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Knowledge of an equivalent vibration system for water mechanism in TLD is useful in calculating
earthquake response of structures having TLD. Equivalent vibration systems have already been well
researched concerning horizontal vibration of rectangular and cylindrical TLD. When a structure,
the axes of which rigidity and gravity do not align, is struck by an earthquake, TLD vibrates around
a vertical axis with the motion of the structure. In this paper, an equivalent vibration system is
obtained theoretically for when a rectangular TLD vibrates around a vertical axis. Then, an
equivalent vibration system for water in rectangular TLD is obtained by experiment. Finally,
by comparing them with the theoretical value and confirming the agreement of both values, the

validity of the theoretical equations is shown.
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1. INTRODUCTION

Recently, by installing a vibration controller
named TLD (Tuned Liquid Damper) onto the
main towers of bridges, skyscrapers or high
towers, attempts to damp off vibrations when
these structures suffer from earthquakes or strong
winds have been made. Up to now, however, the
study on vibration control by TLD has mainly fo-
cused on horizontal vibration both theoretically
and experimentally 1):2):3):4).5),

The authors 9789 have theoretically stud-
ied and reported on the case of stationary and
non-stationary vibrations in one horizontal direc-
tion or two horizontal directions by using a three-
story frame model, and have found that the the-
oretical values are in agreement with those ob-
tained by experiments within a weak non-linear
region. When the two centers of gravity and rigid-
ity of high buildings or towers do not coincide
with each other, the structures, subjected to

This paper is translated into English from
the Japanese paper, which originally appeared
on J.Struct Mech. Earthquake Eng., JSCE,
No.563/1-39, pp61-69, 1997.4.

equivalent vibration system, rectangular TLD, rotation

earthquakes or strong winds, suffer from rota-
tional vibration around the vertical axis as well
as horizontal vibration.

Therefore, when installed on a structure in
which the gravitational center is not coincident
with the center of rigidity, the TLD not only ro-
tates but also vibrates horizontally at the same
time. In calculating the response of a structure
with TLD which rotates around a vertical axis,
it would be beneficial if an equivalent vibration
system of rotating TLD is known.

In this paper, first, an equivalent vibration sys-
tem of rectangular TLD which rotates around a
vertical axis is obtained theoretically. Next, by
performing the experiment using TLD for the
damped-free vibration which rotates around a
vertical axis, an equivalent vibration system is
obtained. Finally, by confirming that the two re-
sults correspond quite well, the validity of the
theory is shown.

2. THEORY OF AN EQUIVALENT
VIBRATION SYSTEM OF TLD

At first, the free vibration of a rectangular tank
as shown in Fig.1 is considered. L is the length of
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Fig. 1 Coordinates of Rectangular TLD

the tank, D is the width and the water level is i .
The tank is regarded as rigid, the contained liquid
is assumed to not have compression and viscocity,
and there is no rotating motion. Furthermore, in
this paper, the case in which a contained liquid
vibrates linearly is considered. The case of non-
linearity has yet to be studied.

Generally, the vibration of the liquid in the
tank can be divided into two types of vibration
modes, namely, one corresponding to the nat-
ural vibration mode (henceforth called sloshing
mode) and the other corresponding to the vi-
bration mode of a rigid body (rigid vibration
mode). In this paper, when a rectangular tank
rotates around a vertical axis,as shown in Fig.1,
the equivalent moment of inertia and rotational
spring constant for these two types of modes are
calculated and an equivalent vibration system for
the contained liquid is obtained,

(1) The Case of Sloshing Mode

When dynamic water pressure in the liquid is
represented by ¢ , the basic equation for the free
vibration is shown as

0?0  0*c 9%
9 P o T O W
The boundary conditions at both side-walls are
shown as follows:

do do
ox o=k ox w=-L 2)
do do
5’;ng~5§1/:72—0 (3)

The boundary conditions at the bottom and
free surface are represented by the following equa-~
tions:

do

E’J. z=0 =0 (4)
8% oo
(5{5*95;) e 00

where g is gravitational acceleration.

