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In the FEM formulation of a plane beam element, the interpolation is improved toward consistency
with the beam-column theory. The geometrical effects of the flexural and axial displacements upon
the longitudinal strain are explicitly analyzed in up to their second-order terms. The flexural dis-
placement is framed, as usual, in the cubic-polynomoal distributions, the magnitudes of which are
linear with the nodal parameters. But, in the interpolation of the axial displacement, the secondary
effects of the flexural displacement are taken into account, which are expressed in a quadratic form

of the deflection parameters.
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1. INTRODUCTION

In the recent structural analyses, it seems
essential for the elements to be developed into
more or less nonlinear stiffness relations. Since
an exact solution is difficult in general to be ob-
tained, there have been presented the second-
order formulations for various types of elements.
Their applications are not restricted only to
those problems lying in a range of relatively
small displacements. But, truly large displace-
ments can also be deal with, by their incor-
poration with the up-dated Lagrangian descrip-
tion or with the method of separation-into-rigid-
displacement-and-deformation.

So far as the plane beam element is concerned,
since before the age of computational methods,
there has been the beam-column theory. In the
evolution of matrix methods, the flexural effect

* A main part of this paper has been presented at the
JSCE Annual Conference,”) held in Nagoya, 1996-9.

of axial force was first estimated by Hartz 3) into
the geometrical stiffness matrix. But, as known
today, the resulting is a set of linearlized rela-
tions upon an initial state of axial compression
or tension. Nowadays, the second order terms are
derived in the following two methods, in princi-
ple: One method is to rewrite the slope-deflection
equations known in the beam-column theory into
a matrix form ®& 1,247.8)  In this treatment,
the flexural effect by an axial force is contained
exactly upon the initial state, but the stiffness
equation to determine the axial force becomes im-
plicit in terms of the nodal displacements. The
other ones are based on the finite element pro-
cedure. In the existing formulations for that
second-order problem, to be noted, the displace-
ments within an element are still interpolated in
a linear form of the nodal parameters ©& 5,6),

In this study, a revision is presented in the
second-order FEM formulation of a plane beam
element. The second effect of the beam deflection
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onto the axial elongation is exactly taken into ac-
count: in the interpolation of the axial displace-
ment, the quadratic terms of the deflection pa-
rameters are added to the linear ones. With the
use of the same potential energy function, the re-
sulting stiffness relations are consistent with the
differential equations in the beam-column theory.

2. KINEMATIC FIELD

Under the Bernoulli-Euler hypothesis, we con-
sider a straight beam deformed in a range of small
elastic strains. In the initial state, the spatial
x—axis is taken onto the centroidal line of cross-
section (G-line), with y—axis taken parallel to the
cross section. The displacement components of
that axial line into {x, y} are here denoted by
{ug(z), va(z)}. In terms of those components,
the axial elongation (a normal component of the
Green’s strain) is, to be exact, written as

mm::%§+2{(ﬁf)+(%§Y}(w

From this expression, where ug(z) and vg(z) are
independent to each other, the flexural vg(z) can
be larger than ug(z). The normal strains by the
bending (at edges of cross-section) are assumed
of the same order :
d%G Y e ~ € (2)
dxz 2
where h and [ are height of cross-section and
beam length; and € is an allowable magnitude of
small strains. Eventually, the axial and flexural
displacements are related as follows :

¥ () =1 o

Neglecting higher terms than e with respect to
unity, we have the results well known in the beam-
column theory: The displacement components on
cross-section are written as

dv
u(z, y) = ug(e) — y—=

v(z, y) = vg(z)

(4-2)
(4-b)

This expression is the same to the small-
displacement theory. But, the normal strains on
cross-section are given by

du, 1 /dvg\? d%v
ezx(x: y) = _9_+_<_£> -y G

= O

dr 2\ dx

We next consider an associated discretization
of the beam element, say (e).
nodal displacements

{u’}(e) = {(U, v, 9)1'7 (u3 v, H)J} (6)

the flexural displacement is interpolated in the
same way to the small displacement theory :

In terms of its

vG (€)= (@) { (v, 6);, (v, 0),} (7-a)
(@)= (1-3¢+26% 1(6 -2 +¢°),
3¢2-2¢% 1(-€+€%) ) (7h)

where £ = z/1.

In the present kinematic field, however, the
flexural vg(€) is relatively large, as given by (3).
If this vg(£) takes place with no elongation of the
axial line, namely ey, (z, 0) = 0in (5), there must
be the axial displacement given by

u, ()«
—{(v,6);, (v,0);)-
) {E) ()

By the actual integration, the shortening in the
entire span is obtained as

A=~ (0, @0))-

ug(é) =

te®

> DS

J

r 6 1 -6 1 7
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51 10 0),
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_Sym. |

or

1
= 300 { 18(v; — v;)? + 31(6; + 0;) (vs — vj)

+12(262 + 262 — 6,0) } (9)

On the other hand, in case the axial displace-
ments are fixed at the both ends, for the lateral
vg(€), there simultaneously takes place a uni-
form elongation £A to hold the compatibility. As
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shown in Fig.1, by the sum of those second ef-
fects onto the linear terms for {u;, u;}, we have
the axial displacement interpolated in the follow-
ing form :

uG(€) =<1—as>{§j}+uaa+f4(m)

As the result, in expression (5) for ey, the
ug(€) contained in ug(§) is canceled by the
square term of dvg/dx . The normal strain on
the axial line is given by

eQue = %{uj—-ui—!—A} : const. (11)
l AR ERE I
y
ug (€)
T ¢=1
-A
+
?A +A
+

(1— & )u,+ & u,
]
TL// u.

j
u;

