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With the advent of structural optimization, the researches for shape optimization have also been under
development with growing interest. In this research, in order to minimize the stress concentration, one
optimal shape design method originated from the concept of biological adaptation process was proposed.
The characteristic of this new method is in no need of structural sensitivity analysis. The algorithm and
availability of this method was explained and verified in this paper. In addition, the excellence of
computation efficiency of this method was also illustrated.
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1. INTRODUCTION

(1) Literature review

By the notch stress theory developed by Baud”,
Neuber” and Schack” etc. , the shape optimization
problem of minimizing stress concentration in the
continuous structures (also termed as stress optimal
design) can be focused on the adjacent area where
stress concentration occurs in stead of dealing with
the whole design structure. With this understanding
on the optimal shape design methods of minimizing
stress concentration, various attempts” have been
made either from proposing various numerical
optimization techniques or finding the practical
application cases. However, for most of those
approaches, in order to effectively find the
optimum, structural sensitivity analysis is often
requisite. Yet, by observing the essence of this
calculation process, the computation efficiency of
those optimization techniques using structural
sensitivity, especially on the computation time, is
significantly detrimental. Nevertheless, up to date,
there is very little reliable report related to such
numerical deficiency caused by bulky computation
for optimal shape design methods.

On the other hand, from the comparative
viewpoint on the mechanism of minimizing stress
concentration, it is found that the adaptation
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process of biological tissues by shape variation to
their environment is very effective in reducing
stress concentration in the biological structures.
Such kind of high similarity between the biological
adaptation process and the stress optimal design in
the continuous structures has motivated the
researchers to propose the methods based on their
simulated biological growth rules. However, their
methods (e.g. Umentai and Hirai” ) were generally
proposed to move the design points by some choice
on the direction and magnitude of the nodal updating
vectors. Such kind of choice on nodal updating
vectors generally needs the subjective judgment of
the developers, which may make these methods
unfriendly to ordinary users. As a result, our interest
of this research is to propose one new optimal shape
design method by avoiding the choice on the
direction and magnitude of the nodal updating
vectors, the essence of which is more close to the
nature of the biological adaptation process.

(2) Scope of this research

Based on the aforementioned questions, the work
of this research is to describe one gradientless
optimal shape design method called “biological
growth strain method (BGSM)” by simulating the
biological adaptation process. By this proposed
method, the stress concentration of design



structures can be effectively minimized through the
illustrative examples. In addition, in order to verify
the excellence on computation efficiency,
especially for saving computation time, numerical
comparison between BGSM and one sensitivity-
based optimality approach method was also given
as the pioneering work for the efficiency
comparison of optimal shape design methods. It is
worth noting that the structures under discussion in
this paper be limited to two-dimensional structures.
But, the algorithm of BGSM can be easily extended
to  three-dimensional structures by  partly
modification on the structural freedom of design
structures and the number of design variables
without extensive difficulty.

(3) Composition of this paper

Hence, the paper consists of three parts: first of
all, the mathematical formulation and numerical
process of the design problem by finite element
method as well as the characteristics of BGSM will
be given in Chapter 2 and 3 respectively; secondly,
the numerical verification of the proposed method
and application on various fields of structural
design are illustrated in Chapter 4 and finally the
numerical comparison between this proposed
method and one sensitivity-based optimality criteria
approach is given in Chapter 5 and the concluding
remarks is included in Chapter 6.

2.FORMULATION OF STRESS OPTIMAL
DESIGN

For a linear, elastic, homogeneous and continuous
body, the stress optimal design problem is
schematized in Fig.1. Q and S is the domain of
design structure and its boundary. Based on the
notch stress theory, the optimization process is only
considered on the subdomain of the design structure
Q* and its boundary S*. As shown in Fig.1, the
selected design profile between p and q is defined
as I' and its allowed variation domain I'* due to the
constructional or technical consideration. Based on
these notations , the mathematical interpretation of
stress optimal design problem in the continuous
body can be expressed as Eq.(1a) up to (Ic) by
minimizing the quadratic difference between the
reference stress o, (eg the average of the

stresses along I' ) and the equivalent stress & along
I" within I'*. Here, Eq.(1a) is defined as objective

function.
Mm{ (1a)
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Fig.1 Sketch of stress optimal design problem for its
analytical formulation

