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The extended Kalman filter is applied to the simultaneous identification of the flexural rigidity
and tension of cables. The equivalent one degree of freedom system is used as the mathematical
model of cables on the extended Kalman filter in which the first or second mode of vibration of
cables is only taken into account.

First, the calculated response values obtained by the same order model and finite element model
are used and the effects of the method are confirmed. Next, the experiment is carried out by using
aluminum plates instead of cable specimens and the effects of the method are examined.
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1. INTRODUCTION

! During the construction of cable-supported
bridges such as Nielsen bridges or cable-stayed
bridges, the cable tensions must be adjusted so
that cable tensions and bridge geometry may be
optimized. Therefore, accurate measurement of
cable tensions has practical significance and a
simple, quick and reliable method of measure-
ment is needed by the field engineers. The vi-
bration method by which cable tensions are esti-
mated from measured natural frequencies is uti-
lized for the measurement of cable tensions due to
its simplicity and speed. The natural frequencies
of cables are influenced not only by cable tension
but also by flexural rigidity, the sag-span ratio
and the inclination of the cable, and these effects
should be taken into account for the estimation
of cable tensions.

! This paper is translated into English from the
Japanese paper, which originally appeared on J.
Struct. Mech. Earthquake Eng., JSCE, No.556/1-38,
pp- 189-196, 1997.1.
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Practical formulas for this purpose were pro-
posed by the authors in Refs. 1) and 2). Ca-
ble tensions can easily be estimated from these
formulas using measured natural frequencies of
cables, and these formulas are therefore widely
used. The flexural rigidity of the cable, however,
must be obtained previously. Particularly when
the cables used are short, the natural frequen-
cies of cables are influenced largely by the flexural
rigidity. In addition, damper facilities are often
utilized for the rain vibration control of cable-
stayed bridges, and the flexural rigidity values for
the cable are needed to produce a design of the
optimum precisionS).

Although the flexural rigidities of cables are of-
ten needed, it is difficult to determine the exact
values because they vary according to the type of
cable and the tensions introduced. Up to now,
static bending tests or calibration methods using
measured cable tensions and natural frequencies
have been utilized to estimate the flexural rigidi-
ties of cables. Recently, a new method has been
proposed by which the flexural rigidities of cables



are estimated by the least square method, using
measured natural frequencies in periodical solu-
tions of high-frequency modes®.

At the same time, many studies have been
carried out concerning the problems of identi-
fying the dynamic characteristics of structures
on the basis of measured vibration data. These
are experimental modal analyses which are useful
for estimating modal parameters such as natural
frequencies, modal damping, and mode shapes.
They can be applied in system identification to
directly estimate vibration parameters such as
mass, damping and stiffness matrices. These
techniques are mainly developed in the electrical
or mechanical areas of control engineering.

One of these techniques is the Kalman filter,
which is an algorithm of time-domain identifica-
tion techniques, in which the least square estima-
tions of state variables are calculated on the basis
of measured values given for each sample time®.
The Kalman filter consists of the state equation
of a linear system. A similar algorithm can be
obtained, however, even for a nonlinear system,
to linearize the state equation around the refer-
ence trajectory. This algorithm is known as the
extended Kalman filter, and is used in civil en-
gineering to estimate the dynamic characteristics
of structures®.

In the study described herein, the extended
Kalman filter is applied in the simultaneous iden-
tification of both the flexural rigidity and the ten-
sion of cables. It uses the measured response
values obtained by forced vibration tests of ca-
bles. The equivalent one degree of freedom sys-
tem is used as the mathematical model of cables
on the extended Kalman filter in which the first or
second mode of vibration of cables is only taken
into account. Though the equation of natural fre-
quency, cable tension and flexural rigidity thereby
becomes nonlinear, the approximate formula pro-
posed in the practical formulas of the vibration
method is used on the relation between these pa-
rameters.