When the (7, 7)th natural circular frequency is
n4; ; the amplitude of the normal coordinates is
W;; ; the vibration mode of dynamic water pres-
sure is ['y;(x, 9, 2) and the density of the contained
liquid is p , the solution of Eq.(1) which satisfies
the conditions of Egs.(2)~(5) can be shown as

ZZ%‘(J«‘,%Z)

i

Zzngjlﬁmj(% Y, z) sin ngjt (6)
t g

where,
pH
Lojgpi-1(z,9,2) = ———
i-12i-1(%,9, %) Koi-12j-1H
y sin Ag;—1Z sin pgj—1y cosh Kg—125-12 %
sinh kg;_192-1H
pH
loi124(z,y, 2) = —
2i-125(2, Y, 2) roia
sin Ag;_1x cos po,y cosh Ko 10,2
% 231 . H25Y 241,25 (8)
sinh K.Qi,l]QJ'H
pH
F s 1t e T
2,2j-1(,Y, 2) PP
COS Ao, sin o1y cosh Kojo,_12
% 21 .;u’2] 1Y 24,25~1 (9)
sinh k971 H
pH
Doi2i(z,y,2) =
i) = Lo
COS AT €OS [ig;y cosh ko952
sinh ﬁgiyng
) ) (10)
4 J
A= T M= HT (11)
Kig = \[A} + 1 (12)

In addition, when z,y and z components
of the (¢,j)th vibration mode are assumed as
U’L‘j(w7y1 Z),%J(Zl?,y,Z) and ng(-T,y,Z) respec-
tively, the displacements of water particle, u, v, w,
in the direction of z,y,z can be expressed as
follows: That is to say, by using o in Eq.(6),
the equation of motion of the liquid is integrated
twice with respect to the time .

= Zzuij(m?y: 2, t)

- ZZ\I]‘JUU(I Y,z ) sin 771] (13))
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Fig. 2 (1,1)th Vibration Mode

=22 i@y, 2, 0)
i
=222 ViVis(2,9,2) sinmiit - (14)
i
w= Ei:;wij(x,y, z,1)
=D WiWis(z,y,2) sinnyit - (15)
i

When the equivalent moment of inertia of the
(i,7)th mode is shown as J7; the equivalent
spring constant is k7, and the equivalent rota-
tional angular amplitude is af;, the relationship
among them can be expressed by the following

equations:

M"Y = kfaf; (16)
1
CZ—Z ,mar __ ‘Q‘Mz mamafj (17)
kZ.
ng; = L']izj‘ (18)
4

where, T;7™*" is maximum kinetic energy T7; of
the liquid of the (¢, j)th mode and expressed as

1 (Hrz 3
5= §p[) /_P_/—L{vlfj+vfj+w?j}dmdydz
2 2
(19)
Also, M;7™ is the maximum moment of
hydrodynamic water pressure against the Walls
around the vertical axis in Fig.1 and M} can
be calculated from the following equation using
Eq.(6):
M.z. -

[P oo 5o -8

Xdx dz

Lo (oo )

xdy dz (20)
The maximum moment of dynamic water pres-
sure against the walls becomes 0 for the (20 —
1,27)th, (24,25 — 1)th and (27,25)th modes.
Therefore, the case of only (2¢ — 1,25 — 1)th mo-
ment of dynamic water pressure is left as non-zero
value, which is expressed as
Y - 4(— 1)‘L+Jpn%i—l,?j—l\p?'i*lyzj—l
212t PR P

1 1
—— (21)
(Am 1 N%j_1>

The (1,1)th vibration mode of the TLD liquid is
shown in Fig.2, as an example.

If 7™ and M™* are given, n;; can be
obtained by using Eq.(22).