Fig.2 Sketch of stress optimal design problem by selecting
the finite design points along I within I"*

On the condition that

*

(1b)
(1o)

Where & : the allowable stress. However, as
pointed out in the recent structural optimization
researches, the classical optimal shape design
approach on the continuous bodies led to
complicated differential and integral equations
which could be only solved in special cases. As a
result, the approaches using numerical methods like
finite element method (FEM), boundary element
method (BEM) or finite difference method (FDM)
with  the combination of  mathematical
programming or optimality criteria techniques are
most favored. Here, with the use of FEM, the
analytical formulation in Eq.(1a) up to (1¢) needs to
be expressed in the numerical form of the following
formulation from Eq.(2a) up to (2c) by assigning
finite number of design points along T, the sketch
of which is shown in Fig.2.

u
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where (x,,y,) : the coordinates of each design
point i along the design profile I', i = l..nand &, is
the equivalent stress at each design point i. During
the process of optimization , if the objective
function Eq.(2a) can be satisfied (i.e. the value of
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Fig.3 [llustration for curvature variation on the design
profile based on Baud’s postulation

the objective function converges) and the allowable
variation domain I" as well as the allowable stress

&% is not violated as defined in Eq.(2b) up to (2¢).
Then, the result of this design can be considered as
an optimum.

3. CHARACTERISTICS OF BIOLOGICAL
GROWTH STRAIN METHOD

(1) Similarity between stress optimal design
and biological adaptation process

Through years of researches, “uniform stress
distribution design (or equi-strength design)” - the
hypothesis postulated by Baud showed its practical
validation by analytical demonstration”. Based on
this validated Baud’s postulation, the stress optimal
design can be achieved by varying the outer-surface
shape (i.e. curvature of the design points along the
design profile) of the design structure. By
iteratively repeating the above process, the outer-
surface shape can be considered to be optimized
once if the conditions (Eq.(2a) up to Eq.(2c)) are
satisfied. The iterative optimization process can be
illustrated by Fig.3. On the other hand, by looking
at the load carriers in animals or plants like bones
or brunches, it is undoubtedly convinced that the
load carriers develop their optimum by well
adapting themselves to their environment at a
certain loading conditions”. With the further inspect
on those biological adaptation process, several
interesting aspects can be summarized in the
following points: (1) the state of constant stress can
be found on the surface of those well-adapted
biological structures and (2) the adaptation process
of these biological tissues is carried out by growth
or atrophy of their live tissues near the stress-
concentrated surface. By comparing these observed
facts on the biological adaptation process with
stress optimal design process, it is not difficult to
find out the high similarity between them on the
optimality condition and the optimization process.
Here, it is worth mentioning that the gradients for
objective function and the constraint conditions is
usually necessary for the conventional stress
optimal  design®™'”  while the biological
optimization process needs no gradient information.
Thus , it was motivated to propose one gradientless

558

- N

Algorithm (Gradientless Adaptation)

Disturbed State 2 ul Adap

Environmental ’ Biological Growth due to
Stimulus Structure t Functional Strain |

Balanced State

Adapted Environmental

Biological g Stimulus
Structure )

~N

External Load Condition

4

Design Structure

&

Generation of
Fictitious Strain

Simulation Mechanism in BGSM

Optimized Structure

Iteratively Improving
Design Structure

<

N )

Fig.4 Simulation on Biological Self-Adaptation Process

stress optimal design method by simulating the
biological adaptation process to update the design
variables instead of the gradient optimization
techniques, the simulation mechanism of which is
illustrated in Fig.4. According to the research on
the biological self-adaptation process, when the
external stimulus disturbs biological structures ,
the biological structures will adapt themselves in an
iterative way by generating functional strain until
the balanced state between the adapted biological
structures and the external stimulus can be found.
Therefore, the simulation mechanism of BGSM is
proposed as follow ; when the external load
condition is applied on the design structure, one
parameter called fictitious strain is generated in the
updating process (fictitious growth process). In this
research, this parameter is called “biological growth
strain” while the fictitious growth process is called
“biological growth strain analysis”. With this
parameter, the design structure can be updated
iteratively until the optimized structure is found.

(2) Biological growth strain'"'?