First, the same order mathematical model is
established, assuming the flexural rigidity and
tension values, and the state equation of this
model is solved numerically. A finite element
model with twenty beam elements is produced
and solved, taking into account the pretensioned
axial force effects. The calculated response val-
ues obtained by the same order mathematical
model and finite element model are used as mea-
sured values by adding Gaussian white noises.
Thus the method are verified. Next, the exper-

Fig. 1 Inclined cable and its features

iment is carried out, using aluminum plates in-
stead of cable specimens, and identifications are
made, using sampled time-historical responses to
examine the possibility of simultaneous identifi-
cation of flexural rigidity and tension. As it is
difficult to produce a state vector in which flex-
ural rigidity and tension are directly included,
non-dimensional parameter-related flexural rigid-
ity and tension are calculated, using these identi-
fied parameters. The computer program for the
identification uses Fortran.

2. BASIC EQUATIONS OF CABLE

(1) Equation for motion of cable with
flexural rigidity

The equation for motion of a clamped beam
with tension T is? :

52 0% v wov
where ET is the flexural rigidity of cable, v is
deflection in y— direction due to vibration, T' is
cable tension in the direction of OP as shown in
Fig. 1, w is weight of cable per unit length, g
is gravitational acceleration and p(z,t) is distrib-
uted external force. Eq. (1) is a partial differen-
tial equation concerning time ¢ and coordinate z.

As shown in the Fig. 1, even in cases when
cable is inclined and sag exists, if the sag-to-span
ratio is sufficiently low, it can be assumed that
the geometric shape of cable is expressed by a
parabolic formula, motion in the z— direction is
negligibly small and the effect of derivative cable
tension due to vibration is also negligibly small
for unsymmetric modes such as the second mode.
In such cases, the same equation as Eq. (1) above
is obtained. Therefore, if the vibration modes
are limited as unsymmetric modes, Eq. (1) be-




comes applicable for inclined cable with sag. Eq.
(1) also becomes applicable for symmetric modes
when sag is very small or the order of the vibra-
tion modes is high because the effect of derivative
cable tension due to vibration is negligibly small
in such cases. Using the variable separation and
orthogonal relations between each two modes, the
equation of motion can be obtained, expressed by
the modal coordinate g, as follows:

.. ) o (
Gn + 2CnwnGn + wiqn _ Pu(t)
My,

(2)

where (, is the n-th modal damping, wy, is the n-
th circular frequency, m,, is the n-th modal mass
and p, is the generalized external force for the
mode shape ¢,,. m, and p, are expressed as

My = Aﬂ ¢ (z)mdzx (3)

¥4
palt) = A bu(2)p(, 1) da (4)

For Eq. (2), it is assumed that Rayleigh type
damping is present.

(2) Relations between natural frequen-
cies and cable tension
Next dimensionless parameter is introduced in
Reference 2) in order to obtain the relations be-
tween natural frequencies and cable tension:

T

ET

¢ is a parameter concerning cable stiffness in
transverse direction and when ¢ is small, cable
characteristics coincide with those of a clamped
beam, and the larger £ becomes, the more closely
the cable characteristics begin to resemble those
of string. Consequently, the effects of flexural
rigidity are expressed by a single parameter £ on
the relations between natural frequencies and ca-
ble tension.

Since the equation of free vibration, concerning
natural frequencies is a transcendental equation,
cable tensions cannot be obtained directly from
the measured frequencies. Also, the first (sym-
metric first) or the second (unsymmetric first)
vibration modes can be easily excited artificially.
Therefore, two types non-dimensional parameters
are introduced in relation to the region of £ and
approximate formulas between these two param-
eters and & are obtained in Reference 2).

(i) In cases where ¢ is large:

M = fulfn

e= /= 0 (5)

(6)
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where f,, is the n — th natural frequency of the
cable and f2 is the theoretical value of the n —th
natural frequency of a string:

._n [T
fo= 5\ (M)

(ii) In cases where & is small:
Pn = fn/an (8)

where an is the theoretical value of the n — th
natural frequency of a beam clamped at both

ends and is given as follows:
Elg
w

o =4.730 | g =T7.853

When the cable tension approaches zero( £ = 0 ),
@n becomes 1.