N3 19 1= gKaim12j-1 tanh Kz 125 1H (22)
Hence, from Egs.(16)~(18), the equivalent mo-
ment of inertia J3; ;,; 1 and the equivalent rota~
tional spring constant k3, ;,; ; can be obtained.
They can be expressed as follows:

. LD\?
J2i-12j-1 = 64pLDH | —
(kgi—12j—1H) tanh (k2;-125-1H)
{(2i - 1)(25 - D2}
) - (8))
2i-1 L
2i-1\% | (D)?
() +(2)
k1251 = J5i10j b 1251 (24)
Concerning a square tank (D = L), as to the
equivalent moment of inertia, = 0 when ¢ = j.
Now, as shown in Fig.6, When a rectangular
tank is rotated around a vertical axis with the
angular acceleration of 6,(t), the response is ob-
tained by the following equations, assuming that

the normal coordinate for the (2t — 1,27 — 1)th
mode are set as o;-1,25-1(t) .

(23)

I3 12j-162i-1,2j-1(8) + k3125 182i-1,25-1(F)

= _J22i~1,2j—152(t) (25)
The displacements of water particle in the di-
rection x,y and z are

Wa 1,251
ui—12j-1(%,y,2,t) = ——
41,251
xUpi—1,2j-1(2, ¥, 2)62i—1,2j-1(2) (26)
Vo121
v2i—1,2j“1($7y: Z’t) = azl =
3i1,2j—1

xVai—12-1(x,y, 2)&i-1,25-1(t) (27)
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Vo125
—1,25-1
wai—125-1(2, Y, 7, t) = ————
341,251

X Wai—125-1(2,y, 2)€2i-125-1(t)
And the dynamic water pressure is

(28)

o9i-1,2j-1(, Y, 2,1)

82
= —p/Eﬁ{w%Al,Qj—l(x):%z:t)} dz

= _WF%—I,%—l(L% 2)&2i-1,25-1()
(29)
The moment of dynamic water pressure against
the walls caused by the rotation around the ver-
tical axis can be expressed as follows, integrating
Eq.(29) by using ¢ in the Eq.(20):
W11y

M3 q19;-1(8) = == E2i-1,2j-1(2)
21,251

H L D
X [/0 [_1{[‘%172]‘1(1:, 72—, Z):B

2

z
351,251

D
—Ioi12j-1(x, -5 z)x}dxdz

Hr2 I
_—_/(; /Q{F2i"1:2jl(§7y, Z)y

2

L
—Toic195-1(— 7Y z)y}dydz]

= _J2zz'-1,2j—152i~1,2j—1(t) (30)
If Eq.(25) is taken into consideration, the above
equation can be written as

M3 105-1(8) =
k3 19j-162i-12j-1(t) + J5_q2;10:(t)  (31)
From this, it can be found that Mg, ;,; 1(t)
consists of the total sum of the moment propor-
tional to the normal coordinates fm_l,gjﬁl(t) and

the moment proportional to the rotational angu-
lar acceleration 6,(t) .

(2) The Case of Rigid Vibration Mode
As is shown in Fig.1, when a rectangular TLD

rotates around a vertical axis with the angular

displacement 6,(t) = O, sin w,t, dynamic water

pressure ¢ can be obtained by solving the basic

eq.(1) under the following boundary conditions:
On both walls,

do o , '
oz e=L T oz p— = —pwiBO,y sin w,t (32)
5 = = pw?0,z sin w,t  (33)
8y 'y:% 8y y:_%

The boundary conditions of the bottom and
the free surface are the same as Eqgs.(4) and(5).

The solution ¢ which satisfies the basic equa-
tion and the boundary conditions can be obtained
by this equation:

Nox
o= wf@z sin w,t ZAO,QJ-H Sin V30,2541
4=0
X sin fioj11y cosh nyz

oo
+ Z Ao,2j+1 sinh vgo25 11T sin pi2 11y cosh oz
J=Noz+1

oo o
+ ZZA3’23'+1 sinh Ve 2j112 sin pgjp1y o8 sz
s=17=0

Noy

+ Z Bo2j+1 8in vyg2511Y 8in Agjix cosh 19z
J=0

(o]
-+ z Bogji1 sinh vy 2541y sin A2j412 cosh gz
J=Ngy+1

oo 00
+ Z Z Bs,2j+1 sinh Vys 244+1Y

s=1 5=0
X sin Agj11% COS 752 (34)
where,
Vasaie1 = e + H3ji1
(‘9:172)"’ y J=1,2,000) (35)
2 .2 ,\2,
Vys,2j+1 = s + 27+1
($:1>23"' y J=1,2,000) (36)
H
noH tanh noH = —g—wg (37)
H ,
neH tan nsH = -—q-wz , (s=1,2,---) (38)
2j 11 25+ 1
Moo = ST g = S
(G=12-) (39)

When 19 > piaj1 5 Vaogjer = 15 — Hajer (40)
Theun,

=1yl

Ag2j+1 = —16(—1) pD/@jH

o sinh ng H

(V025411 cos l/mo’Qj.T‘_lé)(Sinh 2o H + 2n9H )

(G=1,2,--+, Nox) (41)

Ny is maximum value of j satisfying 79 >
2541

When 70 < p2;41 5 Vaozjer = —N5 + Haji1
(42)
Then,
L1
Aol = ~16(—1)7p—=
! Dy
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sinh noH

X
(Vmg’gj_HL cosh 1/10’2]‘+1%)(Sinh 27}()H -+ 2770H)

(j: N0m+1)N01+27"') (43)
And,
L1
Asaj1 = —16(=1)7p—
o D p3;
sin n.H

X
(Vas2jr1L cosh Vg oji1Z)(sin 2nH + 21 H)

(s=1,2,--- , j=1,2,--+) (44)
When 10 > A2jit1, Vgopji1 =18 — A1 (45)
Then,
D 1
Boajt1 = 16(=1)p
! ’T A
sinh noH

(vy0,25+1.D cos vyp 2541 %)(Sinh 2o H + 2n0H)

(G=1,2,--+, Noy) (46)

Noy is the maximum value j satisfying 7o >
A2j41 -

When 70 < Aoji1, Yozje1 = Mo + Aja1 (47)
Then,
D 1
Bogjp1 = 16(—1)!
! L A%J-Fl
sinh noH
(l/y() 23+1D cosh Vy0,2j+1% )(smh 2noH + QT]OH)
(j = Noy + 1, Noy +2,---) (48)
And,
- D 1
Bsoji1 = 16(=1)7p—
LA
sin neH

X
(vys,2541D cosh vyg o511 —QD—)(sin 2nsH + 2nsH)
(5:192:"' s .7.:1721"') (49)
Assuming that the moment of dynamic water
pressure against the walls by rotational motion
around the vertical axis is M¢, , the moment can
be calculated by referring to Eq.(20) and using
Eq.(34).
Thus, the obtained Mg, is expressed as

M, = —jozwéz = erzj(i; sin w,t (50)
and in the above equation, if w, — 0, it can be
described as

ME = —Jg0, (51)

where, JZ means the equivalent moment of inertia
around the vertical axis for the rigid vibration
mode, which is expressed as

32pH

0

Z “ (27 + 1)5

X {L%anh (7) + D*tanh (%ﬂ)}

Fig. 3 BEquivalent Vibration System of Rotational
Vibration

1
—ﬁpDHL(L2 + D?) (52)

(8) Equivalent Moment of Inertia for
Fixed Water

The equivalent moment inertia proportional to
the rotational angular acceleration of the liquid,
or the equivalent moment of inertia for fixed wa-
ter, J§, can be obtained as follows:

The moment of total dynamic water pressure
against the walls around the vertical axis as con-
cerns sloshing vibration is described as follows,
by Eq.(31):

o o
=22 Miaas- =Yy
i=1 j= i=17=1

{kgzi,l,gj_1€2i—1,2jv1(t) + J2'i—1,2j—192(t)} (53)

Then, the moment of dynamic water pressure
as to the fixed water around the vertical axis can
be expressed as Eq.(51).