The concept of biclogical growth strain is from
the observation : the biological structures vary their
shape to adjust the stress distribution along the
stress-concentrated surface by growth or atrophy of
the tissues near the surface. Therefore, the principle
for simulation is stated as that ,with the use of
FEM, if the element equivalent stress is greater than
the reference stress, this element should swell;
otherwise, if smaller than the reference stress , the
element should shrink. Therefore, after each



iteration, the difference between reference stress
and element equivalent stress can be reduced based
on the definition of biological growth strain. In this
research, the maximum principal stress or von
Mises stress is chosen as the equivalent stress
according to the type of material. For ductile
material , von Mises stress is used while maximum
principal stress is used for brittle material. Besides,
with the consideration on the effect of strength ratio
(i.e. the ratio of compressive strength Fc to tensile
strength Ft in two dimensional case) in brittle
material, the ratio of principal stress to its uniaxial
strength with the correspondent sign is also
introduced in the definition of biological growth
strain. The mathematical definition of the above
descriptions is given in Ect(fi) for principal

biological growth strain matrix 2" 1
{ew’} - EIBIP Y (3)
=0 enf
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where j : j" design element within I'; ¢,
equivalent stress within j" design element; O,

mean of equivalent stress of all the design
elements; ¢, : k" principal stress, k=1..2; f, :

uniaxial compressive or tensile strength;Vh
constant for search step; § = : Kronecker delta and

m,n : dummy index complying with summation
convention'’, According to our experience, the
value of Vi is suggested to be used from 0.05 to
0.2. In order to express the biological growth strain
in a general way in stead of the form of principal
strain as expressed in Eq.(3), the transformation of
coordinates from the principal coordinate system

(1-2) to global coordinate system (x-y) is carried
out as shown in Eq.(4),
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where {g:n }1 biological growth strain matrix

B

“

within j" design element and T: transpose of matrix
and coordinate transformation matrix [A] is defined
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where ¢ : the rotation angle between global
coordinate system (x-y) and principal coordinate
system (1-2).

(3) Algorithm of biological growth strain
analysis

In the process of optimization, the technique to
update design variables in the iterative design is one
of the major research topics. In this newly proposed
method, the process of updating design variables is
provided in the «calculation algorithm called
“biological growth strain analysis” , the derivation
of which is explained in the following : first, the
strain occurring in the structure is assumed to be
composed of elastic strain ¢/ and biological growth

strain ag as below

(6)

 E B
e, =€ +¢,

The elastic strain-stress relationship is known as
follow

Q)

_ E
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where Dy, : fourth-order material modulus tensor;

by introducing Eq.(6) into Eq.(7) , Eq.(7) can be
rewritten as

;= D:jklsfl _Dijklefl ®
By expressing Eq.(8) in the form of matrix, Eq.(8)
becomes

{o}=[DYe}- DK } ©)
In the process of shape optimization with the
introduction of biological growth strain, one
assumption is introduced here; that is, there is no
work generated by traction and body force. Based
on this assumption, the general formulation for the
principle of virtual work can be rewritten as

[, {eHo Yoo, =0 (10)
where {E} : the virtual strain. In addition, the

strain-displacement relationship in FEM model is
also introduced. For the two-dimensional case
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where [B] : the relationship matrix between
element strain vector {¢} and element nodal
displacement  vector  {u}. Furthermore, by

substituting Eq.(9) and (11) into Eq.(10) and
rearranging it, the result can be expressed as

fi }’[ i[Bf[DJ[Blan,}{u}
~{a }’[ T [D][eﬂlagi

(12)

where {1; }1 nodal

displacement vector. By eliminating {;}’, the

element governing equation can be established as
below

transpose of virtual

[k Ju}={ag} (13)

where [K] : element stiffness matrix and the
equivalent nodal force vector {Ag} is formulated as

{ae}= [, (BT ID¥e" Jog, (14)

As introduced by the assumption of no work
exerted by traction or body force, the element nodal
displacement vector {u} is generated by the

equivalent nodal force vector {Ag}, which is the
function of {98} Because the generation of {gB} is
to update the design structure, {u} should be

regarded as the nodal coordinate updating vector.
Then, the global governing equation is given by
superimposing every element governing equation.
As a result, the nodal coordinate updating vector
{u} can be obtained by solving the global
governing equation superimposed by Eq.(13).
Therefore, the shape of the structure is updated by
adding the nodal coordinate updating vectors to the
old coordinates of nodes.