Fig. 1 Decomposition of axial displacement

3. STIFFNESS RELATIONS

The axial force and the bending moment in
cross-section are related to the displacements of
the axial line, as follows :

- - dug 1 /dvg\?
N(WE/emdA> _ EA{dx +2<dw>}

d?y
M <= E / yemdA> = —EI dxf (12)

The total potential energy of the bes w element
sujected to external forces { Fy, F,} and moments

M at the both ends is written as

1 M2 N2
= —t — | dx
[) [ 2ET + QEA]
- {F:v'U'G + Fva + MO} I:J::O

After interpolation (7) and (10) introduced
into. (13), the stationary condition for variation
6{u} () is written as

1 2
6W=/0 [< (v, 9);, (v, 9)j>%{dd?:}}'
Sv
d*®, 50 |
(%) |

+ —E—‘lfl—{u‘,'—’ui+A} {6uj—5u,'+6A}} dé

—{F}ls{ule =0

(14)

Substituting the variation of the shortening A
given by (9), by the arbitrariness of §{u},, we
have the following nodal force-nodal displace-
ment relations :

—Fy = Fypy = N (15-a)
F?l
ML~ (ko)
- 0
M.
J
v
_ 0.
+ Nlkg]) v * (15-b)
(6)‘
J
where
N:%é{uj—ui+A} (16-a)
12 6 -12 6l
EI 472 -6l 2?2
[ko]—l—3 12 —6l (16-b)
Sym. 412
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Those N, [ ko | and [ kg | indicate the uniform
axial force, the initial stiffness in bending and the
geometrical stiffness per unit axial force, respec-
tively.

By differentiating the above (15) and (16) with
respect to the nodal displacements, we have the
tangent stiffness relations :

EA

—8Fy = 5ij = T((S'U»j—’fsui)
(&)
86 | .
+ 22w o) S (172)
<50),
J
(51:;,)
M | _
G
M |
J
sv

+%—4[{w*<v,e>}<w*(v,e>>1)

60

v
50

[
(

)
)

+ B, 0 sy —w) (1)
where
1)
{v'@w o} | =[] {
v
),
J
( %(vi_-vj)ﬂ—lo(e)ﬁej)
1 l
_ ) -1—6(1)7;——’0‘7')4"56(49@—93') }(18)

&
51

L 10

1 l
(v; — ’Uj) + 30 (40j - 6;)

1
(vj — i) — 0 (6; + 65)

By the integration of §U) = ( Fpéu + Fyév +
M8 );+(---);, we have the strain energy function

of element (e) :

Uey = %(uj—ui+4)2
1 9)‘
+ '2‘< (’l), 0)1‘: (U7 9)3>[k0] ' (19)

5),

4. NUMERICAL EXAMPLE

A slender beam element is considered: [ = 500.
cm, E = 2,100. tonf/cm?, A = 26.84 cm?, and
I = 151. cm*. First, with node i being fixed in
a cantilever support, a vertical Fy ; is applied up
to 1. tonf at the other node (see Fig.2). The
resulting displacements (u, v, ) ; are shown in
Fig.3: the lines with symbol O, ) and A indi-
cate the present second-order relations; and the
plain lines are a result regarded as numerically ex-
act, obtained by the separation method 10) with
a segmentation into ten elements.

=
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o

Fig. 2 Deformed configuration at Fy,; = 1. tonf

Next, after subjected to a preceding axial
force Fpj(= —1/3 - nEI/I?) = —4.17 tonf,
in a simple support, an additional M; is ap-
plied up to 1, 000. tonf-c at node i (see Fig.4).
The displacements (u;, 6;, 6;) are shown in
Fig.5. Those lines of displacements seem lying
in a good approximation. But, for example, if
(ug, 03, 0;) = (—1.23cm, 0.139, —0.083) obtained
at (Fpj, Mi, Mj) = (—4.17 tonf, 200., 0.tonf-cm)
in the numerically exact analysis are estimated
by the second-order relations, the nodal forces are
(Frj, M3, M;) = (—18.6tonf, 48.6, 111.7tonf-cm).
If subjected to no axial force, in the same com-
parison, the nodal forces for (uj, 6;, 6;) =
(—0.55 cm, 0.105, —0.053) at (F,j;, M;, M;) =
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Load Factor

Displacements

Fig. 3 Displacements at the free end

(0.tonf, 200., O.tonf-cm) are approximated by
(Frj, My, Mj) = (0.02tonf, 200.2, —0.07 tonf-cm).
In the present stiffness relations, the flexural
relations between {(F,, M); (Fy, M);} and
{(v, 6);, (v, );} are linear for a given axial
force. Together with the three straight lines for
F,; = —4.17, 0. and 4.17 tonf, Figure 6 shows
a curved response of angular displacement 8; in a
loading (Fyj;, M;) = (—4.17, 0.) + p(8.34, 1000.),
0.<p< 1

b

Fig. 4 Deformed configuration at
(—4.17 tonf, 1000. tonf-cm)

(ij7 Mz) -

5. CONCLUDING REMARKS

As for a plane beam element, the third-order
terms were already presented in Ref.[10], which
are derived by the perturbation technique applied
to the governing differential equations for truly
large displacements. Within the second-order
terms, the present stiffness relations through (15)
to (19) coincide with the perturbation result. The
second-order relations are usually said valid for
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Fig. 6 A curved ¢; in change of axial force

deflection angles less than 10° & 9. But, as
shown in the former example, if subjected to a
certain axial force such as a fraction of the Euler
buckling load, the accuracy is not sufficient. This
defect is, of course, improved by a subdivision
into smaller segments. To derive nonlinear stiff-
ness relations, there might be other preferable
methods for some particular elements, but the
second-order formulation through the FEM pro-
cedure seems a consistent method applicable to a
wide variety of structural elements.
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