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Identification algorithms were proposed that use the H,, filter to identify linear structural systems.
Characteristics of the H, filter for structural system identification were studied in detail by checking
digital simulation results obtained by using the H_ and Kalman filters. Application of the proposed
identification algorithms to SDOF and MDOF structural systems shows that the identified parameters
obtained with the H_, filter converge faster and closer to the exact values than do those obtained with the
Kalman filter. The H, filter is more robust than the Kalman filter for identifying linear structural

systems.
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1. INTRODUCTION

The Kalman filter, based on the least-squares
error, has been widely used as the time marching
algorithm for structural system identification. The
exact stochastic properties of disturbances must be
known a priori in order to obtain optimal estimates
with the Kalman filter; but, it is very difficult to
know the exact stochastic properties of the
disturbance in advance. The state estimate may be
degraded if uncertainty of the disturbance statistics
exists. The identification algorithm using the
Kalman filter is started with an initial guess at the
parameters and with the initial error covariance
matrix. Convergence of the algorithm as well as the
final values are known to depend, to a great extent,
on this initial guess .

Over the past several years, H, control has
received extensive attention and has been applied
successfully in aerospace and mechanical
engineering as a robust control approach®. The
H,, filtering problem, which is based on the H,
criterion, also has been solved from many
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standpoints 4.5 The H, filtering problem is a

state estimation problem of minimizing the
maximum energy in the estimation error over all the
disturbance trajectories. The state estimation based
on this criterion is valid when a significant
uncertainty in the disturbance statistics exists.

A robust filter, the H_ filter has been used to
identify the parameters of the linear structural
systems in our research. Identification algorithms
are proposed for linear structural systems for which
the acceleration, velocity and displacement of every
floor is available; for linear structural systems for
which only the velocity and displacement of each
floor is available; and for linear structural systems
for which the velocity and displacement responses
of some floors are available for identification. The
performance of the H, filter is checked in detail by
comparing the identified results obtained with the
identification algorithms using the H, and Kalman
filters. Digital simulation results show that the
characteristics of the H, filter are better than those
of the Kalman filter for structural system
identification.



2. BACKGROUND OF THE H_ FILTER

Consider a system described by

X =A4x, +Bo, o
vy, =Cx, +Dyv, @
u =Lx, 3

where x, eR"” is the state vector, y, €R? the
measurement and u, eR¥ the vector to be
estimated. The exogenous signals @, eR™ and
v, €R* respectively are the process and
measurement noises. Moreover, we assume that
R,:=D,D! >0 holds for any ¢.

Let u, be the estimate of u,, and we assume that
the estimate of the initial state x, is a priori given
by X,. For the minimax filtering problem, the
estimate of &, tries to minimize the squared
estimation error 2,||u, —#,||> , while the triple (%,,
®,, V,) tries to maximize the squared estimation
error. Because arbitrary large values of |, |, [v,|
and |x,| cause arbitrary large value of the
estimation error, we define the cost function J as
follows:

J(i;x,0,v) = E{)Hu, -4 -

N 2 N 2 R
r(Sol + Epl i) @

The second term in the right-hand side is the penalty
term on @,, v, and x,; 7is a positive constant
which represents the magnitude of the penalty. 1
is a positive definite weighting matrix which
represents the uncertainty of the initial state x,.
From the game theoretic viewpoint, we can say that
the filtered estimate #, and the triple (@,, v,, x,)
are the minimizing and maximizing polices of J,
respectively .

The finite-horizon H, filtering problem is to
find estimates of », and x, based on the
measurement set {y,,---,y,} such that

Zﬁ:oul‘x -4

sup ,
020 ZJo [ +ou )+ 0 - 03 1171 2 - 70)

2

<y? ®)
This condition is equivalent to
J(ﬁ;xo,m,v)<0,

2 2
éﬂwzl’ +§0H%H + bty = Zo[ra %0 (6)
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The central H,, filter which satisfies the above
H,, bound is given by ®

% =X, +K (y,-Cx,) Q)
Xy = Ax,, 320 =X ®
i, =L,3%, ©)

K, = PC'R™ (10)

E=(B"+C/R7C)” an
in which x, is the estimate of the system state
vector x,, and K, the gain of the H, filter at
time ¢. X,,; is the predicted value of the system
state vector at time ¢+1. The covariance matrix P,
satisfies the Riccati difference equation

-1
Py = AR {1 +(CIRIC —y LI L)RY 4]

+B B!, P=I1 (12)
and a condition matrix V, defined as
V= 721;7 -LE{, +CtTRt—1CtPt)WILf >0 (13)

in which I, and I, are identical matrices with
dimensions of nXn and pXp. 7is selected as the
minimum value which satisfy Eq. (13).

