. The possible reasons for the
discrepancy are suggested as estimation errors
associated with P," and the representation of
aerodynamic admittance, but specific evidence has
not been obtained® relative to this structure.
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(3) Mode coupling in buffeting

In order to observe the mode-by-mode
contribution to RMS response, buffeting analyses
were performed changing the number of
participating modes in the analysis.

Fig. 6 shows the evolution of the RMS responses
of the original cross section versus the number of
modes used in the analysis. All of these are from the
multi-mode buffeting calculations at the wind speed
of 60 m/s.

The RMS responses generally increased as the
number of contributing modes increased, however
there are two significant differences to be observed
in the vertical and torsional directions. The vertical
RMS decreased between the 9- and 10-mode
analyses due to the addition of mode 12, and the
torsional RMS also decreased between the 10- and
11-mode analyses due to the addition of mode 13.

These effects may be caused by mode coupling.
That is, including mode 12 appears to shift the

buffeting response into the torsion mode and
including mode 13 also appears to shift the
buffeting response into the vertical mode. This latter
case is consistent with the fact that in the flutter
analysis the flutter speed increased after the
inclusion of mode 13.

Further investigations of these reductions of the
RMS responses were performed for different wind-
speed steps, 30 m/s and 78 m/s, and for the
modified cross section, as shown in Tables 5 and 6.
In the cases of wind speeds 30 m/s and 60 m/s in
both cross sections, a similar mode-coupling effect
can be seen as described above. In the case of 78
m/s, however, different coupling effects between the
original and modified cross sections can be seen. In
the original cross section, the vertical response
increased a little in the 10-mode analysis, and the
torsional responses greatly decreased in the 11-
mode analysis. On the other hand, in the modified
cross section, both vertical response in the 10-mode
analysis and torsional response in the 11-mode
analysis decreased, and its response-decreasing
trends are consistent among the 3 wind-speed steps.
That is, the response-decreasing ratios become large
as the wind speed increases.

Based on the buffeting analysis theory, mode
coupling information is collected into the PSD
matrix for the generalized coordinate &, Sze(K) in
(36). In order to check the coupling effects in terms

of the displacement, the covariance matrix of :.f,

COV(, &) was obtained by integrating Ses(K)
over frequency, i.e.,

COVE.& )= [ Seg, (N)df
0

Figs. 7 and 8 show the differences in the COV
matrices of the original and modified cross sections
between 9- and 10-mode analyses [COV (&, &) —
COVy(&, &)], and between 10- and 11-mode
analyses [COV (&, &) — COV,«(&, &)] at each
wind-speed step (Note that the dimension of the
COV matrices at each mode step is different).

Since physical displacements are obtained from
the COV matrix through mode shapes, for example,

O (x4, x5)= 2 3 B hi(x)h;(x5)COV(ELE) (4T)
i j

(46)

0o (xpxp) =3 >0 (x, ), (x5) COVE, &) (48)
i

and only vertical- and torsion-mode-related
components in the COV matrix contribute to the
vertical and torsional responses, respectively,
reduction of COV(&, &) between the 9- and 10-
mode analyses, and that of COV(&,, £,) between
the 10- and 11-mode analyses were identified as
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Table §

Multi-mode buffeting response of original cross section

9-Mode Analysis

10-Mode Analysis

11-Mode Analysis

U= o, [m] 0.1939 (1.000) 0.1901 (0.980) —
30m/s | o [deg] — 0.1028 (1.000) 0.1015 (0.987)
U= o, [m] 0.4874 (1.000) 0.4552 (0.934) _
60m/s | & [deg.] — 0.6020 (1.000) 0.5460 (0.907)
c, [m] 0.6375 (1.000) 0.6439 (1.010) —
U= [0.6385] [0.6385]
Bmls | g, [deg] — 1.7178 (1.000) 1.2653 (0.737)
[0.9455] [0.9455]

COV(&, &)y at 78 mfs

(i, )= (2,2) 0.2277E-03 (1.000) 0.1874E-03 (0.823) —
(i, )= (10,2) 0.9782E-06 (1.000) 0.1924E-04 (19.67) —
(I, )= (10, 10) 0.9457E-04 (1.000) 0.1030E-03 (1.089) —

(2,2) + (10,2) + (10,10)

0.3223E-03 (1.000)

0.3096E-03 (0.961)

G )=02,12) —

0.8988E-03 (1.000)

0.4869E-03 (0.542)

Note: ( ) in the same rows are the ratios. | ] are SRSS responses.
Table 6 Multi-mode buffeting response of modified cross section
9-Mode Analysis 10-Mode Analysis 11-Mode Analysis

U= o, [m] 0.1496 (1.000) 0.1455 (0.973) —_

30 m/s o, [deg] _— 0.0980 (1.000) 0.0971 (0.991)
U= o, [m] 0.3864 (1.000) 0.3503 (0.907) —