Within the limit of the first and second
modes, approximate solutions of the transcenden-
tal equations concerning natural frequencies can
be expressed in the form?

f B _ CVn2
" 22

(9)

where

77125_22 (17 <€) (10)
6.8\ 2
n1 = 1075, 1+ <—) (6<€<17)
’ (11)
2
01 = 1+i—2- 0<¢<6 (12)
= O.985§ 763 1 (17 < € <60)
(13)
&2
Y2 = 14 g 0 < 5 S 17
(14)

where Egs. (10) , (11) and (11) are the approx-
imate formulas for the first mode and Egs. (13)
and (14) are for the second mode. These approx-
imate solutions agree fairly well with the exact
solutions within the error of 0.4% for the each
region of & .

3. FORMULATION OF IDENTIFI-
CATION EQUATIONS BY EX-
TENDED KALMAN FILTER

(1) Mathematical model
Tn order to establish the extended Kalman fil-
ter as the output filter of the cable tension and



the flexural rigidity by inputting the observed re-
sponses, a mathematical model of the cable is nec-
essary to relate the input and output data.

The Kalman filter is composed of a time up-
date algorithm, which solves equations of motion
of the objective system, and an observation up-
date algorithm, which modifies the state vector
obtained by a time update, using observed val-
ues.

To set up a real time processing system on a mi-
cro computer, the dynamic characteristics of the
objective system must be expressed in a mathe-
matical model with the smallest possible degree
of freedom. The responses of the cables are de-
termined by induced forces which excite the ca-
bles and the dynamic characteristics of the cables.
The mathematical model must be one which can
express these characteristics. Eq. (2) is used to
express the motion of cables for each vibration
mode.

Eq. (2) is transformed in the following way, by
using the non-dimensional parameter 7, which is
the relationship between a natural frequency and
the frequency of a string:

¢T
fi-n+ZCnnnCmﬁQ11+771210§T‘In = ;;"P(myt) (15)
n

where Cp, = N
Eq. (2) is transformed in a different way, using
the non-dimensional parameter @, , to express
the relationship between a natural frequency and
the frequency of a clamped bean:
¢T
G + ZCrIWnJmIQn + SDnJm W, = m p(ﬁc t)

t )
where ¢ = FEI/Ely, Ely = the theoreti-
cal flexural rigidity of prismatic section of cable,
an EIO
7

Eq. (15) is used for the region & > 6 for the
first mode and ¢ > 17 for the second mode. Eq.
(16) is used for the region ¢ < 6 for the first mode
and & < 17 for the second mode.

In order to apply the Kalman filter, the equa-
tion of motion, (15) or (16) is transformed into
the state-space form as follows:

Jp =

& = Az + bp(x,t) (17)
where
x = {gn, Qn}T
a-| ! (18)

nnCZT — 2 CaV'T

or
0 1
A= [ _‘:0121‘]3%@/) "ZC‘n‘anx\/E :! (19)
T
b= {0, i} (20)
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In solving Eq. (17), the discrete time represen-
tation by discrete time interval, At , becomes

xip1 =¥ o + B p(z,t) (21)
where
k
U = eAiAt — Z (A]:') (Az)k
k=0

(At)k* '

B= Z b | (4
(22)

Eq. (21) is a solution of (17) and is an equa-
tion for prediction which can predict the state
vector at step (i + 1).

(2) The design of the extended Kalman
filter ‘

Using the state-space equation and its solutions
derived in the previous section, the equations of
the extended Kalman filter are represented to pre-
dict the parameters for damping, natural frequen-
cies and the cable tension.

In order to estimate any unknown parameters
included in the state-space equation, the state
vector is extended to include the unknown pa-
rameters.

The unknown parameters are the following
three parameters:

In cases where the natural frequencies of the
string are used, (., 7, and +/T are the un-
known parameters, and the extended state vector
is defined as:

(23)

In cases where the natural frequencies of the
clamped beam are used, (,, y, and /1) are the
unknown parameters, and the extended state.vec-
tor is defined as:

Z; = {q'n-, Gn; Cas Pa, ﬂ}T (24)

The coeflicient matrices of Eqs. (18) and (19)
are expressed as functions of the extended state
vector, Z;, defined by Eqgs. (23) and (24) .