The computational flow of BGSM is illustrated in
Fig.5. The initial configuration of a design structure
can be input by means of a preprocessor (i.e. mesh
generator, initial input of configuration of
structures). Next, a structural analysis within elastic
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limit is carried out by FEM. As a result, the scatter
of the inner stress within the structure can be
calculated. Then, the process of the optimization
will be iteratively executed in accordance with the
execution order shown in Fig.5. The termination of
this iterative computation can be recognized when
the conditions in Eq.(2a) up to (2c) are satisfied.

(4) Evaluation on mesh distortion and remesh
During the shape optimization by FEM, one
common problem is the distortion of meshes which
leads to the enlargement of the loss of precision of
analysis. In order to maintain the reliability of the
analysis, it is essential to adjust the mesh



discretization acceptably at each iteration. Based on
this consideration, 2 steps ( also shown in Fig.5 )
are necessary to be adopted. The first one is to
evaluate the fitness of present FE element
discretization. For two-dimensional cases, the
evaluation criteria is the uniformity of element area.
The way of evaluation is to judge if the ratio of the
maximum element area to minimum element area
within the variation domain I" is greater than the
given limit. If the ratio is under the given limit, the
present process of optimization can be continued;
however, if not, the second step to adjust the
improper mesh discretization (i.e. remesh) is
adopted. In fact, there are several approaches for
adaptive remesh - h method, p method, r method or
the combination h-p method””. The characteristic of
p method is to increase the number of the nodes and
h method is to increase the number of elements
while r method is to relocate the coordinates of
nodes without adding total number of nodes and
elements. Generally speaking, the accuracy of h
method, p method or their combination h-p method
is higher but the time and cost involved in the
calculation also increase substantially. Conversely,
with a reasonable number of nodes and elements at
the initial mesh, r method can be thought as a
practical way for remesh. The algorithm of r
method for remesh in BGSM is explained here; for
the points on the boundaries, spline curve fitting is
adopted to adjust the interval length between the
boundary points with an approximate curve on the
initial curve of boundary while, for the nodes
within the design domain, one method called
“iterative average-area coordinate search” is used to
relocate the position of interior nodes, the concept
and the formulation of which are schematized in
Fig.6 as well as Fig.7 separately. By our experience
using the proposed remesh method, the accuracy of
mesh discretization during the shape optimization is
really good enough to be accepted. One illustrative
example by using this remesh method is given in
Fig.8.

4. NUMERICAL VERIFICATION

(1) Verification on correctness of BGSM

After explaining the details of BGSM, the
availability of this method is necessary to be
verified before applying this method to general
structures. To verify the availability of this method ,
the design problem to find out the optimal shape of
the hole in a plate under biaxial stress is considered,
which is illustrated in Fig.9. According to the
elasticity theory'”, the tangential stress for the
elliptical hole in an infinite plate under biaxial stress
is given as
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Fig.10 Sketch of FEM model for the hole in an infinite
plate under biaxial stress with different initial shapes
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where k : axis ratio (=b/a; b: vertical axis and a:
transversal axis) and 0 : directional angle. With the
introduction of the assumption o% -« » Eq.(15) can
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be rewritten as follow
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Table 1 Material property Table 2 Loading condition

and case label

o T = P:Q] A|B
[ * [0] -

1000 [ 1000 | 7.00E+04 | 0.3 1:1]AlBI
* : unit (kgffcm?) 1:2 |A2|B2

Thus, provided 0%1 =b/ =k, the tangential

stress will be constant along the edge. According to
Baud’s postulation, the shape with uniform strength
distribution is considered as optimum. Furthermore,
to verify the availability of BGSM, different initial
shapes of holes including (a) square and (b)
rectangle were used as numerical examples shown in
Fig.10. Due to symmetry, only one quarter of these
structural models were analyzed. The material
property and loading condition with case label were
given in Table 1 and 2 respectively. Due to ductile
material used in these cases, von Mises stress was
selected as the equivalent stress(abbr. as EQS). By
applying BGSM, the optimized shape for different
initial shapes under the equal biaxial stress ratio (i.e.
P/Q = 1) and EQS along the design profile before
and after optimization was given in Fig.11. In
addition, the axis ratio of the design profile for the
results of BGSM and analytical solution was shown
in Table 3. For the unequal biaxial stress ratio (i.e.
P/Q = 0.5), the optimized shapes and EQS
distribution was shown in Fig.12 while Table 4
offered the comparison between the results of
BGSM and the analytical solution.