Therefore, the moment of dynamic water pres-
sure, M¢, against walls proportional to the rota~
tional angular acceleration 0.(t) can be obtained
by using the second term of the right side of
Eq.(53) and Eq.(51), as follows:

M§ =~ {Jé’ - ii‘]%l,?jl} b:(t)  (54)

i=1j=1
Therefore, now assuming that
Mé - _Jggz(t)> (55)
the equivalent moment of inertia for fixed water,
J§, can be obtained by the following equation:

o0 o0
Z ZJzzi-l,zj—l

i=1j=1

JE=Ji -~ (56)

From the above, the equivalent vibration sys-
tem for the liquid when the rectangular TLD ro-
tates around the vertical axis can be modeled, as
shown in Fig.8, as a vibration system which con-
sists of three elements: the equivalent moment of
inertia J§; ;,; 1 for the sloshing vibration, the
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Fig. 4 Diagram of Device

equivalent rotational spring constant k3; ;,; 4
and the equivalent moment of inertia for fixed
water J§ .

3. EXPERIMENTS ON FREE
VIBRATION

(1) Outline of Experiment

As is shown in Fig.4, the rectangular TLD,
which was filled with water to an appropriate
depth, was connected to a plate spring fixed at
the top, and TLD was turned slightly around the
vertical axis. After that, TLD was released qui-
etly, so that the TLD itself could generate rota-
tional damped free vibration. The natural fre-
quencies of this vibration system were measured,
while varying the shape of TLD, the twisting
rigidity of plate spring, and the depth of water.
Measurement of the natural frequencies was made
by using two accelerometers (Strain type AS-2C,
manufactured by Kyowa Dengyo) which were set
at the points of symmetrical position as shown in
Fig.4. Dynamic water pressure gauges (PGM-
02KG by Kyowa Dengyo) were used to measure
the dynamic water pressure on the walls. Two
kinds of TLD with a thickness of 0.5 cm were
made of acrylic plates: rectangular and square
tanks. Inside dimensions were 30x12 x30 cm
(L x Dx height) and 30x30x30 cm, respectively.
The depth of the liquid was varied at 0, 4.5, 6, 7.5,
9, and 12 cm; six levels in all. The plate spring of
phosphor bronze plate was 1.2 mm thick, 20 mm

Table 1 Springs for the rectangular TLD

Spring | Natural Frequency | Spring Constant

Length of Tank Kz
(cm) (Hz) (N-m/rad)
6.0 2.03 6.409
7.5 1.78 4.932
10.0 1.61 4.048
11.0 1.60 3.987
12.0 1.43 3.166
14.0 1.41 3.091
20.0 1.18 2.147
24.0 1.06 1.740

Table 2 Springs for the Square TLD

Spring | Natural Frequency | Spring Constant
Length of Tank K:E

(cin) (Hz) (N-m/rad)

4.0 1.64 9.536

5.0 1.45 7.449

6.0 1.34 6.352

8.0 1.14 4.566

9.0 111 4.351

12.0 0.94 3.155

24.0 0.70 1.721

wide and the length was changed as is shown in
Tables | and 2.

In our experiment, the total pressure against
the walls of the TLD was at most 1.5 kPa, which
is so small that deformation of the tank is negli-
gible and the tank was regarded as rigid. Indeed,
judging from the TLD tanks actually fixed onto
the existing structures, the rigidity of the tank
for the total pressure is adequate. Therefore, the
tank can be regarded as rigid.

(2) Calculating Method of J{;, J§, kf

By using the natural periods of rotational vi-
bration of TLD tank-spring system obtained by
our experiment, the constants of the vibration
system were calculated as shown below.