Substituting these equations into Eq. (22), ¥
and B are obtained and all of their components
become a function of the unknown parameters
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included in the extended state vector Z;. Conse-
quently, they must be recalculated at each time
of observation update.

The prediction equation of Z;,1 becomes

Zint = [’i’ ‘;JZiJr{ Jj }p(:c,t)+{ zgg)

where w; and @; are (Gaussian white noise ex-
pressing the system noise of the state vector. Eq.
(25) is rewritten as

Ziy1= P(Z;)+Gplx,t) + W; (26)
The time update algorithm for the extended

Kalman filter yields the following derivations
from Eq. (26)

Ziviyi= B(Ziy) + Gpla,t) (27)
Piyi= YiPyXl +Q; (28)

where, P is the error co-variance matrix of the
predicted state vector and @ is the error co-
variance matrix of the system noise, W;.

The observation update algorithm is next de-
rived . The observation vector, y, is related to
the state vector, Z , as follows:

Yy, = h(Z;) +v (30)

where, v is Gaussian white noise expressing ob-
servation error.

The observation update algorithm is given by
the conditions which minimize the errors of esti-
mated state quantities :

Zii= Zyia ¥ K{y,—hi(Zy 1)} (31)
K;= P, \H{HP;; {H] + R;}"' (32)
Pyy= Py~ KHPy , (33

where,
Hi= 0h(Z)/0Zi 5 5 (34)

K ; is the Kalman gain matrix, which minimize
the errors in the estimated state quantities and R
is the error co-variance matrix of the observation
noise.

In all these equations, the subscript ¢/i — 1 de-
notes a quantity evaluated at instant ¢ based on
observation at instant ¢ — 1.

Calculations of (29) and (34) are very compli-
cated and it is almost impossible to calculate by
manual operations if more than three polynomial
terms are taken in Eq.(22).

Multiplication of polynomial (22) and the dif-
ferential calculus of Eqs. (29) and (34) are car-
ried out by MAPLE® which is one of the symbolic

and algebraic manipulation languages, which has
FORTRAN codes incorporated into its program.
The four polynomial terms are adopted in Eq.
22) .
The initial conditions are given as follows:

ZO/*l = Zo, PO/wl - EQ (35)

where Z is the mean value of the initial estimate
of the state and X is the initial estimate of the
error co-variance matrix for the system noise of
the state.

Since the accuracy of the time update calcu-
lations depends upon the incremental time step
of integration, the time update calculations are
carried out by one-tenth of the time step of the
observation update. Also, if the calculations for
Egs. (27) ~ (29) , and Egs. (31) ~ (34) are
carried out under the original form, some numer-
ical instability may occur. Some algorithms have
been proposed to improve these numerical insta-
bility. Among these, the numerically most sta-
ble method is the UD decomposition algorithm,
which utilizes the symmetric non-positive charac-
teristics of the co-variance matrix P%. The UD
decomposition algorithm is what is used in this
study.

The approximate formulas, such as Egs. (10)
~ (14) concerning transverse rigidity, with the
terms £ and 7, or @, are used when the flexural
rigidity and axial force are calculated {rom the
identified state.

4. NUMERICAL STUDY

(1) When using a mathematical model of
the same-order

The simulation program is implemented on the
basis of the time update algorithms, Egs. (27)
~ (29) , and the observation update algorithms,
Egs. (1) ~ (33). Verification is then carried
out using the following process.

1) Assuming the exact values of the cable ten-
sion 7', the damping coefficient {, the nondimen-
sional parameter & , and the flexural rigidity E7
of the model, the state equation (17) is solved
by the fourth-order Rungqutta-Gill method. Re-
sponse values such as displacements, velocities or
accelerations are obtained from these results, and
adding quasi-Gaussian white noise which values
are several % of the response values, and these
values are used as observed values.