By reviewing the definition given in Eq.(3), the
reason causing the variation of the optimized shape
for different initial shape can be understood because
the reference stress is defined as the mean stress
along the design profile rather than a fixed value.
However, the axis ratio in Table 3 and 4 for
different initial shape under P/Q = 1 and 0.5 showed
the good agreement between analytical result and
the numerical result given by BGSM. In addition,
the equivalent stress along the design profile could
be quite uniform for all the cases shown in Fig.11
and 12. Thus, the correctness of BGSM could be
verified.

(2) Verification on applicability of BGSM

After the correctness of BGSM was verified, the
applicability of BGSM was also necessary to be
checked. Based on our experience to use BGSM for
designing structures, its applicability could be
recognized acceptable due to success on many cases.
Here, with the limitation of space, one example for
illustrating its comprehensive applicability
numerical analysis on the adaptive growth of tree by
BGSM was depicted as follows. In accordance with
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The knowledge on the biological growth of trees,
the direction of adaptive growth of trees depends on
which type of the constituent material of trees -
compressive wood or tensile wood. By considering
this, the material used in this example was assumed
to be compressive wood (i.e. brittle material). Thus,
maximum principal stress is used as the equivalent
stress. By applying the bending force on the branch



of the tree, the isostress diagrams of original and
optimized tree were shown in Fig.13(a) and (b)
individually. The design profile was symbolized as
I'. The objective of the optimization was to
reduce stress concentration. After numerical
simulation of BGSM, through Fig.13(a)-(c), what
can be observed is , by comparing the value of
maximum principal stress in the stress level before
and after optimization, the stress concentration
along I afteroptimization is effectively reduced.
As a result, the applicability of BGSM for
numerical simulation on biological adaptation
process is verified.

5. COMPARISON ON COMPUTATION
EFFICIENCY

(1) Optimality criteria method based on
sensitivity analysis

In order to evaluate BGSM, one optimality-
criterion approach using sensitivity analysis (abbr.
as SA) was also proposed by the authors. The
features of this method were explained here. The
objective function for this method is the same as
shown in Eq.(2a) up to (2¢). Here, von Mises stress
was used for the equivalent stress. Based on the
definition of von Mises stress, the equivalent stress
is the functional of the stress tensor and the stress
tensor is the function of nodal coordinates, as
expressed in Eq.(17) for the plane stress case.

o, = J2/2 (ci -0,6,+0; +30], )Vz
= f(gu )= f(GX’G\"GXy)
= flo,(x.y)o, (x.y)o ()

By Taylor's first-order expansion at mean stress
o, - the equivalent stresses at each evaluation

an

point can be approximated as below

6, =0, +¥ b, 30+ 3e) (18)

where 3(8): the error functional and G; : the

components of stress tensor. As it is shown, the
sensitivity coefficients of stresses regarding the
design variable is essential. The sensitivity analysis
in this paper adopted the semi-analytical method by

a finite difference method”. o is differentiated
with respect to the design variables as follow

_99; 5, (19)

8o, =" Jox,

where j : j" design point; X ; + coordinate of design
points (i.e. x, and y,, i=1..n) and §, : perturbation of

coordinates for j" design point. By substituting
Eq.(19) into Eq.(18), Eq.(18) can be rearranged as

Table 3 Comparison on Ra
andRb (P/Q=1)

Table 4 Comparison on Ra
and Rb (P/Q=0.5)

P:Q=1:1 P:Q=1:2
Ra | Rb | RbRa Ra | Rb | Rb/Ra
A | Or|500]500] 100 A | Or|500]500] 1.00
Opm| 6.38 | 6.38 | 1.00 Opm| 4.17 | 8.54 | 2.05
B | Ori [10.00] 5001 0.50 B | Or |10.00| 5.00| 0.50
Opm| 10.40{10.29| 0.99 Opm| 6.66 | 12.67| 1.90
Analytical 1.00 Analytical 2.00
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Eq.(20) can be rearranged in the form of matrix
as shown in Eq.(21). As a matter of fact, the right
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side of Eq.(21) can be approximated by multiplying
one constant (¢) for diminishing the effect of error
functional.