If v in Eq (12) tends to the infinite, the
covariance matrix F, becomes

- _ -1
Pa=a{p+CIR7c,}) 4T +B,B]  (14)

Equation (14) is exactly the Riccati difference
equation of the Kalman filter. Therefore, the H,
filter is a modified version of the Kalman filter.

3. ALGORITHM FOR STRUCTURAL
SYSTEM IDENTIFICATION

(1) Algorithm for the case of a linear structural
system for which the acceleration, velocity
and displacement of each floor is available

In the identification of a structural system with »
degrees of freedom, the measurement equation of
the identification algorithm can be derived from the
motion equation of the structural system. The
motion equation is given by

21 :®rH1 _Zl (15)

— - . T
where ©,=-M7c -M7K| and H, =[z, z,]

respectively are the n X 2n matrix of the structural
parameters and the vector of the structural responses




with 2r elements. M is the n X #n mass matrix, C the
damping matrix and K the stiffness matrix of the
multiple degree of freedom (MDOF) system; Z,,
z, and z, respectively are the n element vectors of
the acceleration, velocity and displacement
responses relative to the ground, and Z, is the
ground motion acceleration. The measurement
equation in the identification algorithm is given as R

=Cx, +D,v, (16)
in which y, =7, +Z‘. x,, the system state vector

with 2r? elements to be identified, is
x, ={60(1, 1), -, 8Q1, 2n), 62, 1), ---,

02, 2n), -+, =+, O(n, 1), -, O(n, 2n)}" (17)
and C, is the measurement matrix with the
dimensions of n X 2n?, given as

H,T OT o OT
T T T

I R as)
0.T O'T ' HT

In Eq. (17), 6(,j) represents the ij th element of
matrix © in Eq. (15).
The system transfer equation is given by
X,y =Ix, + Bw,
in which 7 is the identical matrix.

When the responses of acceleration, velocity and
displacement, as well as the ground motion
acceleration can be obtained, the structural system
defined by Egs. (19) and (15) can be identified using
the H_ filter given by Egs. (7)~(12).

19)

(2) Algorithm for the case of a linear structural
system for which only the velocity and
displacement of each floor is available

Assume that only the structural responses of
velocity and displacement are available for the
structural system identification. The structural
parameters to be identified are the damping
coefficient and stiffness matrices. As the mass
matrix is assumed to be given, we therefore identify
the natural frequency and damping constant of each
story of the n DOF structural system defined by ¥

l el (20)
21/m k; \/
The state vector to be identified is defined by
xtz{mzi z; hy a)im}T, i=1---,n (21)

The state transfer equation is expressed as a non-
linear equation of x,;
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X, =g(x,)+ Bw, (22)

To apply the H,, filter to the system transfer
equation defined by Eq. (22), the equation must be
linearized by a proper linearization scheme as
follows (see Appendix for details):

x, =A%, +d,  +Bao, (23)
The system transfer matrix in Eq. (23) is given by

A ~I+E o, Foy= 50 (24)
&; .
X-1% %1
in which dt is the integration time interval, and d,_;
a constant term developed by the linearization

process given by
dpy = (e - 1)E{sG) - Fofn) (29)

The pre-estimator of the state variable vector is
given by the equation;

X, =A% +d, (26)
The measurement equation is given by
y! :Ctxt +Dtut (27)
in which y, is the 2n observation vector defined by
ve={ oz 4 ..,}T, i=1-n (28)
and C, is the 2n X 4n measurement matrix given as
C =
L o0 o0 1
[0 10 0} (o] [°}
1000
[0] [0 Lo 0} [0] 29)
' : Moo o
0 RN N |

By applying the H, filter to the structural
system defined by Egs. (23) and (27), the damping
coefficient and frequency of the structural system
can be identified when only the velocity and
displacement responses of the structural system are
used for identification.

(3) Algerithm for the case of a linear structural
system for which only the velocity and
displacement of some floors are available

In the practical application of the structural
system identification scheme, usually only the
responses of some floors are available as
observation data. To identify this kind of system, we
just redefine the measurement matrix C, in Eq.