2) Assuming appropriate initial values, the
identification algorithm is applied to the above
observed values, and the exact values of FI and
T are estimated.

I0Is



Table 1 Cable properties used in verification

14 5.0m Diameter 4.6ecm
mg | 13.03 ¢f/m EI 1758t f -m?
G 0.03 XLy 3.510tf -m?

Table 2 Cable tension 7" and flexural rigidity £

[Case [T (¢f) | € [fiHz) ] moryr |

(a) | 24 [185] 152 [ —1.135
) 7 535 | 671 |¢1=12%
(©) T [377 599 |¢ - L1157

Estimated

— Estimated

0 05 1 1.5
Time (sec)

Flexural rigidity( £1I )

. 1 1.5 2
Time (sec)

Tension( T')

Fig. 2 Evolution of estimated parameters on the
same-order mathematical model € = 18.5

The time increment for the observation update
is 0.01 second. Table 1 shows the cable prop-
erties used in the verification. The cable ten-
sion (nondimensional transverse rigidity, £ ) is
changed in three steps, as shown in Table 2.

A simulation is carried out, assuming the ini-
tial values of cable tension, damping coefficient
and flexural rigidity to be half or twice the exact
value.

The sinusoidal wave which frequency is the
same as the first natural {requency is used as the
exciting force. The amplitude is 2.0 kgf and the
force is applied at the center of the span (£/2).
The response accelerations at the points of (£/2)
and (£/4) are used as observed values.

Fig. 2 provides an example of the evolution
of the estimated cable tension (T') and flexural
rigidity (IZ7). The estimated values closely ap-
proach the exact values and the validity of the
identification algorithm is confirmed.

Table 3 shows the estimated results of the ca-
ble tension (T') and the flexural rigidity (EI).

Cable tension and flexural rigidity can be esti-
mated with suflicient accuracy from the charac-
teristics of the cable which are similar to those of
strings and to those of beams, in cases where the

Table 3 Estimated results for cable tension( 7" ) and
flexural rigidity( E7 )using a same-order
mathematical model

Case | Para- Exact Estimated | Ratio
meter values values

(a) EI 1.758 1.745 0.993
T 24.00 23.93 0.997

(b) EI 1.758 1.760 1.001
T 2.000 1.998 0.999

(c) LI 1.758 1.749 0.995
T 1.000 1.002 1.002

same order mathematical model is used.

(2) In cases where the solutions of the fi-
nite element model are used

The same model with Table 1 is expressed by
the finite element model divided into twenty ele-
ments and the same tension with Table 2 is in-
troduced. Considering the geometric stillness due
to thie cable tension, the response values are cal-
culated under the same conditions with the same-
order mathematical model. After adding quasi-
Gaussian white noise which values correspond to
several % of the response values, these values are
used as the observed values. Damping is given as
CY/I( = 2(1/(4}1 .

First, the first natural frequency calculated by
the finite element method is compared with the
theoretical value of a beam with axial force,.and
the coincidence of these values is confirmed. The
response values of the [inite element model are
calculated on the same exciting condition. Then
these values added quasi-Gaussian white noise are
used as the observed values. After that, the un-
known variables are identified under the same ini-
tial and observation conditions as in the previous
section. Fig. 8 shows an example of the evolu-
tion of the estimated cable tension(T") and flexu-
ral rigidity(ET).

In the response values of the finite element
method, the higher modes are a little excited.
These componenis are not considered in the
model of the extended Kalman filter and the ac-
curacy ol the identification declines slightly in
comparison with the results of a mathematical
model of the same order.