60m/s | g, [deg] — 0.5048 (1.000) 0.4779 (0.947)

o, [m] 0.5155 (1.000) 0.4555 (0.884) —

U= [0.5172] [0.5172]

78 m/s o, [deg] —_ 0.9908 (1.000) 0.9011 (0.909)

[0.7703] [0.7703]

COV(E, £) at 78 m/s

Gp= 2

0.1523E-03 (1.000)

0.9714E-04 (0.638)

GH= (10,2)

0.8957E-06 (1.000)

0.4554E-05 (5.084)

(i, j) = (10, 10)

0.5856E-04 (1.000)

0.5890E-04 (1.004)

(2,2) + (10,2) + (10,10)

0.2118E-03 (1.000)

0.1606E-03 (0.758)

(0, ))=(012,12) —

0.2972E-03 (1.000) 0.2456E-03 (0.826)

Note: ( ) in the same rows are the ratios. [

primary factors in the reductions of the vertical and
the torsional RMS, respectively. COV(&, &) and
COV(&, &) are both diagonal terms related to
modes 2 and 12, respectively.

Tables 5 and 6 also show the significant
components in the corresponding COV matrices at
the wind speed of 78 m/s. A significant difference
between both cross sections at the wind speed of 78
nm/s is in changes to the vertical components. COV
(&, &) of both cross sections decreased by similar
amounts while COV(&,,, o), diagonal term related
to mode 10, of the original cross section increased
by 9%. In addition, COV(&,,, &,), the off-diagonal
term related to modes 10 and 2, of the original cross
section significantly increased. Even though COV
(&, &) decreased for both cross sections, COV(E
&) and COV(¢,, &) increased and compensated

] are SRSS responses.

for the reduction of COV(&, &,) in the original
cross section. This would be a reason why the
vertical response of the original cross section at 78
m/s did not decrease between the 9- and 10-mode
analyses as described earlier.

These mode-coupling mechanisms might be
related to the flutter stability of the Akashi-Kaikyo
Bridge. Under the assumption made in the buffeting
analysis of no static deflection of the deck, it was
estimated in a study®” that flutter was about to occur
at 78 m/s in the original section while the modified
section was far from flutter at the same 78 m/s.

Since the Akashi-Kaikyo Bridge showed a
coupled flutter, mode-coupling activity at 78 m/s
must be higher in the original cross section than in
the modified cross section. In fact, differences
between the torsional responses in the modified
cross section between the multi-mode analysis and
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Fig. 7 Differences of COV matrices between 9- and 10-mode, and 10- and 11-mode analyses

(Original cross section)

the SRSS responses, which were shown in brackets
in Tables 5 and 6, are smaller than those in the
original cross section. Therefore, this is thought to
be a reason why many components in the COV
matrix participated in the mode-coupling of the
original cross section.
a) Parameter study

Finally, parameter studies on the reductions of
COV(&, &) and COV(E,, &) in the COV matrices
at the wind speed of 60 m/s were performed. Since a
COV matrix was defined by E and S 0,0, (referring

to (36) and (46)), it may be noted that the H-
integrals (28) dominate the coupling conditions in
SQth , and the G-integrals (11) and the associated

flutter derivatives dominate the coupling conditions

in E.

Considering that vertical RMS decreased just
after adding mode 12, effects of coupling
components between modes 2 and 12 in the H- and
G-integrals were investigated with the 10-mode
analysis. Similarly, those between modes 12 and 13
were investigated with the 11-mode analysis in light
of the fact that torsional RMS decreased just after
adding mode 13. Six parameter analyses were
performed for each case, as shown in Table 7.

If the responses obtained from the first of the

parameter analyses for the 10-mode analysis, in
which a parameter G,f: x, Was equated to zero,

recovered or approached those of the original 9-
mode analysis in terms of g, and COV(&,, &), the
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Fig. 8 Differences of COV matrices between 9- and 10-mode, and 10- and 11-mode analyses

(Modified cross section)

parameter may be a primary reason for the
reduction of the vertical RMS between the 9- and
10-mode analyses.

Thence, it is concluded that G:’; and H,
24412 2492

contributed to the reduction of the vertical RMS in
the 10-mode analysis, and they played a significant
coupling role between modes 2 and 12. For the case
of the reduction of the torsional RMS in the 11-
mode analysis, examining the results in the same

manner resulted in the observation that G,ffau and
G(fl‘;hn contributed to the reduction of the torsional
RMS in the 11-mode analysis, and they played a
significant coupling role between modes 12 and 13.
It was noted earlier in the flutter section that H,"

played a significant role in mode coupling even in
buffeting. It can also be said that mode coupling
between modes 2 and 12 is significant aeroelasti-
cally as well as aerodynamically, since the signifi-
cance of H,, was observed in the parameter

analysis.