(27) and the measurement vector y,.

The measurement matrix in Eq. (27) is a 2nX4n



nZ

matrix consisting of sub-matrices  with
dimensions of 2 X 4. If the wvelocity and
displacement responses of the i th floor are available
for the identification, the i th sub-matrix of the

measurement matrix C, is given by
1000
Cow =

010 0}

If the responses of j floors (j<n, j is the total
number of floors for which responses are available
for identification) are obtained for structural system
identification, the measurement matrix C, is given
as a 2j > 4n matrix with the sub-matrix C,; defined
by Eq. (30).

The observation vector y, is defined by

yo={ }T (31)

in which 7 refers to the floor whose responses is
available for structural system identification.

By applying the H,_, filter to the system defined
by Egs. (23), (27), (30) and (31), the damping
coefficients and natural frequencies of each floor
can be identified for a partly-observed structural
system.

(30)

Z;

Z.

I3

4. STRUCTURAL SYSTEM
IDENTIFICATION

The identification algorithms developed were
applied to different structural systems. The seismic
responses of these systems were simulated as the
observed data in the identification. The El Centro
NS (1940) earthquake record with a scaled peak
value of 50.0 gal was used as the input excitation.
Identification results obtained using the H, filter
are compared with those obtained using the Kalman
filter to show the performance of the H_ filter in
the identification of structural systems.

in practical application of identification, we have
to assume the initial values ¥, and F,, and noise
covariance R,, as design values of the filter. But
we do not know the real parameters of the system to
be identified. Therefore, the sensitivity of the filter
to the initial value is a very important characteristics
for the filter. Therefore, the effect of design values
of the filter on the identification results are checked
in detail in our digital simulation.

(1) Identification for the case of a single degree of
freedom (SDOF) structural system
Assume that the responses of acceleration,
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Fig. 1 SDOF system model
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Fig. 2 Identified para. of the SDOF system obtained with the
H, and Kalman filters (R=1.0, B =diag{0.001 01},
7 =3.9)

velocity and displacement of the SDOF linear
structural system are available for identification. Fig.
1 shows the model of the SDOF system used to
generate the observation time history. The
parameters are m=1.0, ¢=0.4 and £=100.0. The
initial value of P, was set as P, =diag{0.001 01}.
The initial value of the state vector, ¥,, is assumed
to be given by 50% of the real value. Pink noise
(frequency band: 0-25 Hz) with a standard deviation
set at 5% of the standard deviation of the structural
response is used as the measurement noise. Fig. 2
shows the results when the noise covariance,
defined by R, =D,D], is set as 1.0. The parameters
identified using the H, filter converge faster and
closer to the real values than those identified using
the Kalman filter. The H, filter gain is more
sensitive to the identification error than the Kalman
gain.

In the digital simulation, the initial value of the
state vector, X, is set at different values to check
the effect of the initial value of the state vector on
the identified results when the covariance value R,
changes from 0.01 to 1.6. In this case, we used the
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Fig. 3 Residual error of the identified para. k/m when xy=0
is 50% of the (R=1.0,
P, =diag{0.001 01})

and real  value

same set of observation data. In Fig. 3, the solid
lines show the ratio of the residual error of the
identified values of k/m to the real values obtained
with the algorithms using the H_ (thin solid line)
and Kalman (bold solid line) filters when the initial
state vector X, is given by 50% of the real value.
The dashed lines in Fig. 3 shows the residual error
ratio of the identified values of &/m obtained with
the algorithms using the H, (thin dashed line
consistent with the thin solid line) and Kalman (bold
dashed line) filters when the vector X is set at zero.
If the initial value of the system state vector, X, is
set far from the real value, the performance of the
Kalman filter would deteriorates, whereas the
residual error of the identified parameter k/m for the
H,, filter is very small. Compared with the Kalman
filter, the H,_ filter performs better for the
identification of the parameter k/m when the initial
value of the state vector can not be set near the real
value.

The effect of the noise covariance, R,, on the
identified results obtained using the H, and
Kalman filters also can be checked using the results
shown in Fig. 3. In the case of the Kalman filter,
when the value of R, becomes large, a large
residual error in the identified value is expected.
The bold lines (solid and dashed) in Fig. 3 show that
the residual errors of the identified parameter k/m
increase rapidly when R, changes from 0.01 to 1.6.