Table 4 shows the estimated results for cable
tension (T') and flexural rigidity (ZI) . Cable
tension and fiexural rigidity are estimated fairly
well from the characteristics of cable which are
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Estimated Estimated

05 1 1.5
Time (sec)

Tension( T')

Tlme1(sec)
Flexural rigidity( £1 )

Fig. 3 Estimated results for cable tension( 7' ) and
flexcural rigidity( £1 ) using the finite element
model £ = 18.5

Table 4 Estimated results for cable tension( T") and
flexural rigidity( EI ) using the finite ele-
ment model

Case | Para- | Exact | Estimated | Ratio
meter | values values

(a) EI 1.758 1.703 0.97
T 24.00 22.56 0.94

(b) EI 1.758 1.723 0.98
T 2.000 1.882 0.94

(c) EI 1.758 1.704 0.97
T 1.000 0.943 0.94

Photo 1 Device for clamping specimens

similar to those of strings and those of beams,
when the finite element method is used.

5. EXPERIMENTS USING ALUMINUM
PLATES (AS SPECIMENS )

(1) Equipments used for the experiments

The experimental equipments consist of the de-
vice for clamping the ends of the specimens and
adjusting the axial forces, and an experimental
stand (Phote 1),(Phote 2).

Photo 2 An experimental stand

Table 5 Properties of specimens used in experiments

Specimen £ Width | Height 1
(mm) | (mm) | (mm) | (mm?)
ALl 500 29.97 3.0 67.5
AL2 800 30.00 2.0 20.0

(2) Specimens

Aluminum plates are used as specimens be-
cause their flexural rigidity is definite. Table 5
shows the properties of specimens.

(3) Excitation tests

The specimens were positioned horizontally
and were excited sinusoidally in the first or sec-
ond mode of vibration by a small electromagnetic
oscillator. The exciting force was measured by
the force sensor attached at the top of the excit-
ing rod. Piezo-electric accelerometers were used
as sensors for the measurement of the response
values. Though the size of the accelerometer was
very small, its mass was not negligible in compar-
ison with that of the aluminum plate. Therefore,
the five sensors were attached at equal intervals in
order to get a nearly uniformly distributed mass.

The main purpose of the test is to verify the
possibility of identifying the axial force and flex-
ural rigidity for cables with characteristics similax
to those of beams and strings. Consequently, the
axial forces are adjusted so as to satisfy the con-
ditions of £ ; € < 6 or 6 < &.

First, the natural frequencies of vibration
modes of the first to third mode were obtained by
experimental modal analysis for specimens with-
out tension. These frequencies were substituted
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Frequency (Hz) Frequency (Hz)

(a) Raw data (b) Filtered data

Fig. 4 Fourler spectrum of experimental data

Table 6 Specimen mass obtained by experimental
modal analysis

| Specimen | P (c/s) | m (kgf -mm]/s) |
All 39.43 5.99 x 108
Al2 15.65 1.72x10°¢%

into (9) as the natural frequencies of the clamped
beam without axial force, fZ , and the mass of
the specimen per unit length, m , was obtained
by the reverse calculation using the value of EI.
The mass of the sensors was included in the m.

Next, the specimens were pulled to tension by
the clamping device, and the axial force was grad-
ually increased in order to satisfy each of the con-
ditions, £ < 6 and 6 < £ . Exciting tests were
carried out for each condition.

As the measured data include higher mode
components which are not taken into account in
the mathematical model, the filtered data which
were passed through a band-pass filter were also
used for the identification data along with the raw
data.

Fig. 4-(a) shows an example of the spectrum
for the raw data, while Fig. 4-(b) shows the spec-
trum for the filtered data. A digital filter (IIR)
was used for band-pass filter.

(4) Experimental verification using the
excitation test data

The mass values obtained by the reverse calcu-
lations using the value of E1 and the measured
first natural frequency of the specimen without
tension le are shown in Table 6. The mass
value of a specimen All is larger than that of a
specimen Al2 because of the larger plate thick-
ness and the contribution of sensor mass per unit
length. The vertical accelerations at the points
£/2 and ¢/4 were measured at a constant sampling

0B}t

@Wo.i2

Joo 0.5 -
on Estimated

Estimated

0.10 2 0

05 1 1.5 0.5 1 1.
Tima (sec) Time (sec)

Flexural rigidity ( ET ) Tension( T")