An equivalent vibration system to the vibration
system shown in Fig.4 can be expressed as Fig.6
(i = j =1), taking the (1,1)th vibration into con-
sideration, where K7 is the rotational spring con-
stant of the plate spring (twisting rigidity), and
JZ is the moment of inertia of TLD, accelerom-
eters etc., excluding the contained water. Equa-
tion of motion of the equivalent vibration system
for the free vibration can be described as below,
assuming that the rotation angle of the tank is 0,
and that the normal coordinates are &, when the
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damping is neglected.
Jia(0z + &)+ =0 (57)
Equation of motion for the rotational free vi-
bration of TLD-spring system is
(JZ+J5)0: + K70 = k516 (58)
In the above equation, the damping term was
neglected for the following reason. Though the
damping constants were deduced by the free vi-
bration experiment, (Fig.5 shows an example of
the damped free vibration curves towards the cir-
cumferential acceleration of the tank), each of
them was found to be within the range of 0.003
~0.008. Therefore, judging from the necessary
accuracy for the calculation of an equivalent vi-
bration system, the influence of the damping con-
stants on the natural frequencies of the damped
free vibration can be considered almost zero. Foxr
this reason the influence by the damping was ne-
glected.
By substituting the following equations into
Eqgs.(57) and (58),
6, = @Zeint , 5 — Ze'i'nt (59)
and, taking into consideration Eq.(24), the nf
of the first natural circular frequency of TLD-
spring system can be expressed as
2(711)1)2K§

(M 2(JZ + JG + J5a) + KZp+

(nf)2 = {

2
\/ {227z + Jg + J51) + K2

(60)
=4(n11)?KZ(JE + J§)

Changing the liquid depth H and spring con-
stant K7 in various values, the experiments were
performed on a rotational damped free vibration
of TLD-spring system to obtain the nf of the nat-
ural circular frequency of the vibration systems
concerned. When nf is obtained for the values of
KZ, and when the depth H and the moment of
inertia of the tank JZ etc. are known, the most
probable values of Jfy, J§ of the equivalent vi-
bration system can be calculated from Eq.(60)
by using, for example, the least-square method.
However, as Eq.(60) is a non-linear equation with
respect to J1,J§, the equations are converted
into inearized equations employing approximate
values of le’(10)7 Jg(o), as shown below, and the
most probable values were obtained by iteration.
For a starting value of the iteration, the theoret-
ical values from Egs.(23) and (56) were adopted.
Now Eq.(60) is described as

(n§)? = f(J5, JE1)
This equation is approximately expressed as,

(61)

90 T T T T T

45 1

Acceleration (gal)
o

-90 . N . . A
¢] 10 20 30 40 50 60
Time(s)

Fig. 5 An example of the damped free vibra-
tion curve of the acceleration towards the
circumference of TLD (Square TLD;spring
length=12 cm ; water depth=9 cm)

z
2i-1,2511

*:392 +€

Fig. 6 Equivalent Vibration System for Rotational
Vibration

z v 72(0 z(0 6 v o72(0 z{0 =
(nf)? = f(Jo( )>-]1,(1)) + ‘“ajgf(Jo( ): ']1,(1 ))AJO
0 z z z .
+5T]Tf(Jo(O)>J1,(1()))AJ1,1 (62)
11

where,

NG =T =050 AT =i =AY (63)

The constants required for the equivalent mo-
ment of inertia are decided as follows: JZ is cal-
culated from the mass of the tank, etc. and the
geometrical shape. n11 is calculated by Eq.(22).
KZ is calculated as KZ = 4n2JZ/(T7)?, by using
JZ and 77, the natural frequencies obtained from
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Fig. 7 TLD — Spring System and Natural Frequency
for Rectangular TLD
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Frequency(Hz)

Fig. 8 TLD — Spring System and Natural Frequency
for Square TLD

the experiment of the rotational damped free vi-
bration for the empty vessel (depth H= 0).

Using these constants and the natural periods
of TLD-spring system obtained from the exper-
iment under the given water depth, the equiva-
lent moment of inertia J§ ;, J§ was calculated by
the procedures as mentioned above. The spring
constant K7 used in the experiment is shown in
Tables 1 and 2.