For the H, filter, the residual error of the
identified parameter k/m is very small and is not
affected by the value of R,. When R, is set to be
small, the identified parameters converge quickly,
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Fig. 5 Minimum gamma values versus value R, for the SDOF
system identification (xy=is 50% of the real value,
P, = diag{0.001 01})

but oscillation is large before the identified
parameters to be converged, as shown in Fig. 4
(R=0.01). Fig. 5 shows the minimum value of 7
which satisfies Eq. (13) when R, changes from
0.01 to 1.6. For the H_ filter, 7 works as an
adapter to limit the identified error of k/m under a
certain level. For both the H_ and Kalman filters,
however, the residual error of ¢/m increases as the
value of R, increases. There is no obvious
difference between the residual errors obtained
using either filter, as shown in Fig. 6 (P, =
diag{0.001 01}, x,=50% of the real value).

The effect of the level of the measurement noise
on structural system identification also is checked in
the digital simulation. The initial value of £, is set
at P, =diag{0.001 01}. Pink noise with a standard
deviation of up to 50% of the standard deviation of
the structural response is added to the structural
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Fig. 6 Residual error of the identified para. of ¢/m of the SDOF
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Py = diag{0.001 01})
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Fig. 7 Residual error of the identified para. k/m for different
measurement noise levels (xg=is 50% of the real value,
By = diag{0.001 01})

responses as measurement noise. Fig. 7 shows the
ratios of the residual error of k/m to the real value
when R, changes from 0.001 to 1.6 for cases in
which the standard deviation of the measurement
noise is set at 10% and 50% that of the structural
responses. The bold curves (solid and dashed)
obtained with the Kalman filter show that the
residual errors have minimum values at specific
values of R,. When R, is beyond a certain range,
the residual errors of k/m increase rapidly. The
performance of the H,, filter is better than that of
the Kalman filter. The residual error of k/m obtained
with the H_, filter is not affected by the value of
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Fig. 8 Residual error of the identified para. ¢/m for different
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Fig. 9 Identified para. of the SDOF system when observation
data are contaminated heavily by measurement noise
(Xg=is 50% of the real value, R =diag{0.001 01},
7 =3.84)

R, even when the observation data are
contaminated by different levels of measurement
noise. The H_ filter is more robust than the
Kalman filter. For the identified parameter c/m,
residual error increases as the level of measurement
noise increases. There is no obvious difference
between the identification results obtained with
either filter, as shown in Fig. 8. But, for the residual
error of the identified parameter c/m, if the
observation data is contaminated heavily by
measurement noise (e.g., the standard deviation of
the measurement noise is set at 30% that of the
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structural responses), it is very difficult for either
filter to obtain the correct identified value of c/m, as
shown in Fig. 9.

The effect of process noise on identification was
investigated by setting different values of B, . Fig.
10 shows the rms values of the identified k/m and
c/m values obtained with the H, and Kalman
filters for R,=1.0 and R,=0.01 when value
Q =BB, changes from 0.00001 to 10.0. The
standard deviation of the measurement noises is set
at 5% of the standard deviation of the structural
response. The rms values of the identified
parameters become very large when process noise
exists, The rms values of the identified parameters
obtained with the H_ filter, in particular, increase
rapidly as the value of Q, increases when @, is
larger than 0.1. Fig. 11 shows the time history of the
identified parameter k/m obtained with the H,
filter when the standard deviation of the
measurement noises is set at zero and 5% of the
standard deviation of the structural response, and
Q, is 0.001. The H, filter can not remove
contaminating noises from the observation data for
the identification of structural parameters. The
reason is that Q, acts as a forgetting factor which
fades away the effect of pre-information on the post-
estimator of the state variable vector calculated from
the observation data. Increasing R, decreases the
rms value of the identified parameter; but, it leads to
slow convergence of the identified value k/m. The
identified value c¢/m can not converge even if the
value of R, is set very high, as in Fig. 12
(Q, =0.001).
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Fig. 13 5 DOF system model

(2) Identification for the case of a 5 DOF linear
structural system for which the acceleration,
velocity and displacement responses of each
floor are available