o,dx, +B,dy, =0, 0, —3)

@1
:q)[qu_crpf

In Eq.21), the order of coefficient matrix

[ocj,Bj] is n * 2n. As a result, the solution of

(8x,8y) cannot be solved by only n equations

because only n design points are selected along the
design profile. Hence, some extra information
related to (6x,8y) needs to be introduced into

Eq.(21). For solving that, the updating vector for
each design point is assumed to be in the direction
of the bisector of the angle defined by the idea
presented in Fig.14. Then, the relationship for
(8x,8y) can be established as follow

Sy _ K x:
ox ~

))i, ~ Yin

(22)

By substituting Eq.(22) into Eq.(21), the order of
coefficient matrix [a/_,ﬂj_] becomes n * n. Then,

after obtaining the derivatives of stress regarding
design variables and using the relationship given in
Eq.(22), the solution for the updating vector can be
obtained. With the updating vectors, the shape of
the design structure will be changed by the addition
of these updating vectors with the present
coordinates of design points. This process will be
repeated until Eq.(2a) up to (2¢) can be satisfied.

(2) Observation on comparative result

As the purpose of research stated in Chapter 1,
one example for comparison was offered here. The
structural FEM model with its dimension and
material property was pointed out in Fig.15. The
equivalent stress considered in this case was von
Mises stress. Fig.16 indicated the optimized shapes
obtained from the two methods with little
difference, which indirectly verified the correctness
of SA. In addition, the ratio of area difference to
original area , converged value of objective
function, the ratio of strain energy difference to
initial strain energy, the ratio of maximum EQS at
optimum to initial maximum EQS obtained by
BGSM and SA were tabulated in Table 5. From
these data, the correspondence of the optimized
result generated by BGSM and SA could be
acknowledged. However, on the other hand, the
computation cost spent by the two methods was
quite different. For the FEM model of this
numerical experiment, in which there were 153
nodes and 128 elements , the programs were carried

Table 5 Comparison on the optimized results
by SA and BGSM

Aopn-Aan ] 152 opn-S o [EQS maspm | Tirme comp
Aor N Seon EQS (maxori_| (each loop)
SA | 1.0028 10.56 0.9844 0.5363 198 sec
BGS| 1.0056 |0.57 0.9756 0.5427 1.2 sec

A:Area, Val: Value of Objective Function, Se: Strain Energy

i+1,i =i%i x
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Fig.15 FEM model of design structure
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Fig.16 Comparison on shape of design structure

out on SUN Sparc station 10. For BGSM, one
iterative step only took 1.2 sec while about 198 sec
spent by SA; that is, only 98.4 sec was needed for
BGSM to find out the optimum (82 iterative loops)
while about 17820 sec (about 4.95 hr) needed by
SA. As a result, though the similar optimal
solutions could be achieved by the two methods,
the high efficiency of BGSM for saving a lot of
computation cost was obviously confirmed.

6. CONCLUDING REMARKS

The following conclusions can be extracted from
this study:

(1) By observing the algorithm of BGSM, the



gradientless optimization technique by simulating
the biological adaptation made this method very
simple without special coding procedure, unlike the
conventional approach for the need to code their
special algorithm.

(2) The availability of BGSM was proved from the
viewpoint of correctness and applicability by (a)
finding the conformity between the numerical result
obtained by BGSM and the analytical result and
(b) applying this method on many design structures
successfully for the acceptable achievement on the
design objective.

(3) With the sophisticated definition on the
biological growth strain, the applicability of BGSM
could be extended from the use on ductile material
to brittle material, which is used to be considered
by setting different level of stress constraint in
mathematical programming approach. From the
example given in this paper, the present definition
of biological growth strain for brittle material
showed its possibility; however, the pertinence of
such definition needs further confirmation.

(4) By the comparative example given in this
paper, the excellence of BGSM on improving
computation efficiency could be verified for its
ignorance of gradient calculation, which is regarded
as an indispensable part in the conventional
structural optimization technique.
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