(8) The Results of the Experiments
When the depth is changed, theoretical values
of natural frequency of the (¢, ) th mode of TLD
liquid are shown by the vertical lines in Fig.7 for
the rectangular tank and in Fig.8 for the square
tank. Thick line represents the theoretical value
of the natural frequency because the moment of

‘g 003 T T

\%ﬂ — J& theoritical value

B e Jil theoritical value

§ 0.02 O Jp experimental value

— experimental value

5

=

o

g 0.01

E B — d
5

«

=

& 0

= 0 0.2 0.4 0.6

(H/L)

Fig. 9 Equivalent Moment of Inertia (D/L = 0.4)

“g 004 . . :

2 —— J theoritical value

< O J; experimental value

£ 0.03 .
(5]

R

et

°

< 0.02 + R
Q0

g

£

- 001 .
5

=

>

A ! |

M 0 0.2 0.4 0.6

(H/L)

Fig. 10 Equivalent Moment of Inertia (D/L = 1.0)

inertia around the vertical axis does not become
zero, while the thin line represents the theoreti-
cal value when it becomes zero. Also, O mark
in the figure is the first natural frequency of the
rotational vibration of TLD-spring system when
various kinds of plate springs are employed. Both
figures show that each value of the first natural
frequency of TLD-spring system is smaller than
the theoretical value of the natural frequency of
the liquid in TLD; as for Fig.7, the (1,1)th, for
Fig.8, the(1,3), (3,1)th. This is because special
consideration has been made so that the equiv-
alent moment of inertia of TLD for the higher
vibration mode may not affect the experimen-
tal results. This was achieved by choosing the
plate springs so that the first natural frequency
of TLD-spring system would become smaller than
the minimum natural frequency of liquid in TLD
whose moment of inertia is not zero (the [1,1] th
mode in case of the rectangular, and the [1,3] [3,1]
th mode in case of the square tank).

In Figs.9 and 10, values of the equivalent mo-
ment of inertia obtained from the experiment,
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J§ 1 and J§, are shown together with the theoret-
ical values. The theoretical values are shown by
solid lines (J§) and by dotted lines (Jf ), while
the experimental values are shown by O (J§) and
® (/7,) . Fig.9 shows the case of the aspect
ratio of D/L=0.4 and Fig.10 shows the case of
D/L = 1. In the case of Fig.10, J§{, becomes
zero theoretically, so that only the value of Jg is
shown. Fig.9 shows that the values J§, obtained
from our experiment are generally smaller than
the theoretical ones, and, on the contrary, that
the values J§ tend to be a little larger. This is
considered to have been caused by the neglect of
the influences of the moment of inertia response
to the natural frequency of the liquid, which is
higher than the (3.1)th, when J§ and J{, are cal-
culated after the natural frequency of TLD-spring
system is experimentally obtained, as shown in
3.(2). Specifically, the smaller H/L is, the more
the influence of the moment of inertia on J§;
becomes and when H/L=0.15, it becomes more
than 10 percent.

Generally, when the ratio of H/L is small, the
ratio of the moment of inertia J§ to the fixed wa-
ter becomes small. As the ratio of H/L becomes
larger, the ratio of the equivalent moment of inexr-
tia (Ji) for the sloshing vibration also becomes
smaller, so that the experimental definition can-
not be accurate. From the viewpoint of the ac-
curacy of the experiment, it is desirable that the
moment of inertia of TLD tank itself be as small
as possible. When H/L is small, this condition
becomes inevitable, and the minimum value con-
cerning how far the experimental value can follow
the theoretical value is difficult to describe accu-
rately, as it depends on the improvement of the
experimental devices and of the exactness of the
measuring method.

The above being considered, our experimental
results can be safely said to be in good agreement
with the theoretical values as to all the depths as
well as when H/L is different.

4. SUMMARY

A theoretical equivalent vibration system of a
contained liquid was obtained when a rectangular
TLD was turned with vibration around a vertical
axis. Next, the equivalent moment of inertia for
the TLD liquid was obtained by the experiment
model. Then the results were compared. It was
confirmed that the two are in good agreement
with each other, which has shown the validity of
the theoretical equations.
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