Assume that all the responses of acceleration,
velocity, and displacement of the MDOF linear
system are available for the identification. In this
case, the respective dimensions of state vector x,,
given by Eq. (17), and measurement matrix C,,
given by Eq. (18), are 2rn® X1 and n X 2n?. If the
number of degrees of freedom increases, the
dimensions of the variables in the identification
program increase rapidly. A large amount of
computer memory is needed, leading to difficulties
in calculation. To cope with this, we divided the
system defined by Eqs. (19) and (16) into n sub-
systems
(i=1, n) 32)

yi=Cix! +Djv} (i=1n) (33)

where x] ={0(i, 1), -, 6(i, 22)}" and C' H]
are vectors with 2n elements. The dimensions of all
the variables in the program therefore can be
reduced effectively; e.g., the dimension of P is
reduced from 2n° X 2n® to 2nX 2n. To identify the
parameters defined by the respective n sub-systems,
we can identify the parameters of the structural
system without defining the large dimensions of the
variables.

As shown in Fig. 13, the 5 DOF linear structural
system with parameters m; = 012553, ¢, =007,
k; =245 (i=1, -, 5) was used to generate the
observation time history. Pink noise with a standard
deviation of 5% of the standard deviation of the
structural response is added to the simulated
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Fig. 14 Identified para. k/m of the 5 DOF system obtained with
the H, and Kalman filters (R=diag{--- 0.01 ---},
p=1.0, xy=is 50% of the real value, 7 =15.6)

structural responses as measurement noise. The
initial value of the state vector, X, is assumed to
be given by 50% of the real value. The initial
covariance matrix is given by

PO:diag{u- e } (=1--10) (34)

in which x,, is the ith component of the initial
value of x,, and p is set at 1.0. The covariance of
noise, R,,is set at diag{--- 0.01 ---}.

The state vector, x, is identified with the
identification algorithms for both the H_ and
Kalman filters. The simulation results show that the
H, filter performs better for an MDOF structural
system identification. Fig. 14 shows the time history
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of the identified parameter k/m for each floor of the
5 DOF structural system. The identified parameters
obtained with the H_ filter converge faster, and
residual error is smaller than the values obtained
with the Kalman filter.

The design values of the filter, such as noise
covariance R, and the initial value of state vector
X, heavily affect the performance of the filter. The
identified parameters of some floor in this case
could not converge because the design values of the
filter were not set properly. Good identified results
can be obtained if we set suitable design values.

(3) Identification for a 5 DOF linear structural
system for which all the floor responses of
velocity and displacement are available

Assume that only the responses of velocity and
displacement are available for each floor in the
identification of a 5 DOF linear system. The
parameters of the structural model used to generate
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Fig. 16 Identified para. of the 5 DOF system when initial values
are not set properly (R=diag{--- 0.1 ---}, p=1.0,

Xy=diag{-- 0.03 5.0 -}, 7=347)

the observed data are the same as in the model in
Fig. 13. Pink noise with a standard deviation of 5%
of the standard deviation of the structural response
is used as measurement noise. The initial covariance
matrix also is given by Eq. (34).

Fig. 15 shows the identified parameters of the
damping coefficients and frequencies of the 1¥ and
5% floors of the structural system when the initial
covariance matrix, defined by Eq. (34), can be set
properly (in this case, the initial value of the state
vector is 50% of the real value and p=1.0 ).
Simulation results show that the performance of the
response is used as measurement noise. The initial
H,, filter is better than that of the Kalman filter. If
the initial value, £, is set properly, good identified
results can be obtained with algorithms using the
H, and Kalman filters. The identified parameter
k/m obtained with the H, filter converges a little
faster. When the initial value, F,, can not be set
properly, the residual error of the identified values
obtained with the Kalman filter is very large. Fig.
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}, p=1.0, Fo=is

16 shows the identified parameters of the damping
coefficients and frequencies of the 1% and 5" floors
of the structure when the initial covariance matrix
can not be set properly (in this case, the initial
values of damping and frequency are set at 0.03 and
5.0, and p=1.0). The figure also shows that the H_,
filter gives very good identification results even if
the initial value, F,, does not guarantee the
accuracy of identification results when we use the
algorithm with the Kalman filter. The identification
algorithm with the H, filter is more robust than
that with the Kalman filter for structural system
identification.