5. CONCLUSIONS

Analytical studies of mode coupling in the flutter
and buffeting of the Akashi-Kaikyo Bridge were
performed. The flutter analysis well predicted the
flutter speed of the wind-tunnel model of the
Akashi-Kaikyo Bridge. It also revealed multi-mode
coupled flutter in which six primary modes; 1*
symmetric vertical (mode 2) and torsion (mode 12),

188s




Table 7

Parameter analyses for mode coupling in buffeting

(Original Cross Section, ¢, = 0 deg., U = 60 m/s)

o, (m) o, (deg.) COV(&, &)
9-mode analysis 0.4874 — COV(, &)  =14037E-04
10-mode analysis 0.4522 0.6020 COV(&, &) = 1.1551E-04

COV(&,, &) = 1.0974E-04
Parameter analyses for 10-mode analysis
oo _q 0.4508 — COV(, &)= 1.1506E-04
eIH
GH =0 0.4878 — COV(§, &)= 1.4099E-04
hay,
GY =0 0.4630 — COV(§, &) = 1.2181E-04
ol T
GYN =0 0.4552 o COV(¢, &) =1.1534E-04
oy
thau =0P 0.4772 — COV(§, &)= 1.3187E-04
thp]z =Q" 04615 — COV(&, &) =1.2005E-04
11-mode analysis — 0.5460 COV(&, &) =0.9015E-04
Parameter analyses for 11-mode analysis
o —_ 0.5519 COV({, &) =0.9213E-04
B3ty
H - - 0.5979 COV(&,, &) = 1.0826E-04
G
GA = — 0.5966 COV(&),, &) = 1.0779E-04
PLES
Gh4 = e 0.5489 COV(¢,, &) =09113E-04
ok
than =0Y —_— 0.5440 COV(&, &) = 0.8949E-04
Hhﬁm =Qb — 0.5460 COV(&,,, &,) = 0.9015E-04

Note: 1)H-integral terms associated with S, S,,,, and C,,, were equated to zero.

and 2™ and 3™ vertical (modes 10 and 13) with less
participation of 1® and 2™ lateral (modes 1 and 11),
were coupled.

An investigation of the mechanism of mode
coupling in flutter showed that the strong mode
couplings were present in the diagonal component
associated with mode 12 as well as off-diagonal
components among modes 2, 10 or 13, and 12, and
among modes 2, 10 and 13. This may be related to
the fact that the flutter of the Akashi-Kaikyo Bridge
was a bending-torsion coupled type and mode 12
was a dominant mode in flutter. Flutter derivatives
introducing the strong mode couplings were H,", H,"
and P,"in Ay, and Hy", H,', P;" and A;" in B,

The multi-mode buffeting analysis also well
predicted the action of the wind-tunnel model of the
Akashi-Kaikyo Bridge, particularly the nonlinear
increment of the torsion observed in the high
wind-speed region of 78 m/s due to mode coupling,
which was never seen in the equivalent single-mode
analysis. However, there remains the as-yet
unexplained difference in the lateral response from
both analytical methods between the analysis and

measurements. Possible reasons for the difference
are suggested as estimation errors associated with
P," and the representation of aerodynamic
admittance. This is an important topic for
continuing research and perhaps the availability of
full-scale data may shed some light on this issue.
Significant mode couplings in the buffeting
response were also recognized. Mode 12 suppressed
vertical response and mode 13 suppressed torsional
response. Those reductions were mainly due to the
changes of diagonal components in the covariance

matrix of the generalized coordinate; COV(&, &)
and COV(&,ZV £, respectively. The parameter

study showed that G,f:ilz and H,, for the
reduction of COV(&, &), and G,ffan and G;I‘;h‘3

for that of COV(&, &) played a significant
coupling role.

ACKNOWLEDGMENT: The wind-tunnel test
of the Akashi-Kaikyo Bridge was performed as a

18gs



cooperation study between Honshu-Shikoku Bridge
Authority and Public Works Research Institute,
Japanese Ministry of Construction. The test result
was discussed at the technical committee for the
wind-resistant design of the Honshu-Shikoku
Bridges chaired by Dr. Toshio Miyata, Yokohama
National University in Japan. The discussion in the
committee was very helpful for this study.

REFERENCES

1) Miyata, T., Tada, K., Sato, H., Katsuchi, H. and Hikami, Y.:
New Findings of Coupled-Flutter in Full Model Wind
Tunnel Tests on the Akashi Kaikyo Bridge, Proc. of Symp.
on Cable-Stayed and Suspension Bridges, Deauville, France,
pp.163-170, 1994.

2) Chen, Z.Q.: The Three Dimensional Analysis of Behaviours
Investigation on the Critical Flutter State of Bridges, Proc.
Symp. on Cable Stayed Bridges, Shanghai, China, pp. 10-13,
1994.