Fig. 5 Evolution of estimated parameters using raw
experimental data (¢ = 800, ¢ = 2.74)

0.14

: & ‘ :
T 0A2} oo g P DO U

[ARISRE Estimated

Estimated

o5 1.5 2 0 05 1 1.
Time (sec)

Tension( T")

0.5 1
Time (sec}

Flexural rigidity( FI )

Fig. 6 Evolution of estimated parameters using fil-
tered data (¢ = 800,¢& = 2.74)

time interval, At = 1/256 sec. The total sampling
time was ¢ = 4sec and the number of each type of
data was 1024. Fig. 5 shows an example of the
estimated results for cable tension (T') and flex-
ural rigidity (E) in cases where raw data were
used. When raw experimental data are used, the
estimated values oscilate around the exact value
and are not stable. The reason for this may be
that raw experimental data include higher mode
components which are not taken into account by
the extended Kalman filter.

Fig. 6 provides an example of the estimated
results for tension (1') and flexural rigidity (EI)
in cases where filtered data were used.

The estimated values approximate the exact
values much more closely and with much greater
stability than where raw data are used, and the
accuracy of the identification is much greater.

Table 7 shows the estimated results based
on experimental data for cable tension (7') and
flexural rigidity (EI) . The estimated values
agree fairly well with the exact values in both
cases where raw data were used and where fil-
tered data were used, when the data were non-
dimensionalized by the natural frequency of the
clamped beam & < 6 or by the natural frequency
of the string £ > 6.
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Table 7 Dstimated results for cable tension (7') and flexural rigidity (/1) using experiment results

Specimen 13 T | Exact values Estimated values
T Raw data | Filtered data

521 | ET] 459 x 10° [4.37 x 10° | 4.40 x 10°
T 49.8 53.7 52.9

All 13.4 | ET | 459 x10° | 4.46 x 10° 459 x 10°
T 330.2 332.5 330.1

2.74 | EI| 1.36 x 10° | 1.36 x 10° | 1.36 x 10°
T 1.59 1.66 1.59

Al2 11.32 | BT | 1.36 x 10° 1.35 < 10° 1.34 x 10°
T 27.2 27.4 27.3

19.1 | BT | 1.36 x 10° 1.49 x 10° 148 x 10°
T 77.3 75.5 75.3

6. CONCLUSIONS

This study proposes a method of identification,
based on an extended Kalman filter, for simulta-
neously estimating the cable tension and the flex-
ural rigidity of cable. The conclusions reached
in the study can be summarized in the following
points.

Cable tension and flexural rigidity can be es-
timated with sufficient accuracy from the char-
acteristics of cable which are similar to those of
strings and those of beams when the same-order
mathematical model is used.

The estimated values for axial force and flex-
ural rigidity agree fairly well with the exact val-
ues when the response values of the finite element.
method are used.

The studies confirmed expectations that the
axial force and the flexural rigidity could be es-
timated with quite good accuracy on the basis
of cable characteristics similar to those of strings
and of beams, when the experimental data are
obtained by means of an excitation test on an
aluminum plate.

The accuracy of the identification is better
when filtered data are used than when raw data
are used. The reason may be that the model of
the extended Kalman filter is based on a single
degree of freedom, while the raw data obtained
from the excitation test include higher mode com-
ponents.

In this study, sinusoidal excitation f{orces were
applied. Use of an impulse hammer for the force
excitation makes the excitation tests easier and
more convenient. Higher mode components are,
however, included in the excitation forces and re-
sponse values for the impact tests and these val-
ued must be run through a band-pass filter. It can
be expected that the components of higher fre-
quencies will be predominant in both the excita-
tion forces and the response values. There still re-
main some questions concerning whether or not it
is possible to extract the specific lower component,
with sufficient accuracy by means of the band-
pass filter. It may be necessary to consider ex-
tending the study with plural components. This
would be the subject for a future study, along
with the verification of the present method using
actual cables. It is hoped that this research will
further advance the study of applications of ro-
bust control theory which will make it. possible to
weigh a specific region in the frequency domain.
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