(4) Identification for a 5§ DOF linear structural
system for which the responses of velocity and
displacement of some floors are available

In the identification of multiple-floor structural

system, the dynamic responses  of the structure of
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Fig. 18 Comparison of the identified para. of 5 DOF system
with 3-floor observation data obtained with the H,,
and Kalman filters (R=diag{--- 0.1 ---}, p=1.0,
X =is 50% of the real value, 7 =27.5)

all-floor or partly-floor should be obtained as
observation data. It is not practical to measurement
the all-floor responses of the structure. If we can
identify the parameters of the structural system with
measurement from limited floors of the structure is
what we concern in this subsection.

Assume that only the responses of velocity and
displacement of the 1% , 3% and 5% floors are
available for the identification of a 5 DOF linear
system. The parameters of the structural model used
to generate the observed data are the same as those
in Fig. 13. Pink noise with a standard deviation set
at 5% of the standard deviation of the structural
value of the state vector, X, is assumed to be given
by 50% of the real value. The initial covariance
matrix is given by

G

Fig. 17 shows the identification

P, = diag{-~- pxl, L6 (35)

results of the 1%
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and 5" floors of the structure obtained with the
Kalman filter for cases in which all the floor
responses or only responses of 3 floors are obtained
for the identification. The solid curves show that the
identified parameters for the 3-floor-only
observation data converge more slowly and that the
residual errors are larger than when the responses
for all the floors are available for the identification.
Identification efficiency for a partly observed
system decreases because the system has less
information than one that has all the observed data.
Fig. 18 shows the time histories of identified
parameters of the 1* and 5® floors of an structural
system when only the responses of the 1%, 3™, and
5™ floors are available for the identification using
both the H, and Kalman filters. The simulation
results indicate that the H_, filter avoids a decrease
efficiency. The algorithm

in identification
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guarantees that the identified parameters converge
faster and closer to the real values than those
obtained with the algorithm using the Kalman filter.

The case of only responses of the 1% and 5® floors
being available for the identification also was
checked by digital simulation. Fig. 19 shows the
identified parameters of the 4™ and 5" floors.
Because there is not enough information for system
parameter identification, i.e., the number of floors,
whose responses are available for the identification
of multiple-floor structural system, is under a certain
level, neither of the identification algorithms using
the H, or Kalman filters produce good results. The
parameter of @, , however, converges very near to
the real value when the H_, filter is used.

5. CONCLUSION

Structural identification algorithms are proposed
using the H_ filter to identify the parameters of
linear structural systems. These algorithms were
applied to structural systems which had completely
or partly observed structural seismic responses.
Identification results of the digital simulations show
that the performance of the H,, filter in structural
system identification is better than that of the
Kalman filter. The conclusions of this study are as
follows:

(1) The identified parameters of the structural
system obtained with the H, filter converge
faster and closer to the real values of the
structural systems than do those obtained with
the Kalman filter.

A large noise covariance R, leads to a larger
residual error in the identified parameters when
the Kalman filter is used. The residual error in
the identified parameter k/m when the H,
filter is used is very small and is not affected by
the value of R,.

The initial value of the system state vector has
no obvious effect on the identified parameter
k/m obtained with the H_ filter, whereas the
performance of the Kalman filter deteriorates
when there is an unsuitable initial system state
vector.

For the Kalman filter, the initial covariance
matrix, F,, must be set very carefully to get
good identification results. In the algorithm
using the H,, filter, the identified parameters
converge faster and the residual error is very
small even when the initial covariance matrix,
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F,, does not guarantee the accuracy of
identification results if P, is used for the
algorithm with the Kalman filter.

For identification of a system with partly
observed str, ctural responses, the algorithm
using the H_ filter performs better than the
one using the Kalman filter. The H_ filter
prevents a decrease in identification efficiency,
but when sufficient information is not available
for the identification, even the H_ filter can
not guarantee identification results.

The H, filter is more robust than the Kalman
filter for the identification of linear structural
systems.

4

(6)

APPENDIX:

Linearization and discretization of equation
x=g(x):

The first order expansion of the above equation
with respect to x,_, gives

X~ g(iz—l) +F L (x-%,) (A-1)

The general solution of Eq. (A-1) is expressed by
x, =efi-r {Lt_lct_le'p'“’dz' + eF“l(H)x,_l} (A-2)
in which
oy = 8(%,) ~ FLi %, (A-3)

Placing 7=t in Eq. (A-2) gives the formula of Eq.
(23);

X =A% td, (A-4)
A= el (A-5)
d, , =[ e, _du (A-6)

in which dt is the time interval.
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