3) Tanaka, H., Yamamura, N. and Shiraishi, N.: Multi-Mode
Flutter  Analysis and Two and Three Dimensional Model
Tests on Bridges with  Non-Analogous Modal Shapes, J.
Str. Mech. Earthquake Engrg., JSCE, Vol.10, No.2, July,
pp-35-46, 1993.

4) Namini, A., Albrecht, P. and Bosch, H.: Finite Element-

Based Flutter Analysis of Cable-Suspended Bridges, J. Str.

Engrg., ASCE, 118(6), pp.1509-1526, 1992.

Jones N.P., and Scanlan R.H.: Issues in the Multimode

Aeroelastic Analysis of Cable-stayed Bridges, Infrastructure

‘91, Intl. Workshop. on Tech. for Hong Kong's Infrastructure

Development., Hong Kong, pp.281-290, 1991.

6) Lin, YK. and Yang, J.N.: Multimode Bridge Response to
Wind Excitation, J. Engrg. Mech. Div., ASCE, 109(2),
pp.586-603, 1983.

7) Jain, A., Jones, N.P. and Scanlan, R.H.: Coupled Flutter and
Buffeting Analysis of Long-Span Bridges, J. Str. Engrg.,
ASCE. 122(7), pp.716-725, 1996.

8) Jain, A.: Multi-Mode Aeroelastic and Aerodynamic Analysis
of Long-Span Bridges, Thesis submitted in conformity with
the requirements for Doctor of Philosophy, The Johns
Hopkins University, Baltimore, MD, USA, 1996.

9) Scanlan, R.H. and Jones, N.P.: Aeroelastic Analysis of
Cable-Stayed Bridges, J. Struct. Engrg., ASCE, 116(2),
pp.279-297, 1990.

5

=

10) Jones, N.P., Jain, A. and Scanlan, R.H.: Multi-Mode
Aerodynamic Analysis of Long-Span Bridges, Proc. St
Cong., ASCE, Atlanta, USA, pp.894-899, 1994.

11) Roberts, J.B. and Surry, D.: Coherence of Grid-Generated
Turbulence, Journal of Engrg. Hydraulics, ASCE, 99(6),
pp.1227-1245, 1973.

12) Honshu-Shikoku Bridge Authority and Bridge & Offshore
Engineering Association: Report on Full-Model Wind
Tunnel Testing of the Akashi-Kaikyo Bridge: Results of
Turbulent Flow Test, 1992. (in Japanese)

13) Sato, H., Matsuno, H. and Kitagawa, M.: Measuring of
Aerodynamic Admittance of the Akashi-Kaikyo Bridge,
Proc. of 13" Symposium of JAWE, pp.131-136, 1994.

14) Kaimal, J.C., Wyngaard, J.C., Izumi, Y. and Cote, O.R.
Spectral Characteristics of Surface-Layer Turbulence,
Quart. J. Royal Met. Soc., 98, pp.563-589, 1972.

15) Honshu-Shikoku Bridge Authority and Ishikawajima-
Harima Heavy Industries Co., Ltd.: Report on Measurement
of Flutter Derivatives of the Akashi-Kaikyo Bridge, 1993.
(in Japanese)

16) Singh, L., Jones, N.P., Scanlan, R.H. and Lorendeaux, O.:
Identification of Lateral Flutter Derivatives of Bridge
Decks, J. of Wind Engrg. and Industrial Aerodynamics, 60,
pp.81-89, 1996.

17) Miyata, T. and Yamaguchi, K.: Aerodynamics of Wind
Effects on the Akashi Kaikyo Bridge, J. of Wind
Engineering and Industrial Aerodynamics, 48, pp.287-315,
1993.

18) Scanlan, R.H.: Amplitude and Turbulence Effects upon
Bridge Flutter Derivatives, J. Str. Engrg., ASCE, 123(2),
pp.232-236, 1997.

19) Scanlan, R.H., Jones, N.P. and Lorendeaux, O.: Comparison
of Taut-Strip and Section-Model-Based Approaches in
Long-Span Bridge Aerodynamics', Proc. of 9th Intl. Conf.
on Wind Engrg., New Delhi, India, pp.950-961, 1995.

20) Katsuchi, H.: An Analytical Study on Flutter and Buffeting
of the Akashi-Kaikyo Bridge, Essay submitted in
conformity with the requirements for Master of Science in
Engineering, The Johns Hopkins University, Baltimore,
MD, USA, 1997.

21) Matsumoto, M., Hamasaki, H. and Yoshizumi, F.. On
Flutter Stability of Decks for Super Long-Span Bridge, J. of
Structural Mechanics and Earthquake Engineering, JSCE,
No.537/ 1-35, pp.191-203, 1996. (in Japanese)

(Received September 5, 1997)

190s




